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Abstract: Discrimination of highly valued and non-hepatotoxic Cinnamomum species (C. verum) from
hepatotoxic (C. burmannii, C. loureiroi, and C. cassia) is essential for preventing food adulteration
and safety problems. In this study, we developed a new method for the discrimination of four
Cinnamomum species using physico-functional properties and chemometric techniques. The data
were analyzed through principal component analysis (PCA) and multiclass discriminant analysis
(MDA). The results showed that the cumulative variability of the first three principal components
was 81.70%. The PCA score plot indicated a clear separation of the different Cinnamomum species.
The training set was used to build the discriminant MDA model. The testing set was verified by
this model. The prediction rate of 100% proved that the model was valid and reliable. Therefore,
physico-functional properties coupled with chemometric techniques constitute a practical approach
for discrimination of Cinnamomum species to prevent food fraud.

Keywords: cinnamon; chemometrics; food fraud; identification model; physico-functional

1. Introduction

Cinnamon is one of the important spices and is obtained from the dried inner bark of
the evergreen tree belonging to the genus Cinnamomum. There are four main economically
available species of cinnamon in the spice market, including C. verum (Ceylon cinnamon,
CV), C. burmannii (Indonesian cinnamon, CB), C. loureiroi (Vietnamese cinnamon, CL),
and C. cassia (Chinese cinnamon, CC). Consumers’ growing awareness of the health ben-
efits of cinnamon is driving the global cinnamon market, which is expected to reach to
US$1.9 billion by 2025 [1]. Because of worldwide demand and the direct relationship
between food quality and commercial value, the cinnamon supply chain is susceptible to
food fraud. Important types of food fraud are deliberate substitution, dilution or addition,
or misrepresentation of food ingredients [2]. According to reports, cinnamon is at very
high risk for adulteration involving substitution, and the increased trading of cinnamon
substitutes has increased that risk [3].

Many Cinnamomum plants are morphologically similar. Some cheaper and hepatotoxic
adulterant Cinnamomum species, such as C. burmannii, C. loureiroi, and C. cassia, are easily
confused with the highly valued and non-hepatotoxic C. verum [4,5]. Consuming such
substitutes, however, is dangerous due to the high amount of coumarin present in compar-
ison to C. verum. Furthermore, the number of these lower-priced substitutes is increasing
in the consumer market [6]. The task of differentiation becomes more challenging and
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difficult when cinnamon is converted into powder [7]. As a result, distinguishing between
cinnamon species is critical for ensuring food quality and avoiding safety issues associated
with fraudulent adulteration.

So far, efforts are made for evaluating the quality and safety [8] of cinnamon. Cur-
rently, there is increasing demand on governmental agencies and industries to combat
the rising threat of food fraud [9]. However, most of the quality-monitoring analytical
methods are expensive, have high environmental impact, require skilled analysts, and can
only be employed in well-equipped laboratories [10]. To overcome these problems, more
recent research trends have emphasized the evaluation of physico-functional properties
of food materials, since they could serve as quality control indexes. Physico-functional
properties such as pH, moisture content, and density can be determined with limited labo-
ratory resources and are easily accessible in laboratories of less developed or developing
countries [11]. Therefore, these analyses can be determined in all steps during routine
quality inspections of foods at the industrial or supplier levels.

Chemometric techniques have been successfully employed as useful tools for data
analysis in food-related studies [9], for example, assessing food quality, confirming food
authenticity, detecting food adulteration, and distinguishing cultivars [11]. At present, there
is a growing body of literature discussing the importance of principal component analysis
(PCA) and multiclass discriminant analysis (MDA) in discriminating peach varieties, Boletus
edulis [12], rice varieties [13], and vinegar varieties [14]. Although there has been some
discussion of the physical or functional properties of Cinnamomum species [15,16], none has
reported discrimination of Cinnamomum species based on physico-functional properties
coupled with chemometric techniques.

This study was aimed at investigating the relative contribution of 13 physico-functional
properties of C. verum, C. burmannii, C. loureiroi, and C. cassia. PCA was first employed for
exploratory purposes and tested the suitability of the physico-functional properties for
discrimination of four Cinnamomum species. Then, MDA was employed for classification
and prediction purposes [17,18].

2. Materials and Methods
2.1. Sample Collection and Preparation

Twenty cinnamon samples (6 CV, 6 CB, 4 CL, and 4 CC) were collected from different
Asian countries over the period 2018 to 2020 (Supplementary Table S1). All samples
were identified at the Department of Biological Sciences, National Sun Yat-sen University,
Taiwan, based on morpho-anatomical features [19,20]. Dried cinnamon bark samples were
crushed manually and then pulverized to powder using a laboratory-scale stainless steel
grinder. The powder samples were placed in plastic bags and stored in a vacuum desiccator
until use.

2.2. Determination of Physico-Functional Properties

A total of 13 physico-functional properties were assessed on each sample.

2.2.1. Bulk Density (BD) and Tapped Density (TD)

The BD and TD were calculated by the ratio of the weight to the unsettled or tapped
volume of the sample and expressed in grams per cubic centimeter (g/cm3) [21,22].

2.2.2. True Density

The true density was measured by a gas pycnometer (AccuPyc 1340, Micromeritics,
Norcross, GA, USA) and calculated using Equation (1) [15].

True density (ρt) =
[

Ws
Vs

]
Vs =

[
Vcell −

(
Vexp(
P1
P2

)
−1

)] (1)
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In Equation (1), Ws = weight of the sample (g), Vs = volume of the sample (cm3),
Vcell = volume of the cell, Vexp = observed volume (experimental), and P1 and P2 = pressure
of the multivolume pycnometer before and after nob revolution, respectively, in psi.

2.2.3. Porosity

Porosity (ε) was determined as the ratio of the difference between true density and
bulk density to the true density [15]. The percentage porosity (ε%) was calculated using
Equation (2).

Porosity (ε%) =

[(
1− ρb

ρt

)
× 100

]
(2)

where ρb = bulk density (g/cm3) and ρt = true density (g/cm3).

2.2.4. pH

Sample pH was determined according to the procedure of Jeong, et al. [23]. One gram
of sample was mixed with 40 mL of doubly-deionized (2D) water and shaken for 3 h at
200 rpm. The mixture was then centrifuged (Himac CR 21F, Hitachi Koki Co., Ltd., Tokyo,
Japan) at 1294× g for 10 min, and the filtrate was collected for pH measurement by a pH
meter (sensION TM + PH3, Hach Lange GmbH, Düsseldorf, Germany).

2.2.5. Moisture Content

The moisture content of the sample was measured using an automated moisture bal-
ance (MA 35, Sartorius Weighing Technology GmbH, Goettingen, Germany) and expressed
as % moisture content on a dry basis.

2.2.6. Color

The sample color was determined using a colorimeter (ZE 2000, Nippon Denshoku
Industries Co. Ltd., Tokyo, Japan) and evaluated by means of CIELAB coordinates [23].
The total color difference (∆E) was determined by taking an unsieved sample as a reference
and using Equation (3) [11].

∆E =
[
∆L2 + ∆a2 + ∆b2

] 1
2 (3)

where ∆L = difference in lightness, ∆a = difference in red intensity, and ∆b = difference in
yellow intensity.

2.2.7. Aspect Ratio

The aspect ratio was determined according to the method described by Charles and
Alamsjah [11]. Samples were mounted on a microscope slide without overlap of particles
and observed under a microscope (Eclipse E100, Nikon Instruments Inc., Melville, NY,
USA). The parameters of the aspect ratio, including the particle major axis (l) and minor
axis (b), were analyzed by Image-Pro® 10 [24]. The aspect ratio (ϕAR) was calculated
according to Equation (4).

Aspect ratio (ϕAR) =

[
minor axis (b)
major axis (l)

]
(4)

2.2.8. Water Absorption Index (WAI) and Water Solubility Index (WSI)

The WAI and WSI were determined by the procedure described by Kraithong, et al. [25].
One gram of sample was added to 10 mL of 2D water and vortexed for 1 min. The sus-
pension was submerged in a water bath at 30 ± 2 ◦C for 30 min with intermittent stirring
and centrifuged at 1294× g for 10 min. The supernatant was transferred to a preweighed
aluminum moisture dish and dried overnight at 105 ◦C. The weight of the sediment was
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recorded. The WAI and WSI were calculated and expressed as g/g of sample and %,
respectively, as shown in Equations (5) and (6).

Water absorption index (WAI, g/g) =
[

weight of wet sediment (g)
dry weight of sample (g)

]
(5)

Water solubility index (WSI, %) =

[(
weight of dried supernatant (g)

dry weight of sample (g)

)
× 100

]
(6)

2.2.9. Oil Absorption Index (OAI)

The OAI was determined as described by Kraithong, et al. [25]. Samples (1 g) were
added to commercial soybean oil (10 mL) and centrifuged at 2301× g for 20 min. The
weight of oil absorbed was recorded. The amount of oil absorbed by the samples was
calculated according to Equation (7).

Oil absorption index (OAI, g/g) =
[

weight of oil absorbed (g)
weight of sample (g)

]
(7)

2.2.10. Swelling Power (SP)

The SP was determined according to the method described by Moutaleb, et al. [26].
One gram of sample was mixed with 10 mL of 2D water and then incubated at room
temperature for 24 h. The SP was calculated using Equation (8).

Swelling power (SP, mL/g) =
[

total volume of the swollen sample (mL)
original dry weight of sample (g)

]
(8)

2.2.11. Emulsifying Activity (EA)

The EA was performed by adapting the method by Chandra, et al. [27]. One gram
of sample was mixed with 10 mL of 2D water and 10 mL of soybean oil. The mixture
was vortexed thoroughly and centrifuged at 2000× g for 5 min. The EA was calculated
according to Equation (9).

Emulsifying activity (EA, % ) =

[(
height of emulsified layer

total height of mixture

)
× 100

]
(9)

2.3. Data Processing and Analysis

A data matrix consisting of 120 observations (20 cinnamon samples × 6 replicates)
and 13 physico-functional variables were used in this study. The replicates were used to
enlarge the sample size. One-way ANOVA (analysis of variance) was first performed to
determine the significant (p < 0.05) variables that could be used to discriminate among
Cinnamomum species. Then, trials for different combinations of significant variables were
conducted for the two selected groups of Cinnamomum species using an independent
samples t-test (p < 0.05). Finally, the analysis, providing the best discriminative variables
with better discrimination power for the established identification model was used for the
chemometric approach.

2.4. Chemometric Techniques

IBM SPSS Statistics for Windows, Version 22.0 [28] was employed for chemometric analyses.

2.4.1. Multivariate Analysis of Variance (MANOVA)

Raw data for selected physico-functional properties were subjected to MANOVA to
determine the significant interactions between the species and selected variables. Physico-
functional properties were taken as the dependent variables, while species were used as
the independent variables. Two multivariate tests, Wilk’s lambda (Λ) and Pillai’s trace,
were computed to determine significant effects of selected variables on the species.
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2.4.2. Principal Component Analysis (PCA)

A total of 120 observations (36 observations each for CV and CB; 24 observations each
for CL and CC) were selected. Prior to PCA, we computed the Kaiser–Meyer–Olkin (KMO)
measure of sampling adequacy and Bartlett’s test of sphericity to assess the multicollinearity
of the data for PCA suitability [29]. A factor extraction method with varimax rotation was
employed. The extracted principal components (PCs) with eigenvalues equal to or higher
than 1 were used to calculate the PC scores and establish a PCA model. The PC score was
calculated according to Zhao, et al. [12], as shown in Equation (10).

PCn =
[
FACn ×

√
λn

]
(10)

where PCn = principal component score, FACn = factor score obtained directly through SPSS
analysis, λ = principal component eigenvalue equal to or higher than 1, and n = number of
principal component extracted.

2.4.3. Multiclass Discriminant Analysis (MDA)

The PC scores of 120 observations were divided randomly into the training set (83.3%)
and the testing set (16.7%) using the Microsoft Excel® 2016 Add-In function, Ablebits
tools [30]. The former set included 100 observations of the four species, and the latter set
contained the remaining 20 observations. The PC scores of the training set were taken as
the input for stepwise discriminant analysis (DA) to build the MDA model [12]. Finally,
typical discriminant functions were established for the species distinction models.

3. Results and Discussion
3.1. Descriptive Statistics of Physico-Functional Properties

The 13 physico-functional properties of Cinnamomum species are listed in Table 1,
and box-and-whisker plots are shown in Supplementary Figure S1. The bulk density (BD)
values for CB (0.45 ± 0.05 g/cm3) showed a highly significant difference (p < 0.05), while
nearly identical values were reported for CV (0.35 ± 0.02 g/cm3), CL (0.34 ± 0.01 g/cm3),
and CC (0.33 ± 0.02 g/cm3). Hermanto, et al. [21] reported BD values for CB samples
between 0.43 g/cm3 and 0.49 g/cm3, consistent with our study. A similar trend was
followed for the tapped density (TD), where no significant differences (p > 0.05) were
found for CL (0.58 ± 0.02 g/cm3), CC (0.58 ± 0.03 g/cm3), and CV (0.57 ± 0.04 g/cm3),
but that of CB (0.71 ± 0.06 g/cm3) was different. Slight variations among the species could
be associated with their origin and environmental conditions. The true density varied
significantly (p < 0.05) among Cinnamomum species and ranged from 1.46 ± 0.02 g/cm3

(CC) to 1.51 ± 0.00 g/cm3 (CV). The increase in the true density of cinnamon samples
might be affected by the moisture content [15]. The porosity values were similar for CC
(77.40 ± 1.01%), CL (76.71± 0.73%), and CV (76.49± 1.01%) but not for CB (69.76 ± 3.58%).
The higher porosities might be due to drastic changes occurring after the grinding pro-
cess [31]. The pH values of the four species were reported as moderately acidic pH values
ranging between 4.73 ± 0.24 (CV) and 5.04 ± 0.17 (CC). Jeong, et al. [23] reported similar
pH values (4.93 to 5.07) for cinnamon powder samples available in the Korean spice market.
The observed acidic pH might be associated with the presence of organic compounds (e.g.,
cinnamaldehyde and cinnamyl acetate) in cinnamon. The highest moisture content was
recorded for CC (11.63 ± 0.67%), while the lowest was recorded for CV (9.89 ± 0.44%).
These results are in line with the results of Jeong, et al. [23], in which recorded moisture
contents ranged from 7.25 to 12.73% in various cinnamon samples. Additionally, the vari-
ations in moisture content might have influenced the true densities of the samples [15],
which was also evident from our findings. The color differences (∆Es) showed a signifi-
cantly (p < 0.05) wide range of values from 3.28 ± 0.36 (CC) to 7.89 ± 1.14 (CB). The wide
variations observed for ∆E highlighted the diversity of the samples. The aspect ratios
varied little between the species, ranging from 1.66 ± 0.27 (CV) to 3.63 ± 0.33 (CB). The
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similarities in particle aspect ratio might be related to grinding and sieving methods used
for sample preparation [11].

Table 1. Descriptive statistics for physico-functional properties of cinnamon samples from four Cinnamomum species.

Variables

Cinnamomum Species

C. verum (n = 6) C. burmannii (n = 6) C. loureiroi (n = 4) C. cassia (n = 4)

Mean SD Min Max Mean SD Min Max Mean SD Min Max Mean SD Min Max

Bulk density (g/cm3) 0.35 b 0.02 0.33 0.39 0.45 a 0.05 0.39 0.53 0.34 b c 0.01 0.32 0.36 0.33 c 0.02 0.31 0.36
Tapped density (g/cm3) 0.57 b 0.04 0.50 0.65 0.71 a 0.06 0.63 0.82 0.58 b 0.02 0.54 0.63 0.58 b 0.03 0.54 0.63

True density (g/cm3) 1.51 a 0.00 1.50 1.52 1.49 b 0.01 1.48 1.50 1.48 c 0.01 1.47 1.49 1.46 d 0.02 1.42 1.48
Porosity (%) 76.49 a 1.01 74.01 78.36 69.76 b 3.58 64.44 73.69 76.71 a 0.73 75.55 78.39 77.40 a 1.01 75.72 79.24

pH 4.73 c 0.24 4.42 5.11 4.90 b 0.10 4.78 5.08 4.93 b 0.09 4.83 5.08 5.04 a 0.17 4.75 5.21
Moisture content (%) 9.89 d 0.44 9.03 10.58 11.15 b 0.40 10.20 11.85 10.80 c 0.50 10.03 11.76 11.63 a 0.67 10.57 12.92

Color 3.85 c 0.78 2.94 5.22 7.89 a 1.14 5.90 9.36 5.76 b 0.58 5.06 6.66 3.28 d 0.36 2.81 3.79
Aspect ratio 1.66 c 0.27 1.11 2.17 3.63 a 0.33 3.26 4.67 2.85 b 0.14 2.44 3.09 2.78 b 0.04 2.69 2.85

Water absorption index (g/g) 3.78 b 0.20 3.27 4.07 5.18 a 0.82 4.17 6.40 3.09 c 0.17 2.90 3.33 2.93 c 0.19 2.58 3.15
Water solubility index (%) 5.61 b 1.90 2.81 8.62 7.89 a 2.66 4.14 12.68 8.63 a 0.44 7.95 9.42 7.83 a 1.12 6.11 9.29
Oil absorption index (g/g) 3.16 a 0.25 2.64 3.48 2.53 b 0.20 2.30 2.81 2.38 c 0.09 2.24 2.51 2.32 c 0.08 2.21 2.44

Swelling power (mL/g) 4.56 b 0.17 4.19 4.80 8.93 a 2.02 5.20 11.40 3.53 c 0.25 3.10 3.90 3.05 c 0.19 2.70 3.40
Emulsifying activity (%) 2.97 b 0.48 2.27 4.84 27.53 a 13.89 7.14 46.34 1.58 b 0.39 0.82 2.61 1.72 b 0.32 1.40 2.54

Data is mean of six replicates. Mean values followed by different superscripts (a–d) within the same row are significantly different (p < 0.05)
based on Duncan’s test (One-way ANOVA). n is the number of samples and SD is standard deviation.

On the other hand, similar water absorption indexes (WAIs) were documented for
CC (2.93 ± 0.19 g/g) and CL (3.09 ± 0.17 g/g), whereas CV (3.78 ± 0.20 g/g) and CB
(5.18 ± 0.82 g/g) showed differences. A high WAI may be associated with large hydrophilic
molecules, such as polysaccharides. Other factors, including the nature, concentration
and conformation of proteins and the level of protein interaction with water, might also
influence the WAI [27]. The water solubility index (WSI) of CL (8.63 ± 0.44%) was high
but showed no significant difference (p > 0.05) from those of CB (7.89 ± 2.66%) and CC
(7.83 ± 1.12%) but differed from that of CV (5.61 ± 1.90%). This trend might be attributable
to particle size resulting from similar grinding and sieving processes. The oil absorption
index (OAI) values for CV (3.16 ± 0.25 g/g) and CB (2.53 ± 0.20 g/g) differed significantly
(p < 0.05) from those of CL (2.38 ± 0.09 g/g) and CC (2.32 ± 0.08 g/g). However, OAI
is mainly affected by the hydrophilic or hydrophobic nature of the proteins [27], which
highlights the partial interdependence between WAI and OAI properties of Cinnamomum
species. The swelling power (SP) ranged from 3.05 ± 0.19 mL/g (CC) to 8.93 ± 2.02 mL/g
(CB). The SP might be affected by the species, particle sizes, and different processing meth-
ods or unit operations employed [27]. The emulsifying activity (EA) showed a wide range
of values from 1.58 ± 0.39% (CL) to 27.53 ± 13.89% (CB). There are, however, possible
explanations, including geographical origin and differences in packaging or storage of cin-
namon powder samples [23], which could have affected the physico-functional properties
of cinnamon samples. The findings from this study have made several contributions to the
current literature by providing useful and practical information on the physico-functional
properties of Cinnamomum species.

3.2. Selection of Discriminative Variables

In general, it is important to understand the major contributing variables (within
13 physico-functional variables) that could provide the maximum information for differ-
entiation of Cinnamomum species. We used an independent samples t-test to compare the
two groups [(CV and CB) ∩ (CL and CC)] and variables to enable the correct identifica-
tion among different species. The analysis identified the nine most informative physico-
functional variables, including BD, true density, porosity, pH, moisture content, color, WAI,
WSI, and SP (Supplementary Table S2), with less crossreactivity between the samples.

3.3. Multivariate General Linear Analysis

MANOVA was employed to perform multisignificant tests with nine selected physico-
functional variables (Supplementary Table S3). The p-value was rounded to three decimal
places due to generation of very low values, indicating very high significance. A study
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conducted by Karabagias, et al. [32] supported Pillai’s trace and Wilks’ Λ as the preferred
test statistics for MANOVA and suggested the appropriateness of MANOVA by considering
possible multi-significant effects of dependent variables on independent variables. In this
study, Pillai’s trace (F (27,330) = 54.65, p = 0.000 < 0.05; Pillai’s trace = 2.45) and Wilks’ Λ
(F (27,316.06) = 84.52, p = 0.000 < 0.05; Wilks’ Λ = 0.00) tests were considered. The results
showed the existence of statistically significant multivariate effects of physico-functional
properties among the cinnamon samples. Hence, we further applied PCA and MDA for a
clear and in-depth understanding of variations among Cinnamomum species.

3.4. Data Dimensional Reduction through PCA

The dimensionality of the data for nine selected physico-functional variables was
reduced to principal components (PCs) using PCA. In the present study, a KMO value
of 0.61 and statistically significant (p < 0.05) Bartlett’s test of sphericity supported the
appropriateness of the data for performing PCA. In addition, the three significant variables
(true density, moisture content, and color) determined by one-way ANOVA collectively
failed to yield acceptable KMO value (0.45), thus making PCA inapplicable. Therefore, it
was not considered in this study. Only the first three PCs presented eigenvalues exceeding 1
(PC1–46.69%, PC2–21.49%, and PC3–13.51%) and explained 81.70% of the cumulative
variability (Supplementary Table S4). A three-dimensional (3-D) score plot shows the
separation of cinnamon samples into four groups (Figure 1a). The CB samples presented
relatively different physico-functional properties and thus formed a distinct group to the
left of the score plot. Although CL and CC samples were found close to each other due to
similarities in their respective physico-functional properties, significant boundaries were
observed between them. Notably, the CV samples were placed towards the bottom of
the plot and distinguished from the CB, CL, and CC samples. These results agreed with
those from the study by Shawky and Selim [33], which applied PCA to demonstrate a
clear separation of CV samples from adulterated cinnamon samples based on near-infrared
(NIR) fingerprints. Similarly, Jeong, et al. [23] employed PCA to establish clear variations
among different cinnamon powders based on physico-chemical parameters. Our results
implied that physico-functional information can be utilized to discriminate among different
species of Cinnamomum samples.
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Figure 1. PCA plots of Cinnamomum species based on nine physico-functional variables: (a) 3-D score plot and (b) corre-
sponding loading plot showing positively (with circles) and negatively (without circles) correlated variables. CV: C. verum;
CB: C. burmannii; CL: C. loureiroi; CC: C. cassia; BD: bulk density; WAI: water absorption index; WSI: water solubility index;
SP: swelling power.
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Moreover, the principal component loading matrix (Supplementary Table S4) of the
first three PCs extracted and the corresponding loading plot (Figure 1b) illustrate the
relationships among the variables and describe the variables effecting the separation of
samples. The CB samples obtained higher scores in PC1 due to high positive loadings
for BD, color, WAI, and SP, whilst CV samples showed higher scores in PC1 due to high
negative loading for porosity. Similarly, the CC samples reported higher scores in PC2 due
to higher values of pH and moisture content, but lower values of true density. Finally, the
CL samples projected towards PC3 with a strong positive weight of WSI. This showed the
contribution of positively correlated (BD, pH, moisture content, color, WAI, WSI, and SP)
and negatively correlated (true density and porosity) variables in explaining variations
among the samples.

These findings demonstrated that the cumulative contribution rate of the first three
PCs reached 81.70%, indicating that these PCs represented the original variables. From the
contained information, the number of original nine selected physico-functional variables
was reduced to three new variables called three PCs. Overall, the reliabilities of the three
new variables demonstrated that physico-functional analysis with PCA is a promising
strategy for discrimination among Cinnamomum species. Furthermore, MDA was applied
to implement the comprehensive use of Cinnamomum physico-functional information from
different species to predict the species of a test sample.

3.5. Establishment of the MDA Model for Cinnamomum Species
3.5.1. MDA Characteristics

The first three PC scores of 100 observations were used as independent variables, and
Cinnamomum species were used as grouping variables. The highlighted MDA characteristics
of nine physico-functional variables using stepwise DA are summarized (Supplementary
Table S5). The results showed that three significant discriminant functions (DF1 = 60.30%,
DF2 = 39.20%, and DF3 = 0.50%) accounted for 100% of the total variance. We exclude the
discussion of DF3 since it represented a very small fraction of the total information. The
Wilks’ Λ values for DF1 (χ2 = 443.66, p = 0.000 < 0.05) and DF2 (χ2 = 207.26, p = 0.000 < 0.05)
were 0.10 and 0.11, respectively. The existence of small Wilks’ Λ and large chi-square (χ2)
values indicated significantly high discriminatory ability of a function and that the groups
appeared to differ [11]. Moreover, DF1 exhibited a high eigenvalue (10.89) and canonical
correlation of 0.96, followed by DF2 with an eigenvalue of 7.08 and canonical correlation of
0.94. These findings also revealed that a larger eigenvalue explained more variance in the
grouping variable in the function test. Similarly, a higher canonical correlation indicated
significant differences in physico-functional properties among Cinnamomum species.

3.5.2. Identification Model for Cinnamon Samples

The identification model was developed using stepwise DA to correctly identify cin-
namon samples based on nine physico-functional variables. Fisher’s linear discrimination
functions were established for the species distinction models according to the following
Equations (11)–(14):

CV : Y1(x) = −10.97− 3.22x1 − 8.09x2 − 4.97x3 (11)

CB : Y2(x) = −12.71 + 7.40x1 + 2.36x2 + 3.55x3 (12)

CL : Y3(x) = −3.82− 2.01x1 + 2.87x2 + 1.21x3 (13)

CC : Y4(x) = −10.81− 4.31x1 + 6.18x2 + 1.13x3 (14)

where Y1(x), Y2(x), Y3(x), and Y4(x) are the identification values for CV, CB, CL, and CC,
respectively. x1, x2, and x3 are the values of the first three PC scores.
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The values of the first three PC scores of 100 training observations were taken into
the established identification functions to validate the functions. Out of 100 observations,
two observations originating from CB and one observation originating from CC were
misclassified as CL. This could be explained by a minor and unavoidable experimental
handling error or the close relationship among CB, CL, and CC. As shown in Table 2, the
correct identification rates were 100%, 93.30%, 100%, and 95% for CV, CB, CL, and CC,
respectively. The overall correct rate of 97% showed that the established identification
model was feasible. Therefore, MDA could be employed to build a distinction model for
Cinnamomum species with a high percentage of correct identification based on physico-
functional properties. In order to establish a full-scale quality evaluation and discrimination
system for Cinnamomum species, collecting more cinnamon samples from different species
should be required in the further study.

Table 2. Correct identification and prediction rates of the training and testing sets based on the MDA model.

Actual Species
Species Discriminated by Model

Total
Correct Identification

Rate (%)CV CB CL CC

Training set

CV 30 0 0 0 30 100
CB 0 28 2 0 30 93.30
CL 0 0 20 0 20 100
CC 0 0 1 19 20 95

Total 30 28 23 19 100 97

Actual Species Species Discriminated by Model
Total

Correct Prediction
Rate (%)CV CB CL CC

Testing set

CV 6 0 0 0 6 100
CB 0 6 0 0 6 100
CL 0 0 4 0 4 100
CC 0 0 0 4 4 100

Total 6 6 4 4 20 100

CV: C. verum; CB: C. burmannii; CL: C. loureiroi; CC: C. cassia.

A two-dimensional (2-D) score plot (DF1 × DF2) represents the qualitative identifica-
tion of Cinnamomum species (Figure 2). The results showed that CL and CC samples were
spread out in the second quadrant, while CV samples were located in the third quadrant.
On the other hand, CB samples were distributed in the fourth quadrant. Therefore, CV
samples were completely separated from other samples. We concluded that there was a
good cluster result for Cinnamomum species based on the first two DFs.

3.5.3. Analytical Model Prediction for Cinnamon Samples

To further test the reliability of the established identification model, the 20 testing
observations were set into the four identification functions. The function with a larger
value determined the predicted species (Supplementary Table S6). The results of the testing
set to validate the built model showed a 100% prediction rate for the assigned samples to
their respective categories (Table 2). Therefore, the established identification model was
valid and reliable.
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Figure 2. 2-D score plot of Cinnamomum species based on the two discriminant functions.
CV: C. verum; CB: C. burmannii; CL: C. loureiroi; CC: C. cassia.

4. Conclusions

This study presented a valid and reliable model for Cinnamomum discrimination
with the potential use of selected physico-functional variables coupled with chemometric
techniques. By combining the PCA and MDA techniques, a relationship was established
between the physico-functional properties and the Cinnamomum species. Additionally,
by applying PCA, the training and testing of the MDA model have become feasible. The
data correct identification and prediction rates realized by using the MDA model provide
a checkpoint for food authorities. The combination of characteristic physico-functional
variables with different Cinnamomum species constitutes the novelty of the present work
designed to ensure future food safety. However, this method may be time-consuming way
to train and test the model. Future research is recommended on the integration of feature
selection and data mining approaches to decrease training time and accelerate learning
from testing a large number of samples.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/foods10112871/s1, Figure S1: Box-and-whisker plots representing different physico-functional
properties for the studied Cinnamomum species, Table S1: Detailed information on the Cinnamomum
samples used in the study, Table S2: Independent samples t-test results of the nine selected discrimi-
native physico-functional variables, Table S3: MANOVA results of Cinnamomum species using nine
physico-functional variables, Table S4: Total variance explained and principal component loading
matrix, Table S5: Stepwise DA characteristics of Cinnamomum species using nine physico-functional
variables, Table S6: Prediction result of the testing set by the MDA model.
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