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Accurately identifying bacteriophage virion proteins from uncharacterized sequences
is important to understand interactions between the phage and its host bacteria in
order to develop new antibacterial drugs. However, identification of such proteins using
experimental techniques is expensive and often time consuming; hence, development
of an efficient computational algorithm for the prediction of phage virion proteins
(PVPs) prior to in vitro experimentation is needed. Here, we describe a support vector
machine (SVM)-based PVP predictor, called PVP-SVM, which was trained with 136
optimal features. A feature selection protocol was employed to identify the optimal
features from a large set that included amino acid composition, dipeptide composition,
atomic composition, physicochemical properties, and chain-transition-distribution.
PVP-SVM achieved an accuracy of 0.870 during leave-one-out cross-validation, which
was 6% higher than control SVM predictors trained with all features, indicating
the efficiency of the feature selection method. Furthermore, PVP-SVM displayed
superior performance compared to the currently available method, PVPred, and
two other machine-learning methods developed in this study when objectively
evaluated with an independent dataset. For the convenience of the scientific
community, a user-friendly and publicly accessible web server has been established at
www.thegleelab.org/PVP-SVM/PVP-SVM.html.

Keywords: bacteriophage virion proteins, feature selection, hybrid features, machine learning, support vector
machine

INTRODUCTION

Bacteriophages, also known as phages, are viruses that can infect and replicate in bacteria, and
are found wherever bacteria survive. The phage virion is composed of proteins that encapsulate
either DNA or RNA, which binds to bacterial surface and injects its genetic materials into the
specific host bacteria. In lytic cycle, phage genes are expressed for proteins that poke hole in the cell
membrane, which makes cell expand and burst. Subsequently, released phages from cell bursting
spread and infects other host cells. Identification of phage virion proteins (PVPs) is important for
understanding the relationship between phage and host bacteria and also development of novel
antibacterial drugs or antibiotics (Lekunberri et al., 2017). For instance, phage encoded proteins
including endolysins, exopolysaccharidases, and holins have been proven as promising antibacterial
products (Drulis-Kawa et al., 2012). Experimental methods, including mass spectrometry, sodium
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dodecyl sulfate polyacrylamide gel electrophoresis, and protein
arrays (Lavigne et al., 2009; Yuan and Gao, 2016; Jara-Acevedo
et al., 2018) have been used to identify PVPs. However, these
methods are expensive and often time-consuming. Therefore,
computational methods to predict PVPs prior to in vitro
experimentation are needed. It is difficult to predict the function
of PVPs from sequence information because of relatively limited
experimental data. However, machine-learning (ML) approaches
have been successfully applied to several similar biological
problems. Therefore, it may be possible to predict the functions
of phage proteins using ML.

To this end, Seguritan et al., developed the first method to
classify viral structure proteins using an artificial neural network,
using amino acid composition (AAC) and protein isoelectric
points as input features (Seguritan et al., 2012). Later, Feng et al.,
developed a naive Bayesian method, with an algorithm utilizing
AAC and dipeptide composition (DPC) as input features (Feng
et al., 2013b). Subsequently, Ding et al., developed a support
vector machine (SVM)-based prediction model called PVPred. In
this method, analysis of variance was applied to select important
features from g-gap DPC (Ding et al.,, 2014). Recently, Zhang
et al., developed a random forest (RF)-based ensemble method
to distinguish PVPs and non-PVPs (Zhang et al., 2015). PVPred
is the only existing publicly available method that was developed
using the same dataset as our method. Although the existing
methods have specific advantages in PVPs prediction, it remains
necessary to improve the accuracy and transferability of the
prediction model.

It is worth mentioning that several sequence-based features
including AAC, atomic composition (ATC), chain-transition-
distribution (CTD), DPC, pseudo amino acid composition
and amino acid pair, and several feature selection techniques
including correlation-based feature selection, ANOVA feature
selection, minimum-redundancy and maximum-relevance, RF-
algorithm based feature selection have been successfully applied
in other protein bioinformatics studies (Wang et al., 2012, 2016;
Lin et al,, 2015; Qiu et al.,, 2016; Tang et al., 2016; Gupta et al.,
2017; Manavalan and Lee, 2017; Manavalan et al., 2017; Song
et al., 2017). All these studies motivated us in the development
of a new model in this study. Hence, we developed a SVM-based
PVP predictor called PVP-SVM, in which the optimal features
were selected using a feature selection protocol that has been
successfully applied to various biological problems (Manavalan
and Lee, 2017). We selected the optimal features from a large
set, including AAC, DPC, CTD, ATC, and PCP. In addition
to SVM (i.e., PVP-SVM), we also developed RF and extremely
randomized tree (ERT)-based methods. The performance of
PVP-SVM was consistent in both the training and independent
datasets, and was superior to the current method and the RF and
ERT methods developed in this study.

MATERIALS AND METHODS

Training Dataset

In this study, we utilized the dataset constructed by Ding et al.,
which was specifically used for studying PVPs (Ding et al., 2014).
We decided to use this dataset for the following reasons: (i)

it is a reliable dataset, constructed based on several filtering
schemes; (ii) it is a non-redundant dataset and none of the
sequences possesses pairwise sequence identity (>40%) with
any other sequence. Hence, this dataset stringently excludes
homologous sequences; and (iii) most importantly, it facilitates
fair comparison between the current method and existing
methods, which were developed using the same training dataset.
Thus, the training dataset can be formulated as:

§s=S8tus™ (1)

where the positive subset ST contained 99 PVPs, the negative
subset $~ contained 208 non-PVPs, and the symbol U denotes
union in the set theory. Thus, S contained 307 samples.

Independent Dataset

We obtained PVP and non-PVP sequences from the Universal
Protein Resource (UniProt) as previously described (Feng
et al., 2013b; Ding et al., 2014; Zhang et al., 2015). To avoid
overestimation in the prediction model, we excluded sequences
that shared greater than 40% sequence identity with sequences
in the training dataset. The final dataset contained 30 PVPs and
64 non-PVPs. We note that our independent dataset included
Ding et al., independent dataset. The above two datasets can be
downloaded from our web server.

Input Features
(i) AAC: The fractions of the 20 naturally occurring amino acid
residues in a given protein sequence were calculated as follows:

Frequency of amino acid (i)

AAC (i) = (2)

Length of the protein sequence

where i can be any of the 20 natural amino acids.

(ii) ATC: The fraction of five atom types (C, H, N, O, and S)
in a given protein sequence was calculated as previously reported
(Kumar et al., 2015; Manavalan et al., 2017), with a fixed length
of five features.

(iii) CTD: The global composition feature encoding method
CTD comprises properties such as hydrophobicity, polarity,
normalized van der Waals volume, polarizability, predicted
secondary structure, and solvent accessibility. It was first
proposed in protein folding class prediction (Dubchak et al,
1995). Composition (C) represents the composition percentage
of each group in the peptide sequence. Transition (T) represents
the transition probability between two neighboring amino acids
belonging to two different groups. Distribution (D) represents
the position of amino acids (the first 25, 50, 75, or 100%) in each
group in the protein sequence. For each qualitative property of
a given sequence, C, T, and D produce 3, 3, and 15-dimension
features, respectively. As a result, 7 x (3 + 3 + 15) = 147 features
can be generated for seven qualitative properties.

(iv) DPC: The fractions of the 400 possible dipeptides present
in a given protein sequence were calculated as follows:

Total number of dipeptide (j)

DPC(j) =
0 Total number of all possible dipeptides
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where j can be any of the 400 possible dipeptides.

(v) PCP: We employed 11 representative PCP attributes of
amino acids for feature extraction (polar, hydrophobic, charged,
aliphatic, aromatic, positively charged, negatively charged, small,
tiny, large, and peptide mass).

Note that all of the above features were in the range of [0, 1] as
input for training and testing.

The Support Vector Machine

We employed a SVM as our classification algorithm, a well-
known supervised ML method introduced in Boser et al. (1992)
that has been applied to several biological problems (Wang
et al., 2009; Eickholt et al., 2011; Deng et al., 2013; Cao et al,,
2014; Manavalan et al,, 2015). The objective of a SVM is to
find the hyperplane with the largest margin to decrease the
misclassification rate. Given a set of data points (input features)
and an objective function associated with the data points (PVPs:
1 and non-PVPs: 0), SVM learn a function in the form of

y = sign ( Z:lz iy K(x;, x) + b) (4)

where y is the predicted class associated with an input feature
vector of x; «; is the adjustable weight assigned to the training
data point x; during training by minimizing a quadratic objective
function; b is the bias term; and K is the Kernel function.
Therefore, y can be viewed as a weighted linear combination
of similarities between the training data points x; and the
target data point x. Data points with positive weights in
the training dataset affect the final solution and are called
support vectors. SVM is especially effective when the input
data are not linearly separable. K is required to map the input
data into a higher dimensional space to identify the optimal
separating hyperplane (Scholkopf and Smola, 2001). Therefore,
we experimented with several common Ks, including linear,
Gaussian radial basis, and polynomial functions. The Gaussian

radial basis K (e(~7 * ”"’7”2); y = ﬁ) performed the best.
Here, two critical parameters (y and C) required optimization:
y controls how peaked Gaussians are centered on the support
vectors, while C controls the trade-oft between the training
error and the margin size (Smola and Vapnik, 1997; Vapnik and
Vapnik, 1998; Scholkopf and Smola, 2001). These two parameters
were optimized using a grid search from 271°-21 for C and
2710210 for vy, in log, steps. In this study, we used a SVM
implemented in the scikit-learn package (Pedregosa et al., 2011).

Cross-Validation and Independent Testing

As demonstrated in a series of studies (Feng et al., 2013a,c,
2018; Chen et al., 2014, 2017a,b), among three cross-validation
methods, i.e., independent dataset test, K-fold cross-validation
test and Leave-one-out cross-validation (LOOCYV, also called
jackknife cross validation), LOOCV is the most rigorous and
objective evaluation methods. Accordingly, the jackknife test has
been widely recognized and increasingly used to test the quality
for various predictors. In LOOCYV, each sample in the training
dataset is in turn singled out as an independent test sample and
all the rule parameters are calculated without including the one
being identified. We performed LOOCYV on the training dataset

and the trained model was tested on the independent dataset to
confirm the generality of the developed method.

Performance Evaluation Criteria

The following four metrics are commonly used in literature to
measure the quality of binary classification (Xiong et al., 2012;
Li et al.,, 2015): sensitivity, specificity, accuracy and Matthews’
correlation coefficient (MCC), which are expressed as

Sensitivity = TPZ%
[y TN
SpeCl'ﬁClty = TN + FP

©)

TP + TN
TP + FP + TN + FN

_ TP x TN — FP x FN
V(TP + FP)(TP + FN)(TN + FP)(TN + EN)

Accuracy =

MCC

where TP is the number of PVPs predicted to be PVPs; TN is
number of non-PVPs predicted to be non-PVP; FP is the number
of non-PVPs predicted to be PVP; and FN is the number of PVPs
predicted to be non-PVP.

To further evaluate the performance of the classifier, we
employed a receiver operating characteristic (ROC) curve. The
ROC curve was plotted with the false positive rate as the x-axis
and true positive rate as the y-axis by varying the thresholds. The
area under the curve (AUC) was used for model evaluation, with
higher AUC values corresponding to better performance of the
classifier.

RESULTS

Framework of the Proposed Predictor

Figure 1 illustrates the overall framework of the PVP-SVM
method. It consisted of four steps: (i) construction of the training
and independent datasets; (ii) extraction of various features from
the primary sequences, including AAC, ATC, CTD, DPC, and
PCP; (iii) generation of 25 different feature sets based on feature
importance scores (FIS) computed using the RF algorithm.
These different sets were inputted to the SVM to develop their
respective prediction models; and (iv) the model producing the
best performance in terms of MCC was considered the final
model, and the corresponding feature set was considered the
optimal feature set.

Feature Selection Protocol

Generally, high dimensional features can contain a higher
degree of irrelevant and redundant information that may greatly
degrade the performance of ML algorithms. Therefore, it is
necessary to apply a feature selection protocol to filter the
redundant features and increase prediction efficiency (Wang
et al, 2012; Zheng et al., 2012; Manavalan et al., 2014;
Manavalan and Lee, 2017; Song et al., 2017). Previously,
Manavalan and Lee applied a systematic feature selection
protocol and developed a novel quality assessment method
called SVMQA (Manavalan and Lee, 2017), which was the
best method in CASP12 blind prediction experiments (Elofsson
et al., 2017; Kryshtafovych et al., 2017). We applied a similar
protocol in our recent studies, including cell-penetrating peptide
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FIGURE 1 | PVP-SVM development consisted of four steps: (i) dataset construction; (ii) feature extraction; (i) development of the prediction model; and (iv) selection

Independent dataset
(PVPs: 30; non-PVPs: 64)

I

Predicted as
non-PVP

Predicted as

PVP

and DNase I hypersensitivity predictions (Manavalan et al.,
2018). Interestingly, this protocol significantly improved the
performance of our method. Therefore, we extended this
approach to the current problem. The current protocol differs
slightly from the published protocol in terms of parameters (ntree
and mtry) used in the RF algorithm, which is mainly due to the
large number of features used in this study (i.e., 26-fold more
features than were used in SVMQA).

In our study, each protein sequence was represented as 583
dimensional vectors, which was higher than the number of
samples. In the first step, we applied the RF algorithm and
estimated the FIS of 583 features (AAC: 20; DPC: 400; ATC:
5; PCP: 11; and CTD: 147) to distinguish PVPs and non-PVPs.
A detailed description of how we computed the FIS scores
of the input features has been reported previously (Manavalan
et al., 2014; Manavalan and Lee, 2017). Briefly, we used all
features as inputs in the RF algorithm and performed ten-
fold cross-validation using the training dataset. For each round
of cross-validation, we built 5,000 trees, and the number of
variables at each node was chosen randomly from 1 to 100.
The average FIS from all the trees are shown in Figure 2A,
where most of the features had similar scores and only ~5%
(FIS > 0.005) contributed significantly to PVP prediction. In the
second step, we applied a FIS cutoff > 0.001 and selected 477
features as optimal feature candidates (Figure 2B). Subsequently,
we generated 25 different sets of features from the optimal
feature candidates based on an FIS cut-off (0.001 < FIS < 0.004,

with a step size of 0.0011). Basically, we considered each set
of more important features in a step-wise manner. To identify
the optimal feature set, we inputted each set into the SVM
separately and performed LOOCYV to evaluate their performance.
The prediction model that produced the best performance (i.e.,
the highest MCC) was considered final, and the corresponding
feature set was considered optimal.

Performance of Various Prediction Models

on the Training Dataset
Figure 3A shows the performances of the SVM model using
different sets of input features, in which the MCC gradually
increased with respect to the different feature sets, peaked with
the F136-based model, and then gradually declined. Figure 3B
shows the classification accuracy vs. parameter variation (C and
y) of the final F136-based model. The maximal classification
accuracy was 0.870, when the parameters log,(C) and log,(y)
were 6.72 and —2.18, respectively, with MCC, sensitivity, and
specificity values of 0.695, 0.737, and 0.933, respectively. The
feature type distribution of the optimal feature set and the total
features employed in this study are shown in Figure 3C. Among
136 optimal features, there were eight AAC features, one ATC
feature, 25 CTD features, 98 DPC features, and four PCP features,
indicating that important properties from all five compositions
contributed to PVP prediction.

To demonstrate the effect of our feature selection
protocol, we compared the F136-based model with the
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FIGURE 2 | (A) The x- and y-axes represent each feature and its feature importance scores (FIS), respectively. We applied a FIS cutoff > 0.001 and selected 477
optimal feature candidates. (B) Distribution of each feature type in the optimal feature candidates and original feature set.
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control SVM (using all features) and also an individual
composition-based prediction model. As shown in Tablel,
F136-based model accuracy, MCC, and area under curve
(AUC) were 15-44, 6-17, and 6-11% higher, respectively,
than the other models. These results demonstrate that the
many redundant or uninformative features present in the
original feature set were eliminated through our feature

selection protocol, resulting in significant performance
improvement.

Comparison of PVP-SVM With Other ML
Algorithms

In addition to PVP-SVM, we also developed RF- and ERT-based
models using the same feature selection protocol and training
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dataset (Figures 4A,B). These two methods have been described
in detail in our previous study (Manavalan et al., 2017, 2018).
The procedure for ML parameter optimization and final model
selection was the same as for PVP-SVM. The performance of
the final selected RF and ERT models was compared with PVP-
SVM, as well as PVPred, which was constructed using the same
training dataset. Table 2 shows that the accuracy, AUC, and MCC
of PVP-SVM were 2-4, 0.1-2, and 8-9% higher, respectively, than
those achieved by other methods, indicating the superiority of
PVP-SVM.

Method Performance Using an
Independent Dataset

We evaluated the performance of our three ML methods
and PVPred using an independent dataset. Table 3 shows that
PVP-SVM achieved the highest MCC and AUC values (0.531
and 0.844, respectively). Indeed, the corresponding metrics
were 2.2-17.4% and 4.8-10.0% higher than those achieved
by other methods, indicating the superiority of PVP-SVM.
Specifically, PVP-SVM outperformed PVPred in all five metrics,

TABLE 1 | A comparison of the proposed predictor with the individual composition-based SVM model on training dataset.

Methods MCC Accuracy Sensitivity Specificity AUC P-value
PVP-SVM 0.695 0.870 0.737 0.933 0.900

SVM control 0.554 0.811 0.636 0.894 0.837 0.068
AAC 0.525 0.792 0.841 0.687 0.841 0.086
DPC 0.395 0.743 0.837 0.546 0.760 0.00023
CTD 0.534 0.801 0.880 0.636 0.819 0.022
DPC 0.478 0.782 0.889 0.556 0.812 0.014
ATC 0.252 0.708 0.091 1.000 0.788 0.002

The first column represents the method name employed in this study. The second, the third, the fourth and the fifth respectively represent the MCC, accuracy, sensitivity, and specificity.
The sixth column and the seventh represent the AUC and pairwise comparison of ROC area under curves (AUCs) between PVP-SVM and the other methods using a two-tailed t-test.
A P < 0.05 indicates a statistically meaningful difference between PVP-SVM and the selected method (shown in bold italic).
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FIGURE 4 | Performance of ERT- and RF-based classifiers in distinguishing between PVPs and non-PVPs. A total of 26 classifiers were evaluated using LOOCV,
whose performances in terms of MCC, accuracy, sensitivity, and specificity are shown. (A) ERT-based performance, (B) RF-based performance. Red arrow denotes
the final selected models for each ML method.

Frontiers in Microbiology | www.frontiersin.org 6 March 2018 | Volume 9 | Article 476


https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles

Manavalan et al.

Prediction of Phage Virion Proteins

TABLE 2 | A comparison of the proposed predictor with other ML-based
methods on training dataset.

Methods MCC ACC Sensitivity  Specificity AUC P-value
PVP-SVM  0.695 0.870 0.737 0.933 0.900

PVPred NA 0.850 0.758 0.894 0.899 0.974
RF 0.600  0.831 0.657 0.914 0.877 0.476
ERT 0.614  0.837 0.636 0.933 0.883 0.594

The first column represents the method name employed in this study. The second, the
third, the fourth and the fifth respectively represent the MCC, accuracy, sensitivity, and
specificity. The sixth column and the seventh represent the AUC and pairwise comparison
of ROC area under curves (AUCs) between PVP-SVM and the other methods using a
two-tailed t-test.

TABLE 3 | Performance of various methods on independent dataset.

Method MCC ACC Sensitivity Specificity AUC  P-value
PVP-SVM 0.531  0.798 0.667 0.859 0.844

ERT 0.509 0.798 0.533 0.922 0.778 0.367
RF 0.481 0.787 0.500 0.922 0.756 0.238
SVM control ~ 0.414  0.755 0.533 0.859 0.796 0.505
PVPred 0.357 0.713 0.600 0.765 0.742 0.176

The first column represents the method name employed in this study. The second, the
third, the fourth and the fifth respectively represent the MCC, accuracy, sensitivity, and
specificity. The sixth column and the seventh represent the AUC and pairwise comparison
of ROC area under curves (AUCs) between PVP-SVM and the other methods using a
two-tailed t-test.

suggesting its usefulness as an improvement to existing tools for
predicting PVPs.

In general, ML-based methods are problem-specific (Zhang
and Tsai, 2005). Instead of selecting a ML method arbitrarily,
it is necessary to explore different ML methods on the same
dataset to select the best one. Hence, we explored three most
commonly used ML methods (SVM, RF, and ERT), each having
its own advantages and disadvantages. The PVP-SVM method
performed consistently better than other two methods both with
the training and independent datasets (Figures 5A,B). Although
the differences in performance between these three methods
were not significant (P > 0.05), SVM was superior to other ML
methods in PVP prediction, consistent with a previous report
(Ding et al., 2014). Hence, we selected PVP-SVM as the final
prediction model.

Comparison of PVP-SVM and PVPred
Methodology

A detailed comparison between our method and the existing
method in terms of methodology is as follows: (i) the PVPred
method utilizes only g-gap dipeptides as input features, and its
optimal features were determined by an analysis of variance-
based feature selection protocol. However, PVP-SVM utilizes
AAC, ATC, CTD, and PCP in addition to DPC, with optimal
features selected based on a RF algorithm; (ii) the number of
optimal features used differs between the two methods; PVP-
SVM uses 136 features, while PVPred uses 160; (iii) although the

same ML method was used for the two methods, the parameter
optimization procedure differed, as PVP-SVM used LOOCYV,
while PVPred used five-fold cross-validation.

Web Server Implementation

Several examples of bioinformatics tools/web servers utilized
for protein function predictions have been reported in previous
publications (Govindaraj et al., 2010, 2011; Manavalan et al,
2010a,b, 2011; Basith et al., 2011, 2013), and are of great practical
use to researchers. To this end, an online prediction server
for PVP-SVM was developed, which is freely accessible at the
following link: www.thegleelab.org/PVP-SVM/PVP-SVM.html.
Users can paste or upload query protein sequences in FASTA
format. After submitting the input protein sequences, the results
can be retrieved in a separate interface. All the curated datasets
used in this study can be downloaded from the web server. PVP-
SVM represents the second publicly available method for PVP
prediction, and delivers a higher level of accuracy than PVPred.

DISCUSSION

PVPs play critical roles in adsorption between phages and
their host bacteria, and are key in the development of new
antibiotics. Phage-derived proteins are considered as safe and
efficient antimicrobial agents due to its versatile properties,
including bacteria-specific lytic mechanism, broad range of
antibacterial spectrum, enhanced tissue penetration by small
size, low immunogenicity, and reduced possibility for bacterial
resistance (Drulis-Kawa et al., 2012). Thus, we have developed
a novel computational method for predicting PVPs, called
PVP-SVM. The molecular functions and biological activities of
proteins can be predicted from their primary sequence (Lee et al.,
2007); hence, we utilized the available PVPs sequences to develop
the method.

A combination of AAC, ATC, DPC, CTD, and PCP features
was used to map the protein sequences onto numeric feature
vectors, which were inputted into the SVM to predict PVPs.
Although AAC, CTD, and DPC features have been used
previously (Feng et al., 2013b; Ding et al.,, 2014; Zhang et al,,
2015), this is the first report including ATC and PCP. In
ML-based predictions, feature selection is one of the most
important steps because of redundant and non-informative
features. Generally, high dimensional features contain numerous
non-informative and redundant features, which affect prediction
accuracy. Hence, the feature selection protocol is considered one
of the most important steps in ML-based prediction (Wang et al.,
2012; Manavalan et al., 2014; Manavalan and Lee, 2017; Song
et al., 2017). To this end, we applied a feature selection protocol
that has been proven effective in various biological applications
(Manavalan and Lee, 2017; Manavalan et al., 2018), and identified
the optimal features. Of those, the major contribution was from
DPC (~72%), followed by CTD, AAC, PCP, and ATC, indicating
that information about the fraction of amino acids as well as
their local order might play a major role in predicting PVPs. A
previous study demonstrated that basic amino acids (Lys and
Arg) usually occur in the flanking potential cleavage site in PVPs,
as their side chain flexibility is required to accommodate the
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change observed in the cleavage site (Coia et al., 1988; Speight
et al., 1988). Interestingly, our optimal features contain these two
important types of residues.

In general, if a prediction model is developed using a training
dataset that contains highly homologous sequences, this method
will overestimate the prediction accuracy. In this regard, Feng
et al,, and Ding et al., used a lower homology (<40% sequence
identity) sequence dataset to develop their prediction models
(Feng et al., 2013b; Ding et al., 2014). Zhang et al., developed
their model using a highly homologous sequence dataset (<80%
sequence identity); as a result, this method showed higher
accuracy when evaluated with an independent dataset (Zhang
et al., 2015). Furthermore, PVPred is the only publicly available
method of the three, in the form of a web server, and was
generated using the same dataset as our method. Therefore, we
compared the performance of our method with PVPred only.
Generally, a prediction model tends toward over-optimization in
order to attain higher accuracy. Therefore, it is always necessary
to evaluate the prediction model using an independent dataset,
to measure the generalizability of the method (Chaudhary et al.,
2016; Manavalan and Lee, 2017; Nagpal et al., 2017). Hence,
we evaluated our three prediction models and PVPred on an
independent dataset. Our study demonstrated that PVP-SVM
consistently performed better than PVPred and the two other
methods developed in this study on both datasets, indicating the
greater transferability of the method.

The superior performance of PVP-SVM may be attributed
to two important factors: (i) integration of previously reported
features and inclusion of novel features that collectively
make significant contributions to the performance; and (ii)
a feature selection protocol that eliminates overlapping and
redundant features. Furthermore, our approach is a general
one, which is applicable to many other classification problems
in structural bioinformatics. Although PVP-SVM displayed
superior performance over the other methods, there is room
for further improvements, including increasing the size of the

training dataset based on the experimental data available in
the future, incorporating novel features, and exploring different
ML algorithms including stochastic gradient boosting (Xu et al.,
2017) and deep learning (LeCun et al., 2015).

A user-friendly web interface has been made available,
allowing researchers access to our prediction method.
Indeed, this is the second method to be made publicly
available, with higher accuracy than the existing method.
Compared to experimental approaches, bioinformatics
methods, such as PVP-SVM, represent a powerful and
cost-effective approach for the proteome-wide prediction
of PVPs. Therefore, PVP-SVM might be useful for large-scale
PVP prediction, facilitating hypothesis-driven experimental
design.
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