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Bacteriophage (or ‘phage’ – viruses that infect and kill bacteria) are increasingly considered as
a therapeutic alternative to treat antibiotic-resistant bacterial infections. However, bacteria can
evolve resistance to phage, presenting a significant challenge to the near- and long-term success
of phage therapeutics. Application of mixtures of multiple phage (i.e., ‘cocktails’) have been pro-
posed to limit the emergence of phage-resistant bacterial mutants that could lead to therapeutic
failure. Here, we combine theory and computational models of in vivo phage therapy to study the
efficacy of a phage cocktail, composed of two complementary phages motivated by the example of
Pseudomonas aeruginosa facing two phages that exploit different surface receptors, LUZ19v and
PAK P1. As confirmed in a Luria-Delbrück fluctuation test, this motivating example serves as a
model for instances where bacteria are extremely unlikely to develop simultaneous resistance mu-
tations against both phages. We then quantify therapeutic outcomes given single- or double-phage
treatment models, as a function of phage traits and host immune strength. Building upon prior
work showing monophage therapy efficacy in immunocompetent hosts, here we show that phage
cocktails comprised of phage targeting independent bacterial receptors can improve treatment out-
come in immunocompromised hosts and reduce the chance that pathogens simultaneously evolve
resistance against phage combinations. The finding of phage cocktail efficacy is qualitatively robust
to differences in virus-bacteria interactions and host immune dynamics. Altogether, the combined
use of theory and computational analysis highlights the influence of viral life history traits and
receptor complementarity when designing and deploying phage cocktails in immunocompetent and
immunocompromised hosts.

I. INTRODUCTION

Bacteriophage (phage, i.e. viruses that infect bacteria) are the most abundant organisms on the planet[1, 2].
Bacteria have evolved a myriad of defense mechanisms to tolerate, counter, and resist infections [3, 4]. Likewise,
phages have co-evolved with bacteria for billions of years, catalyzing the emergence of a myriad of phage variants
[5–8]. Diverse phage represent a largely untapped, therapeutic reservoir for treatment of antibiotic-resistant bacteria
[9–12]. The therapeutic application of lytic phage is gaining interest as a viable treatment in alternative to antibiotics
[13], capitalizing on the evolutionary dynamics of phages to combat bacterial pathogens that have outpaced traditional
treatment options. Unlike antibiotics, which exert selective pressure driving the emergence of resistance, phage possess
the inherent ability to evolve alongside bacteria, and can potentially adapt to overcome resistance mechanisms and
maintain their efficacy over time [9]. Although evolution of phage resistance in bacteria is feasible, the widespread
application of phage therapy is unlikely to catalyze broad spectrum resistance, given the high host specificity of
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phage [14].
In practice, phage therapy has shown significant potential in in vivo studies [15, 16] and in human treatment in

compassionate cases [17, 18] and clinical trials [19]. The study [18] demonstrated that a personalized phage cocktail
successfully treated a life-threatening, multidrug-resistant Acinetobacter baumannii infection in a critically ill patient,
where conventional antibiotics had failed. However, there have been cases where therapeutic phage were not shown
to be significantly more effective in controlling bacterial infections than standard procedures of care [20, 21]. In
[20] the authors found that a phage cocktail was safe and well-tolerated in treating Pseudomonas aeruginosa burn
wound infections, but it did not demonstrate a significant improvement in bacterial load reduction or wound healing
compared to standard treatment. The mixed results of clinical trials call for a thorough identification of the factors
leading to success or failure of phage therapy [22].

To address this gap, several studies have integrated in vitro and in vivo experiments, as well as in silico computa-
tional models, into the design and assessment of phage therapy [23]. These studies have advanced the quantitative
understanding of parameters impacting phage therapy outcomes, such as the pathogen strain, infected tissue, and
chosen delivery method for the therapeutic phage [24]. A key factor modulating the outcome of in vivo phage therapy
is the mammalian host immune response. For example, combined use of theory and in vivo application of phage in
immunomodulated murine hosts revealed that phage and neutrophils work synergistically to eliminate P. aeruginosa
and prevent the onset of fatal acute pneumonia [16]. In immunophage synergy, phage rapidly infect and lyse suscepti-
ble P. aeruginosa cells while neutrophils clear both susceptible and subpopulations of phage-resistance cells. However,
not all phage and immune interactions may lead to positive impacts on therapy. For instance, alveolar macrophages
can reduce the density of circulating phage, potentially jeopardizing phage therapeutic treatment efficacy [25]. When
immune systems are compromised [26] or limit phage-induced clearance of target bacteria [25], the proliferation of
phage-resistance mutants can lead to therapeutic failure [16].

Indeed phage resistance represents one of the major challenges to phage therapy success. The emergence of bacteria
resistant to virulent phage reduces the ability of phage to contain an infection [27–29]. There are multiple approaches
to overcome the evolution and proliferation of phage resistant bacteria. First, phage can be trained via asymmetric
evolutionary training to target evolved bacteria that are resistance to the original, therapeutic phage [30]. Subsequent
application of trained phage can limit the emergence of phage-resistant bacteria, improving therapeutic efficacy.
Alternatively, phage may be used in combination with small molecules (e.g., antibiotics) that limit the potential
for bacterial evolution. In one well-studied case, phage OMKO1 targets antibiotic efflux pumps within Pa; hence
joint use of phage OMKO1 and antibiotics can lead to therapeutic success [31]. Finally, there may be cases where
phage target receptor sites such that evolution of phage resistance comes with significant fitness costs in an in vivo
context [9, 32–37]. All of these examples serve to illustrate the general rule that decreasing the scope of phage-escape
bacterial mutants and/or increasing the costs of phage-resistant mutations increase the efficacy of phage therapy. In
the same spirit, the combined use of multiple phages in a cocktail that infect distinct receptors, makes it harder for
bacteria to acquire resistance against all phages at the same time [38–41]. Cocktails with phages targeting different cell
receptors have higher efficacy against P. aeruginosa [42]. These evolutionary principles can be combined in cocktails
that comprise trained phage, which can efficiently control P. aeruginosa populations both in vitro and in mice lung
infections [43].

In this work we focus on evaluating the therapeutic efficacy of phage cocktails, which leverage complementary
adsorption paths to infect target bacteria. We combine computational and analytical treatment of single- and double-
phage therapy models, informed by Luria-Delbrück (LD) fluctuation tests exposing P. aeruginosa to phages LUZ19v
and PAK P1, to address whether phage cocktails can help restore therapy success in immunocompromised hosts in face
of phage resistance. We then extend our analysis to include in vivo immune system dynamics and structured phage-
bacteria interactions, mapping the quantitative conditions for treatment success as a function of the immune state
and therapeutic phages effectiveness. Comparing our exploration with the parameters extracted in [16] we note that
the quantitative adsorption rate of any of the therapeutic phages may have drastic effects on the treatment outcomes
jeopardizing the benefits of phage cocktails, highlighting the importance of selecting a combination of efficient phages
against the pathogenic strains especially in hosts with a compromised immune system.

II. METHODS

A. Fluctuation test to infer the probability of resistance mutations of P. aeruginosa against two phages

We perform a LD fluctuation test to assess the likelihood that P. aeruginosa colonies randomly develop a resistance
mutation against either phage PAK P1 or LUZ19v or against both phages at the same time. For each phage, we
grow overnight 360 independent populations of strain PAK-lumi. 300 of these are plated against either PAK P1 or
LUZ19v to count the number of resistant mutants, whereas the remaining 60 are used as control to count the CFUs
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FIG. 1: Schematic of mathematical model of phage therapy. A) Ecological interactions between bacteria, phage and
immune system (graphical and mathematical symbols in the legend box). Subpanel A1 shows the interactions in the simple
phage therapy model in a signaling deficient host introduced in Section II B 2, whereas Subpanel A2 sketches the addition of
more complex dynamics in the model introduced in Section II B 4, namely a structured bacteria population including stages
of phage infection and the active recruitment of the host immune cells. Panel B) gathers the cross-infection and mutation
networks between specific phage and bacteria strains (listed in the legend box) in the different treatment models. Subpanel
B1 sketches the single-phage treatment structure used in Sections II B 2 and II B 4, whereas B2 summarizes the cross-infection
structure in the phage-cocktail treatment models introduced in Sections II B 3 and IIB 5 (top and bottom respectively). The
main model parameters studied in this work, the immune strength I and the phage adsorption rate ϕ, are colored in red.
Arrow types encode the different kind of dynamical interactions (growth, killing, decay, mutations), with dashed-dotted lines
indicating saturating nonlinear rates of the form f(·) ∝ ·

·+C
.

in the absence of phage. To measure resistance against both phages simultaneously we grow 150 independent colonies
and plate them against a mixture of PAK P1 and LUZ19v. More details on the fluctuation test protocol are in SI
Sec. II. Then we use the resistant mutants counts to infer the probability at which cells develop resistance to PAK P1,
LUZ19v or both, within one duplication. We run the inference through the web-tool bz-rates [44], which learns the
model parameters via the Generating Function estimator from [45] (see SI Sec. III for more details on the inference).
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Variable Meaning Value Unit

r Maximum bacterial growth rate 1 h−1

d̃ Bacteria density-driven death rate 10−10 g/(h CFU)

µ Mutation probability per replication 4.3 · 10−8

ϕ Phage adsorption rate [10−12, 10−6] g/(h PFU)

β Burst size 100 (PFU/cell)

ω Viral decay 0.4 h−1

κ Immune killing rate 8.2 · 10−8 g/(h CFU)

I Immune cells density [104, 109] (immune cell)/g

KD Cell shielding density 107 (CFU)/g

TABLE I: Model parameters. Most values are taken from [26]. The mutation rate is inferred from the fluctuation test
(Section IIA). For the viral decay ω we elect a mid-value between the parameter reported in [26, 46] (1 h−1) and the one
inferred in [16] (0.07 h−1).

B. Mathematical models of phage therapy

1. Summary

We study two different models of single- and double-phage therapy of bacterial infections in immunomodulated hosts
leading to four different scenarios. Figure 1 sketches the models ingredients both in terms of ecological dynamics (panel
A) as well as evolutionary multi-strain phage-bacteria interactions (panel B). We start from a simple model of a lung
infection, mimicking a signaling deficient immune system as in the case of myeloid differentiation primary response
gene 88-deficient mice (MyD88−/−), where the immune system is static as neutrophils are not recruited in the lungs
[16] (Figure 1, A1). We first analyze a single-phage treatment model (Figure 1, B1), then we add a second phage to
the cocktail to address its impact on treatment outcome (Figure 1, B2 top). Third, switching back to a single-phage
therapy, we include more complex ecological dynamics to account for a responsive immune system, still modulated by
its carrying capacity (limiting the availability of immune cells within the infected tissue) . In this second single-phage
treatment model we include intermediate stages of infected bacteria and add a non-linearity in phage infections to
mimic a Michaelis-Menten phage-bacteria binding reaction (Figure 1, A2). Finally we study the effect of a phage
cocktail with the inclusion of these new model ingredients, and explore the role of evolutionary relations between
the combined therapeutic phages (Figure 1, B2 bottom). We map the phage therapy outcomes as a function of host
immune strength and phage efficacy, depending on the different components of these four models.

2. Infection model of interacting phage, multi-strain bacteria and non-responsive host immune system

The following ordinary differential equation model represents how phage P interacts with susceptible bacteria S
and phage-resistant bacteria R, under the action of immune cells I during infection of an immunodeficient host:

dS(t)

dt
=rS − d̃S(S +R) + µr(R− S)− κIS

1 + S+R
KD

− ΦSP,

dR(t)

dt
=rR− d̃R(S +R) + µr(S −R)− κIR

1 + S+R
KD

,

dP (t)

dt
=βΦSP − ωP,

(1)

This model includes the main ingredients pinpointed in early theoretical studies of phage-bacteria interactions in
vitro [47] and in the context of phage therapy [48]. Bacteria undergo logistic growth at maximum rate r and with

density driven death rate d̃, equivalent to a carrying capacity term KC = r
d̃
. They mutate between the susceptible and

resistant types, and the susceptible type can be infected by phage with adsorption rate ϕ. At the same time phage lyse
susceptible bacteria producing β virions per lysis event, and decay at a constant rate ω. We build on previous models
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focusing on acute infections [16, 26], therefore we only include the action of innate immune effector cells I, mainly
representing the action of neutrophils. In this first model we take I as a constant mimicking an immunodeficient
host unable to recruit more immune cells other than a fixed baseline as in the case of myeloid differentiation primary
response gene 88-deficient mice (MyD88−/−), as proposed in [16]. Immune cells target both bacteria types through
a saturating function, as bacteria evade the immune action at high population densities compared to an evasion
threshold KD, consistent with experiments showing that pathogens at high density can activate defenses against
the immune system [49, 50] through physical shielding [51] or expression of virulence factors [52]. This modeling
ingredient, included in [53] to explain the saturation in granulocytes action on P. aeruginosa during mice thigh
infections and then adapted to the context of phage therapy [26], was shown to be essential to explain the synergy
between phage and immune system in clearing bacteria infections [16, 26]. Therefore, model (1) represents a baseline
model of immunophage synergy extending [26] to enable assessment of phage-resistant bacteria on in vivo dynamics
given modulation of immune strength (I) and phage life history traits (here, primarily explored through variation in
ϕ). Table I reports the parameters meaning and values.

3. Model of a phage combination therapy against multiple pathogenic bacteria strains

In the second model we add a second phage to the infection treatment, now composed of a combination of two
phages P1 and P2 (Figure 1, B2 top). The pathogen types include the wild-type infecting bacteria S, susceptible to
both phages, which can in turn mutate to a type R1 resistant to P1 or to a type R2 resistant to P2 :

dS(t)

dt
=rS − d̃SBtot + µr(R1 +R2 − S)− κIS

1 + Btot

KD

− ΦSP1 − ΦSP2,

dR1(t)

dt
=rR1 − d̃R1Btot + µr(S −R1)−

κIR1

1 + Btot

KD

− ΦR1P2,

dR2(t)

dt
=rR2 − d̃R2Btot + µr(S −R2)−

κIR2

1 + Btot

KD

− ΦR2P1,

dP1(t)

dt
=βΦ(S +R2)P1 − ωP1,

dP2(t)

dt
=βΦ(S +R1)P2 − ωP2.

(2)

We initially assume that the two phages have the same adsorption rate ϕ, which we vary together with the immune
strength I to evaluate therapeutic outcomes when using a phage cocktail. Importantly, Model (2) assumes that
bacteria cannot develop resistance to both phages at the same time within an infection timescale, which was suggested
in several studies proposing cocktail of phages that infect bacteria through different routes [41, 42, 54]. We also assume
that there is no cross-infectivity between the two phages with respect to the resistant types. The susceptible bacteria
mutate equally to either resistant type (and viceversa), but resistant types do not mutate directly among themselves
– hence we ignore the near-term chance of the emergence of a double-phage resistant mutant.

4. Structured model for single-phage treatment of in vivo infections with a modulated responsive immune system

We extend the single phage therapy model Eq. (1) to include a realistic in vivo innate immune response and more
complex phage infection dynamics [16] (Figure 1, A2):
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Variable Meaning Value Unit

r Maximum bacterial growth rate 0.75 h−1

d̃ Bacteria density-driven death rate 7.5 · 10−9 g/(h CFU)

µ Mutation probability per replication 4.3 · 10−8

ϕ Phage adsorption rate [10−9, 10−6] g/(h PFU)

Pc Phage adsorption saturation density 1.5 · 107 (PFU)/g

η Lysis rate 2 h−1

L Number of infected stages 10

β Burst size 100 (PFU/cell)

ω Viral decay 0.07 h−1

κ Immune killing rate 8.2 · 10−8 g/(h CFU)

i Immune cells capacity [104, 108] (immune cell)/g

KD Bacteria shielding density from immune action 4.1 · 107 (CFU)/g

KN Bacteria density when immune recruitment is half its maximum 107 (CFU)/g

α Maximum immune cells recruitment rate 0.97 h−1

TABLE II: Model parameters. Most values are taken from [16]. The mutation rate is inferred via a fluctuation test (Section
II). The lysis rate 2 h−1 is compatible with reported lysis times of phages infecting P. aeruginosa [55, 56]. The number of
infected stages L is the same as several previous models of phage-bacteria dynamics [57, 58].

dS(t)

dt
=rS − d̃SBtot + µr(R− S)− κiS

1 + Btot

KD

− SΦF (P1),

dR(t)

dt
=rR− d̃RBtot + µr(S −R)− κiR

1 + Btot

KD

,

dE1
1(t)

dt
=ΦSF (P1)− LηE1

1 ,

dE
i∈{2...L}
1 (t)

dt
=LηEi−1

1 − LηEi
1,

dP1(t)

dt
=βLηEL

1 − ΦSF (P1)− ωP1,

di(t)

dt
=αi

(
1− i

I

)
Btot

Btot +KN
.

(3)

The innate immune cells i are recruited in the lungs at a maximum rate per capita α until they reach a saturation
density I (immune capacity), which is one of the parameters we vary in this study to modulate hosts immune
responses. Immune cells are recruited proportionally to a saturating function of the total density of bacteria Btot with
half saturation constant KN . These saturation profiles in immune recruitment within infected tissues are supported
by empirical evidence that neutrophils can only be produced up to a limit [59], and that innate immune responses
saturate as a function of bacterial loads [53], as already mentioned in the previous section.

Additionally, we structure the bacteria population introducing L infected bacteria stages, E
i∈{1...L}
1 , between phage

adsorption and lysis to model a finite phage infection time distributed as an Erlang distribution with average 1
η , an

approach applied in several models of epidemiological dynamics and phage-bacteria interactions [57, 60, 61]. Finally,
as proposed in [16], we add a saturation term in phage adsorption F (P1) =

P1

1+
P1
Pc

, as if phage adsorbed into bacteria

through Michaelis-Menten reaction kinetics [62, 63], producing a phage-adsorption profile similar to Monod growth
[64]. Table II provides a list of parameter definitions and their values.

5. Multi-phage treatment model, modulating the evolutionary interactions between bacteria and phage strains during
infections

Finally, we develop a multi-phage therapy model composed of two phages P1 and P2, in the presence of the new
modeling ingredients presented in the previous section. As in eq. (2), bacteria susceptible to both phages, S, can
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mutate to a type R1 resistant to P1 or to a type R2 that can be infected by P1. Compared to section II B 3, now we
introduce a parameter p continuously modulating the evolutionary relations between the two phages and the target
bacteria, in an asymmetric fashion. P2 can either infect R1 with probability p, or R2 with probability 1− p. So when
p = 1 the two phages are complementary in infecting each other’s resistant type with rate ϕ, and Ri truly has the
meaning of bacteria resistant to phage i. When p = 0 the two phages are phenotypically equivalent in the sense that
they target the same set of bacteria, as if resistance would arise to both at the same time. Intermediate values of p
mimic a generalist phage P2 capable of infecting either bacterium, but with lower specificity to either type since the
sum of the effective adsorption rates to all bacteria is always ϕ. The equations for this model are:

dS(t)

dt
=rS − d̃SBtot + µr(R1 +R2 − S)− κiS

1 + Btot

KD

− SΦF (P1)− SΦF (P2),

dR1(t)

dt
=rR1 − d̃R1Btot + µr(S −R1)−

κiR1

1 + Btot

KD

−R1pΦF (P2),

dR2(t)

dt
=rR2 − d̃R2Btot + µr(S −R2)−

κiR2

1 + Btot

KD

−R2ΦF (P1)−R2(1− p)ΦF (P2),

dE1
1(t)

dt
=ΦSF (P1) + ΦR2F (P1)− LηE1

1 ,

dE
i∈{2...L}
1 (t)

dt
=LηEi−1

1 − LηEi
1,

dE1
2(t)

dt
=ΦSF (P2) + (1− p)ΦR2F (P2) + pϕR1F (P2)− LηE1

2 ,

dE
i∈{2...L}
2 (t)

dt
=LηEi−1

2 − LηEi
2,

dP1(t)

dt
=βLηEL

1 − ΦSF (P1)− ΦR2F (P1)− ωP1,

dP2(t)

dt
=βLηEL

2 − ΦSF (P2)− (1− p)ΦR2F (P2)− pϕR1F (P2)− ωP2,

di(t)

dt
=αi

(
1− i

I

)
Btot

Btot +KN
,

(4)

where Ei
1 denotes a bacterium infected by P1 (at infection stage i), and Ei

2 denotes a bacterium infected by P2. We
start by considering phages with the same life history traits, and then relax this assumption studying a case where
P1 adsorbs at a rate ϕ1 while P2 adsorbs at a rate ϕ2. In this case we study a scenario where F (P1) = P1

1+
P1+P2

Pc

,

mimicking apparent competition between the two phages, as if they bind to the same “substrate” or surface receptor,
or if they shared common molecular machinery in order to inject genetic material into the cell.

III. RESULTS

A. Condition for single-phage therapy success in the face of phage resistance and non-responsive immunity

We start by analyzing the single-phage model presented in Section II B 2. In the absence of phage, the model admits
a stable fix point BS

I and an unstable one BU
I for bacteria densities. After the addition of phage, whenever bacteria

are driven below the infectious dose BU
I then the immune system is able to clear the infection, producing a successful

treatment with phages and immune system working in synergy to control the pathogens [16, 26]. Neglecting the
emergence of phage-resistant bacteria, the phage induced bacteria steady state becomes unstable when BP = ω

βΦ <

KD

(√
κIKC

rKD
− 1
)2

(derived in [26]). In terms of immune strength, this means that for immunophage synergy to

function then the host innate immunity needs to be bigger than a threshold I0:

I > I0 =
d̃KD

κ

(
1 +

ω

βΦKD

)2

, (5)

which in the absence of phage resistance would be a sufficient condition for therapeutic success.
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FIG. 2: Phage-immune synergy in face of phage resistance. Simulated dynamics for phage, susceptible and resistant
bacteria, when the immune system strength is below I0 (left panel) or above (center, right panels), with phage (left, center) or
without (right). Increasing the immune system strength above I0, with BU

I > 0, phage can drive susceptible bacteria below BU
I

before the resistant type grows, driving a transition from therapy failure to success (left to center panel). This is a signature
of phage-immune synergy as the infection would persist without phage (right). Simulation parameters are reported in Table I
with ϕ = 1011 g/(h PFU), I = 1.5 · 107 and 2.9 · 107 cells/g respectively in the left and the other two panels.

In contrast, if phage-resistant bacteria are present in the population, then the phage-induced dynamical instability
is not enough to drive bacteria down as the phage resistant bacteria grow to an immune-dependent stable density (see
SI Sec. III B). The mathematical condition BU

I > 0 becomes necessary for therapy success together with Eq. (5), so
that the bacteria extinction steady state B∗ = 0 becomes stable. In this case, phage can drive the susceptible bacteria
below BU

I before the resistant bacteria proliferate from rare to densities above this threshold. When bacteria densities
are depleted below BU

I , the immune system can clear the remainder of susceptible and resistant bacteria in the host.
This mechanism restores the ability of phage and the host immune system to synergistically clear an infection in the
presence of phage resistant bacteria, reinforcing phage-immune synergy against multiple strains of bacteria. Fig. 2
shows how, with BU

I > 0, crossing the threshold I > I0 drives a transition from therapeutic failure to success as phage
drive the susceptible bacteria below BU

I before the resistant type grows enough, at which point the immune system
can clear both phage-susceptible and phage-resistant bacteria.

Next, we assume that the immune evasion threshold KD is lower than bacteria carrying capacity KC and that the
immune system is well below the strength where it would clear the infection on its own (and hence no therapy would
be necessary). In this case we can derive the immune strength attaining BU

I > 0, necessary for immunophage synergy
(see SI Sec. III B for the derivation):

I > Ib =
r

κ
. (6)

If phage drive the susceptible bacteria below BU
I fast enough, the simultaneous satisfaction of the conditions in Eqs. (5)

and (6), or more compactly

I > IS = max(I0, Ib), (7)

yields phage therapy success. This condition summarizes the necessary host immune strength as a function of phage
life history traits, so that the application of a single phage clears the infection in an immunomodulated host, over-
coming the evolutionary challenge posed by bacteria developing resistance to phage. The intuitive explanation of this
generalization of immunophage synergy is as follows. First, the immune system needs to be strong enough so phage
therapy can control susceptible bacteria, represented by the condition in Eq. (5). Second, resistant bacteria must be
controllable at relatively low densities by the immune system, Eq. (6). Combining the two we recover the complete
success condition in Eq. (7).

We test our analytic results through several simulations of the model in Eq. (1) varying the immune system strength
I and the phage adsorption rate ϕ. Fig 3 shows the phase diagram for the density of bacteria after 200 hrs post-
infection, comparable to in vivo experiments, averaged over the last day (details in SI Sec. III A). In this case bacteria
are either eliminated in a successful treatment, or phage-resistant types grow to an immune system-dependent stable
density and therapy fails. As predicted by Eq. (7), and confirmed by the numerical results, the immune system needs
to be strong enough for a single-phage therapy to be successful and phage with a high adsorption rate can lead to
therapy success in weaker hosts (lower I).
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FIG. 3: Bacteria density as a function of immune strength and phage adsorption rate. Numerical simulations of
the model in Eq. (1) varying I and ϕ. The color map represents the density of bacteria in the last part of the numerical
simulations. Single-phage therapy works such that bacteria are driven to elimination with a strong enough immune system
(denoted in the white region). Efficient phage (higher ϕ) broaden the therapy success conditions. The analytic condition in
Eq. (7) (blue dashed line) accurately predicts the therapy outcome transition. The two black triangles correspond to the left
and central panel in Fig. 2. Simulation parameters are reported in Table I.

B. Phage cocktails can improve therapy efficacy and overcome phage resistance in immunocompromised
hosts

Immunophage synergy can eliminate a population of phage-resistant and phage-susceptible bacteria insofar as the
immune system is sufficiently strong given the life history traits of the therapeutic phage (as summarized in Eqs.(5)
and (6)). Likewise, monophage therapy can fail due to the proliferation of phage-resistant bacteria. Hence, we next
explore how phage cocktails can potentially expand the range of immunocompromised hosts in which phage therapy
is effective. To do so, we simulate Model (2), which includes two phages that can target the susceptible bacteria
as well as one additional bacterium (i.e., each of the resistant bacteria is only resistant to one of the two phages in
the cocktails). This complementarity with respect to resistance reflects that, in our in vitro experiment growing 150
separate populations of P. aeruginosa, we found no mutant conferring simultaneous resistance against a cocktail of
phages PAK P1 and LUZ19v. Hence we assume that the emergence of simultaneous resistance against both phages
from a background of susceptible bacteria is negligible.

Figure 4 A shows the expanded region of immunophage synergy given a phage cocktail via numerical simulations
of model (2). The addition of a second phage can restore therapeutic success in immunocompromised hosts, provided
phages have sufficiently effective life history traits (here, we focus on variation in the adsorption rate ϕ). This is
expected as the added phage will lyse the bacteria resistant to the other one, as shown in the population dynamics
in Figure 4C,D, which show how bacteria strains evolve under the selection imposed by phages eventually leading to
extinction. Even so, if phages have low adsorption rate then they will not clear the infection (e.g. see dynamics in
Figure 4B).

We propose a heuristic derivation of the phase space of immunophage synergy, as detailed in SI Sec. III C. The result
predicts that without the immune system (I = 0) phages drive bacteria to the extinction threshold T (1 bacterial cell
in the lungs) for ϕ > ϕc, where ϕc satisfies the transcendental equation:

2ϕcP0

r
= 2 + ln

(
ϕcP0

r

)
+ ln

(
ω

ϕcΩβT

)
ω

r
. (8)

Here P0 is the initial phage density. Ω is a numerical factor ensuring bacteria exponential decay before extinction
(see SI Sec. III C), which needs to satisfy Ω ≫ 1 and Ω < ω

ϕcβT
. Ω affects the equation only logarithmically, and
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FIG. 4: Phage cocktail therapy succeeds for a wide parameters range. A) Numerical simulations of the model in
Eq. (2) varying I and ϕ. The color map represents the density of bacteria in the last part of the numerical simulations. Adding
a second phage clears the infection for a much wider parameter range compared to single-phage treatment, if phages have high
enough ϕ, as highlighted by the comparison with the transition for single-phage therapy success in Eq. (7) (blue dashed line).
The vertical dashed green line represents the value of ϕc obtained solving Eq. (8) with Ω = 10 The black triangles correspond
to the parameters yielding the population dynamics in panels B),C),D) that show the evolution of phage and bacteria strains
during the simulated infection. Simulation parameters are reported in Table I.

ϕc decreases with Ω. The condition in Eq. (8) gives the lowest ϕ above which phage can drive bacteria below the
extinction threshold T before bacteria resume growth (due to phage decay at rate ω). The leading factors determining
the phage cocktail success are the initial rate of phage killing ϕP0 and bacteria growth r, which drive the transition
to phage-bacteria coexistence. The dashed vertical green line in Figure 4A shows ϕc for Ω = 10. We observe that the
numerical simulations agree with the heuristic prediction Eq. (8) when I ≪ Ib. Note that when phage are not very
efficient (ϕ ≪ ϕc) the presence of resistance is not the major treatment failure driver, therefore Eq. (5) is an upper
bound approximating the success condition. Together with the baseline single-phage treatment model results, our
analysis of a simple phage cocktail model reveals that phage can restore therapeutic success even in immunodeficient
hosts and even when phage-resistant bacterial mutants are present, insofar as sufficiently effective phage – according
to the quantitative condition ϕ > ϕc – are utilized.

C. Synergy between single-phage treatment and modulated responsive immune system against in vivo
infections by multiple bacteria

The previous sections addressed the efficacy of monophage and phage cocktail therapy assuming that interactions
between phage and bacteria occur in a well-mixed environment. Here we expand these results to a more realistic in
vivo context by incorporating a nonlinear phage adsorption profile (reported to fit experimental adsorption curves
[62, 63]), incorporating a structured phage infection dynamics, and including a dynamic response of the innate
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FIG. 5: Single-phage therapy succeeds against phage resistance with a strong enough immune system. Numerical
simulations of the model in Eq. (3) varying I and ϕ. The color map represents the density of bacteria in the last part of the
numerical simulations. Single-phage therapy works with a strong enough immune system, which needs to be even stronger with
inefficient phages (lower ϕ) . The analytic condition in Eq. (9) (blue dashed line) predicts well the therapy outcome transition.
The two blue diamonds correspond to the I and ϕ inferred in [16] from in vivo experiments on a model without infected bacteria
classes. The green (grey) dashed line represents Eq. (9) with a 3-fold increase (decrease) in the concentration of bacteria at
the beginning of the therapy. The bigger the bacteria inoculum (worse infection), the harder it is to clear the infection using
phage with moderate to low ϕ. Simulation parameters are reported in Table II.

immune system. With the inclusion of these ingredients the model structure becomes similar to previous in vivo
models that quantitatively reproduced experimental dynamics measured when treating lung infections with phage in
immunomodulated mice [16]. Therefore we can directly compare our theoretical results with the parameters previously
inferred, obtaining quantitative insights on the dynamics produced by single-phage treatments of in vivo infections.

Fig. 5 shows the final density of bacteria produced by numerical simulations of Eq. 3 after 200 hrs, for a broad range
of immune system capacities I and phage adsorption rates ϕ. We find a qualitatively similar pattern as in Section IIIA,
as the immune system needs to be strong enough to clear the infection in synergy with phage, which in turn can
improve treatment outcomes with higher adsorption rates. We can compare infection outcomes for the parameter
values explored in Fig. 5 to the parameters inferred in [16] (blue diamonds). Fig. 5 extrapolates the treatment
outcome for biologically relevant parameters around these experimentally inferred values. Notably, we confirm that
the current model predicts phage therapeutic success in immunocompetent mice (upper diamonds), however the model
also predicts that this outcome is contingent on the use of a phage with a sufficiently rapid adsorption rate.

To understand these numerical results quantitatively, we proceed as in Section IIIA by considering the system
without phage P = 0, which yields the same fixed points for bacteria density while the immune cells relax to i∗ = I.
Hence Eq. (6) is again a necessary condition for therapy success, so that phage resistant bacteria can be controlled
while still below the infectious dose BU

I . To progress further in the analysis we assume that phage infection dynamics

are fast compared to other timescales, disregarding the dynamics of infected bacteria E
i∈{1...L}
1 , which corresponds

exactly to the model in [16]. Assuming also a scenario in which phage are so abundant that P ≫ Pc, and that the
immune cells dynamics relax fast to I, we find (details of the derivation in SI Sec. IIID) a new immune threshold IS
that constrains the host immune capacity for which the single-phage therapy succeeds:

I > IS = max(I1, Ib), (9)

with

I1 =
r − ϕPc

κ

(
1 +

B0

KD

)
. (10)
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FIG. 6: Efficient phage cocktails improve therapy success in an in vivo model of immunocompromised hosts.
Numerical simulations of the model in Eq. (4) varying I and ϕ, with p = 1. The color map represents the density of bacteria
in the last part of the numerical simulations. Phage cocktails can drive bacteria to extinction in immunocompromised hosts
provided that phages have a high enough adsorption rate ϕ. The dashed lines show Eq. (11) for p = 0, 0.5 and 1 (blue, yellow,
green), which agrees well with the simulation results. The black dashed line shows Eq. (10), representing therapy success when
bacteria do not develop phage resistance. The two blue diamonds correspond to the I and ϕ inferred in [16] from in vivo
experiments. Simulation parameters are reported in Table II.

As in Section IIIA the condition for therapeutic success arises from combining two necessary immune constraints, so
that phage and immune system can synergistically control both the susceptible bacteria (Eq. (10)), and the phage
resistant mutants (Eq. (6)). Notably, the condition to overcome phage resistance in a timely fashion is determined by
the balance between bacteria growth r and immune killing κ regardless of the new model ingredients. Eq. (9) depends
on the infecting bacteria density at the time of therapy administration B0, highlighting the importance of prompt
intervention when treating the infection. The dash blue line in Fig. 5 shows Eq. 9 as a function of ϕ. The analytical
result agrees with the numerical results of the general model in Eq. 3 and with the findings of [16] where therapy
worked in an immunocompetent cohort but failed in immunocompromised mice. The green and grey dashed lines in
Fig. 5 show the quantitative impact of bacteria concentration at the treatment start, as they correspond to Eq. (9)
with respectively a 3-fold increase and decrease in B0. We note that the highest B0 scenario brings the success to
failure transition very close to the parameters that saw successful treatment in immunocompetent mice in [16].

D. Robust benefits of therapeutic phage cocktails within an in vivo infection model, modulating immune
responses and phage-bacteria interactions

Finally, we address the sensitivity of phage cocktail efficacy given variation in innate immune efficiency and phage
life history traits. When adding a second phage to an in vivo infection model with a responsive modulated immune
system and structured nonlinear phage-bacteria interactions, as described in Section II B 5, we predict that treatment
would succeed if (see SI Sec. IV)

I > max

(
r − ϕPc

κ

(
1 +

B0

KD

)
,
r − pϕPc/2

κ

)
. (11)

The first term in the maximum, the same as in Eq. (9), ensures that susceptible bacteria are killed, whereas the
second term is the condition under which resistant types can be kept in check. Fig. 6 shows the infection clearance
pattern as a function of I and ϕ for simulations of Model (4) with p = 1. The dashed lines show Eq. (11) for p = 0,
0.5 and 1 (blue, yellow, green). The black line represents a scenario where bacteria do not develop phage resistance,
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in which case the success condition is given just by Eq. (10). Our simulations agree with the analytical prediction in
Eq. (11), as shown in p = 1 in Fig. 6 and in Fig. S1 for the other cases.

The simulations findings in Fig. 6 show that the treatment with two phages improves the therapeutic outcome
in immunocompromised hosts if the adsorption rate is high enough, confirming the qualitative picture presented
in Section II B 3. Eq. (11) quantifies how the therapy success depends on phage-bacteria evolutionary interactions
through variation in the cross-phage resistance parameter p. There is a critical ϕc =

2r
pPc

above which therapy succeeds

when I = 0. We interpret this finding to mean that higher p, i.e. using therapeutic phages with more complementary
phenotypes, improves the therapeutic outcome. In contrast, when p = 0 bacteria can evolve simultaneous resistance
to both phages leading to the same result as in the single-phage treatment. Hence it is crucial to pre-select phages
against which it is less likely that bacteria could evolve combined resistance, for instance making sure that they do not
share a common receptor target, or that receptors targets are not pleiotropically linked [42], like in our LD experiment
scoring a potential cocktail of PAK P1 and LUZ19v against P. aeruginosa. When p = 1 and the phage combination
covers all bacteria resistant mutants, there is a region of parameters, between the black and the green lines in Fig. 6,
where therapy fails due to phage resistance despite the phage cocktail treatment. Here the only way to improve the
treatment efficacy would be to use phages with stronger lytic features.

Interestingly, when p < 2/3 and P2 is a generalist phage used alone, the maximum phage killing term in Eq. (4)
against the most resistant bacteria type would be larger than when using two phages for the same value of p (see
SI Sec. IV for the derivation). Therefore, it would be better to deliver P2 alone than together with another phage.
Fig. S2 shows that, in the special case p = 0.5, a single P2 produces the same numerical results as a phage cocktail
with p = 1, and indeed gives better outcomes than two phages with p = 0.5, as expected from the theory. This result
is conditioned on the specific assumption we made in this model that phages compete to infect bacteria. Nevertheless
it showcases an extreme situation where using a phage cocktail could be worse than a single phage, suggesting that
it is crucial to quantify experimentally the effect of phage combinations in the system of interest. Even in this
scenario, sub-optimal treatment with two phages with intermediate p still yields much better therapy outcomes in
immunocompromised hosts than a treatment composed of a single or multiple phages that do not target all bacteria
mutants in the pathogen population, as evident when comparing the dashed blue and yellow lines in Fig. 6. These
results can be generalized to cases when the life history traits of the two phage differ from one another (see SI Sec. V).
Altogether, this analysis reinforces the importance of selecting a combination of efficient phage against target bacteria
when designing phage cocktails for treating infections in immunocompromised hosts.

IV. DISCUSSION

In this work, analyzed simple tripartite population dynamic models of single-phage and phage combination treat-
ments to clear infections by multiple strains of bacteria capable of evolving phage resistance in immunomodulated
hosts. In doing so we extended previous work that considered the impacts of phage therapy when bacteria were
exclusively susceptible to phage [26] by considering the potential combined use of phage with complementary modes
of infection. This assumption is supported by new, fluctuation test experiments in which P. aeruginosa was unlikely
to randomly acquire double resistance mutations to phage LUZ19v and PAK P1. Beginning with monophage treat-
ment and extending this to phage cocktails, we find that immunophage synergy underlies the curative treatment of
bacterial infections given sufficiently efficient phage. Notably, the use of phage cocktails can extend the range of
immunocompromised conditions in which phage therapy can clear a pathogen. Finally, we extended core theoretical
findings to a realistic in vivo modeling contexts, showing the robustness of immunophage synergy given variation in
immune state, phage adsorption rates, and asymmetry in phage effectiveness within cocktails. Our analytical results
quantify the importance of a prompt infection treatment and of selecting phages that are highly effective against the
target pathogens including potential resistant mutants [65], especially when dealing with immunocompromised hosts.
We extrapolate therapy outcome predictions around parameters inferred in in vivo lung infections by P. aeruginosa
in immunomodulated mice [16], showing that moderate adsorption rate variations in any employed phage can have
drastic effects on therapy outcomes, potentially making the difference between a successful and a failing treatment in
experimental applications.

Our theoretical exploration of immunophage synergy builds on a set of assumptions that come with caveats to
be addressed in future work - broadly speaking we categorize this in terms of simplifications in our representation
of the immune system, phage infection and administration dynamics, and the evolutionary relationship between
phage and bacteria. First of all, we consider a relatively simple impact of the host immune system on pathogens,
through quantitative features that have been proposed in past infection models [16, 53, 59]. The first part of this
study, focusing on non-responsive immunity is consistent with a signaling deficient immune system as in the case of
myeloid differentiation primary response gene 88-deficient mice (MyD88−/−) [16]. The predictions in this limit may
also be tested in ex vivo experiments mimicking infections in the lungs [66] by inoculating therapeutic phage and
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a fixed amount of immune cells. The innate immune responses considered in the second part of our work focuses
on neutrophils, the first immune barrier against invading pathogens [67], while neglecting the other components of
the innate immune response and the adaptive immune response altogether. Notably, inhibition of phage via immune
responses [46] and by the reduction of circulating infectious phage by macrophages [25]. In the future it will be
important to increase our quantitative understanding of the impact of the complex immune dynamics arising during
infections.

The overall modeling structure used here adopts an implicit view of complex spatial processes taking place during
phage treatment of respiratory lung infections [68]. Although it is possible to include effective, nonlinear interaction
terms to mimic spatial complexity [16], moving forward it will be paramount to evaluate the explicit impact of spatial
structure on quantitative phage-pathogens dynamics, for instance leveraging ex vivo technologies [69, 70], so that
future models can incorporate spatial components [71]. In this study we also do not address the impact of treatment
timing on therapy outcomes. A theoretical work applying control theory on a phage cocktail model suggested that
additional treatment improvements may be possible by optimizing the timing and distribution of phage titers [72].
Such optimum would depend on the pathogen population composition and likelihood of resistance mutations, as well
as on the quantitative features of phage-bacteria interactions during an infection, such as the functional shape of phage
adsorption profiles. Simultaneous administration has been shown to outperform sequential treatments as controlling
the pathogen population size right away reduces the chances of multi-resistance [40, 73], even though the generality
of these results is unclear. In the future it will be important to integrate empirically constrained population dynamics
models of local infections with pharmacokinetics parameters describing the likelihood and delay of delivering phage
in the desired infected tissue [24].

Finally, analysis of phage cocktail impacts here assumes relatively simple evolutionary interactions between phage
and bacteria such that bacteria cannot evolve resistance to both phages at the same time. Our choice is motivated
by previous works that suggested combinations of phages that target different bacteria receptors in order to improve
treatment efficacy [41, 42, 54]. This hypothesis is supported by fluctuation test findings in which P. aeruginosa did
not randomly develop simultaneous resistance to LUZ19v and PAK P1 (see SI Section III). It is important to note
that although a wild type population susceptible to both phages need not necessarily evolve a double resistant mutant
immediately, this does not preclude the potential for a population already selected to persist given exposure to one
of the two phages may evolve to become double resistant. The current study shows that phage cocktails can perform
robustly even when modulating rules regarding phage complementarity. In the future it will be crucial to further
explore more complex eco-evolutionary processes that can arise between pathogenic bacteria and therapeutic phage
during the course of an infection, whether in an acute or chronic infection context.

Despite these caveats, the combined use of experiments, simulations and theory provide guidance on the expected
range of phage therapeutic efficacy whether using monophage or phage cocktail treatments. Building upon earlier
findings [16], our framework provides testable predictions on the quantitative impact of different modes of tripartite
phage-bacteria-immune interactions on therapeutic outcomes over a range of host immune conditions and phage life
history traits, highlighting the success of single-phage therapy in synergy with a strong enough immune system and
the benefit of phage combination therapy in immunocompromised hosts. Importantly, the parameters inferred in
[16] fall right at the boundary between treatment failure and success in immunodeficient hosts, which could result in
drastic differences in the infection outcomes given small variations in phage and immune features. Such sensitivity
makes it crucial to inform model development with in vitro and in vivo data to improve therapeutic design.

More broadly, this work represents a further step towards quantitatively addressing the impact of evolutionary
considerations on phage therapy outcomes. Here we showcased a specific example of how we can harness the evo-
lutionary potential of phages to develop phage cocktails that target specific strains of multi-drug resistant bacteria,
facing the challenge posed by the evolution of phage resistance [42, 43]. Whether we seek to exploit in vitro phage
training [30, 43] or evolutionary trade-offs [31–36], in the future it will be essential to integrate further experimen-
tal evidence into quantitative models, tackling different aspects of phage-bacteria evolutionary interactions during
therapy. Predictive models that integrate the tripartite interactions among pathogenic bacteria, therapeutic phages,
and the eukaryotic host, along with evolutionary processes, will be crucial for designing effective phage treatment
strategies both in the near and long term.
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