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Abstract

Aluminum (Al3+) toxicity is a typical abiotic stress that severely limits crop production in

acidic soils. In this study, an RIL (recombinant inbred line, F12) population derived from the

cross of Zhonghuang 24 (ZH 24) and Huaxia 3 (HX 3) (160 lines) was tested using hydro-

ponic cultivation. Relative root elongation (RRE) and apical Al3+ content (AAC) were evalu-

ated for each line, and a significant negative correlation was detected between the two

indicators. Based on a high-density genetic linkage map, the phenotypic data were used to

identify quantitative trait loci (QTLs) associated with these traits. With composite interval

mapping (CIM) of the linkage map, five QTLs that explained 39.65% of RRE and AAC varia-

tion were detected on chromosomes (Chrs) Gm04, Gm16, Gm17 and Gm19. Two new

QTLs, qRRE_04 and qAAC_04, were located on the same region of bin93-bin94 on Chr

Gm04, which explained 7.09% and 8.98% phenotypic variation, respectively. Furthermore,

the results of the expression analysis of candidate genes in the five genetic regions of the

QTLs showed that six genes (Glyma.04g218700, Glyma.04g212800, Glyma.04g213300,

Glyma.04g217400, Glyma.04g216100 and Glyma.04g220600) exhibited significant differ-

ential expression between the Al3+ treatment and the control of two parents. The results of

qRT-PCR analysis indicated that Glyma.04g218700 was upregulated by Al3+ treatment with

the hundreds-fold increased expression level and may be a candidate gene with potential

roles in the response to aluminum stress. Therefore, our efforts will enable future functional

analysis of candidate genes and will contribute to the strategies for improvement of alumi-

num tolerance in soybean.
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Introduction

Aluminum (Al3+) toxicity is one of the major factors affecting crop production on acidic soils

worldwide [1, 2]. When the soil pH decreases to values less than 5.0, Al is solubilized as the

phytotoxic Al3+, which has a pernicious effect on crops. It was found that root elongation can

be inhibited in seconds at micromolar concentrations of Al3+ [3]. The primary location of Al3+

toxicity is at the root tip where Al3+ binds to the cell wall [4]. Changes in some components of

the cell wall lead to a limited capacity of damaged roots for absorption of sufficient water and

nutrients from soil [2]. Additionally, the damaged root impeded the growth of shoot, and

eventually reduced the yield of crops. Soybean is one of the most important crops in the sub-

tropical zone and is also damaged by Al3+ toxicity in acidic soil. Hence, investigation of the

traits associated with Al3+ toxicity via a combination of identified soybean germplasms and

sequencing technology is of great significance.

It is well known that two types of mechanisms of Al3+ resistance in soybean are involved in

the exclusion of Al3+ from the root apex (external exclusion) or in conferring tolerance to Al3+

in the plant symplast (internal tolerance) [5]. The mechanism of external exclusion involves

excretion of organic acids to chelate Al3+ from the root cells, increasing the rhizospheric pH

and external exclusion of border cells [6, 7]. However, the mechanism of internal tolerance

depends on chelation of organic acids and segregation of Al3+ in vacuoles. Antioxidant metab-

olism as well as hormone signal transduction also contribute to aluminum tolerance [8, 9].

Aluminum tolerance of soybean is a complex quantitative trait with substantial genetic vari-

ation [10]. Studies on the genetic architecture of soybean aluminum tolerance remain chal-

lenging due to the interactions of environments and genotypes. Conventional breeding has

relied on the selection of highly Al3+-tolerant cultivars for crop improvement, but this method

is costly and time consuming [11]. In recent years, genome-wide association study (GWAS)

and QTL mapping are commonly used to map genetic markers associated with quantitative

traits. GWAS analysis generally involves the natural populations to detect the correlation

between genetic polymorphism and phenotypic variation by statistical methods based on the

linkage disequilibrium. A number of important GWAS loci and candidate genes for Al3+-toler-

ant traits have been reported over the recent decade [12]. Meanwhile, the strategy of QTL map-

ping has provided an improved understanding of the genetic architectures of complex traits,

which has accelerated crop improvement [13]. Accordingly, extensive efforts have been

directed at QTL mapping for aluminum tolerance in Arabidopsis thaliana [14] and several

crops, including rice [15, 16], wheat [17, 18], barley [19], maize [20], soybean [21] and alfalfa

[22].

In soybean, some QTLs of aluminum tolerance have been identified using populations

from different genetic backgrounds, for which the traits of root elongation were often used to

represent aluminum tolerance. In the early 2000s, a genetic linkage map containing 155

restricted fragment length polymorphism (RFLP) markers was constructed using the popula-

tion derived from Young × PI 416937. Bianchihall et al. [23] detected the genetic basis of Al-

tolerant traits in soybean using the map and indicated five independent RFLP markers associ-

ated with root elongation. Qi et al. [20] and Korir et al. [24] focused on the progenies of Kefeng

No.1 × Nannong 1138–2 and used genetic linkage map with RFLP and simple sequence

repeats (SSR) markers to detect one major and two minor QTLs for aluminum tolerance. In

general, the explorations of QTL mapping indicated that approximately two to five dominant

loci controlled the variation in Al-tolerance levels [25, 26].

However, the traditional molecular markers, including RFLP, SSR and amplified fragment

length polymorphism (AFLP), exhibited low density and uneven distribution throughout the

genome [27]. QTL mapping of complex quantitative traits such as aluminum tolerance on
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soybean remains elusive due to the limited efficiency and accuracy of QTL positioning. In

recent years, single-nucleotide polymorphism (SNP) markers have emerged with the assistance

of high-throughput sequencing technology and have been mapped across plant genomes with

high density and relatively even distributions, thereby improving the accuracy of QTL map-

ping. Over the last few years, high-density genetic maps have been constructed using recombi-

nation bins as markers [28]. Restriction-site-associated DNA sequencing (RAD-seq) [29], one

of the next-generation sequencing (NGS) methods [30], has been effectively used for high-den-

sity SNP marker discovery and QTL analysis [31, 32]. In barley and wheat, high-density

genetic maps have been established using RAD-seq technology with hundreds of thousands of

SNP markers as well as other polymorphic markers [33]. Abdel-Haleem et al. improved the

linkage map using the progenies derived from the cross of Young and PI416937 and further

developed Glyma08g42400-SNP as a major QTL to be used for marker-assisted selection of

aluminum tolerance [34]. Recently, a high-density genetic linkage map based on RAD-seq

technology was constructed to map QTLs for both yield-related and quality traits [35, 36]. The

genetic maps with ultrahigh density for the complex polyploid crops with DNA markers indi-

cate that RAD-seq technology can be practically applied to identify the genetic basis of com-

plex quantitative traits.

The objectives of the present study were to develop a high-density genetic map using bin

markers with RAD-seq technology to identify QTLs for the traits of aluminum tolerance in the

F12 RIL population derived from the cross of Zhonghuang 24 (ZH 24) and Huaxia 3 (HX 3)

and to analyse candidate genes that may influence aluminum tolerance using Gene Ontology

(GO) enrichment analysis.

Materials and methods

Plant materials

An RIL population with 160 lines of the F12 generation derived from a cross between ZH 24

(female parent) and HX 3 (male parent) was used in the current study. ZH 24 is an Al3+-sensi-

tive cultivar derived from Fendou 31 × Zhongdou 19, while HX 3 is an Al
3+

-tolerant cultivar

derived from Guizao 1 × BRSMG68 (a high-yield Brazilian cultivar) [35]. All the F12 lines of

the RIL population and their parents were provided by the Guangdong Subcenter of National

Center for Soybean Improvement, South China Agricultural University.

Experiment trial design for phenotyping

A preliminary test was designed to determine the appropriate concentration of Al3+ and Al3+

treatment for hydroponic cultivation. The two parents and five randomly selected lines (L10,

L70, L154, L206, and L245) were used to identify Al3+ tolerance with RRE as a detection index.

The concentrations of AlCl3 (0.5 mM CaCl2, pH 4.5) were set as 0, 5, 15, 20, 25 and 30 μΜ.

The RRE of each line and parents was measured by imaging analysis during successive treat-

ment periods of 24 h, 48 h and 72 h. The Al3+ concentration and duration that provided the

widest separation among these lines were chosen for screening the RIL population.

The phenotype of the RIL population was estimated by the RRE and AAC after hydroponic

cultivation along with the parents. For each line as well as the two parents, the hydroponic

experiments were carried out with three replications. For each replication, 6 seedlings with

nearly the same root length (approximately 8 cm) were fixed using sponge in the holes of foam

floating plate in plastic containers either with or without AlCl3 treatment (0.5 mM CaCl2, pH

4.5). The average values of phenotypic data for RRE and AAC were used for mapping and

identifying QTLs for aluminum tolerance.

QTL mapping for aluminum tolerance in RIL population of soybean
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Hydroponics and trait measurement

A total of 80–100 plump seeds of each line and the parents were germinated in sterilized ver-

miculite for three days at 26˚C in continuous darkness. Six seedlings with nearly the same root

length were then held in foam support floats that were suspended in 2.5-L plastic containers

without Al3+ for acclimation to hydroponic conditions (0.5 mM CaCl2, pH 4.5, 16 h light/8 h

dark). After 24 h of acclimation, the seedlings were photographed carefully using a camera

(Nikon, COOLPIX A1000) to determine the main root lengths with a ruler beside them as

scale. Then, the seedlings were transferred to solutions with or without AlCl3 (0.5 mM CaCl2,

pH 4.5). The roots of the seedlings were photographed again after Al3+ exposure. To ensure

the accuracy of the two kinds of measurements before and after Al3+ exposure, we marked the

root at the initial position of the measurement. During the process of cultivation, the nutrient

solution was aerated constantly with a flexible pipe connected with air pump.

The main root lengths were determined from the photographs using ImageJ software

(National Institutes of Health, http://imagej.nih.gov/ij/). Root elongation was defined as the

difference between the initial length before Al3+ treatment and the final length after Al3+ treat-

ment. The root elongation under control (REC) and the root elongation under Al3+- stress

(REA) were calculated, and the RRE was equal to REA/REC ×100% [37].

After Al3+ treatment, apical roots (0–2 cm) were excised by a scalpel, washed three times

with 0.5 mM CaCl2 solution, and dried on filter paper. Then, six root tips for each line and the

two parents were placed in a microcentrifuge tube (1.5 ml) containing 1.0 ml of 2 M HCl and

extracted for 48 h with continuous shaking to release Al3+ from the soybean roots. The Al3+

levels in the extracts were determined by inductively coupled plasma-optical emission spec-

trometry (ICP-OES) (VARIAN 710-ES, America) [38].

Genetic map and QTL detection

SNP genotyping. Genotyping was carried out as previously described [35]. The soybean

reference genome from Williams 82 [39] was used for read mapping be comparison with the

tag sequence by SOAP software (The Beijing Genomics Institute, http://soap.genomics.org.cn/

). Input data for SNP calling with realSFS was prepared by SAMtools [40]. RealSFS was used

for SNP calling of every locus in the RIL population. The likelihoods of genotypes for each

individual were integrated and extracted as candidate SNPs that were then filtered using the

following criteria: 40� depth� 2500, sites with a probability� 95%. These highly reliable

SNPs were used to obtain the genotypes of the parents and the RIL population. Moreover, the

genotypes of all SNPs from the soybean genome were analyzed by the sliding window method

and further used for each individual to generate bin information. Finally, a fine genetic map

including 3,426 bin markers was constructed using MSTMap (http://alumni.cs.ucr.edu/

yonghui/mstmap.html) and MapChart software (Wageningen University, https://www.wur.

nl/en/show/Mapchart.htm) [41].

QTL analysis. A high-density genetic map was constructed as previously described

[35]. Composite interval mapping (CIM) was performed to detect QTLs using WinQTLCart

software (North Carolina State University, http://statgen.ncsu.edu/qtlcart/WQTLCart.

htm). The significant LOD threshold of 2.5 for QTLs was determined by a genome-wide

permutation test with 1000 replications at the 5% level of significance. The analysis results

also showed the effects of QTLs, the explanation rate of the phenotypic variation by QTLs

and the interactions of QTLs. QTL mapping results were comprehensively compared to

those published on Soybase (http://www.soybase.org/) [35].

Gene detection among the QTLs. The genes within all the QTL regions were listed by

the Soybase website (http://www.soybase.org/). In addition, data from NCBI (https://
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www.ncbi.nlm.nih.gov/) and Phytozome (https://phytozome.jgi.doe.gov/pz/portal.html)

were used to ascertain the conserved domains of the proteins and the possible functions of

these domains. Specific primers for RT-PCR of these genes were designed using Primer

Premier 5 software (PREMIER Biosoft, http://www.premierbiosoft.com/primerdesign/

index.html).

RNA extraction

The hydroponic conditions for cultivation of soybean seedlings were the same as those used

for genotype analysis, as described in the section titles “Hydroponics and trait measurement”.

Samples of the apical roots (0–2 cm) of the two parents were obtained and immediately frozen

by using liquid nitrogen. Total RNA was extracted from the apical roots of seedlings grown

under Al3+ stress or the control treatment using TRIzol reagent (TIANGEN, China). First-

strand cDNA was synthesized using the PrimeScript™ RT Reagent Kit with gDNA Eraser

(TAKARA, China) and used for further analysis of expression patterns for candidate genes.

Gene expression assays

The RT-PCR assay was carried out to analyze the expression of the genes in the apical roots

from the two parent seedlings, with the soybean β-Tubulin gene as an internal reference,

with the specific primers 50-AACCTCCTCCTCATCGTACT-30 and 50-GACAGCATCAGCC
ATGTTCA-30 [42]. The total volume of the PCR mixture was 20 μl, containing 1 μl of first-

strand cDNA, 1 μl of each primer, 7 μl of ddH2O, and 10 μl of the mixture containing Taq

DNA polymerase. The amplification reaction was performed as follows: predenaturation at

95˚C for 3 min, followed by 30 cycles (for almost all genes; for β-Tubulin, 26 cycles were

used) of 15 s at 95˚C, 15 s at 54˚C and 30 s at 72˚C min, with a final extension for 5 min at

72˚C. The PCR products were separated by agarose gel electrophoresis. Furthermore,

qRT-PCR was further used to analyze the expression of the candidate genes. All PCRs were

performed in 20-μl reactions consisting of 1 μl of cDNA, 0.8 μM each gene-specific primer

and a mixture from the SYBR Green Supermix Kit (Takara, Japan). The reaction condi-

tions were as follows: predenaturation at 94˚C for 3 min, followed by 40 cycles of denatur-

ation at 94˚C for 10 s and renaturation at 54˚C for 10 s; at the end of the reaction, the

system was maintained at 95˚C for 10 s, followed by lowering the temperature to 65˚C for

5 s. The soybean Actin 3 gene [43] was used as an internal reference, with the forward

primer 50- GTGCACAATTGATGGACCAG-30 and the reverse primer 50-GCACCACCGGAG
AGAAAATA-30. Specific primers for RT-PCR and qRT-PCR of these genes were designed

using Primer Premier 5 software (PREMIER Biosoft, http://www.premierbiosoft.com/

primerdesign/index.html) (S1 and S2 Tables).

Data analysis

Analysis of variance (ANOVAs) was performed using SAS 9.4 by the general linear model

(GLM) procedure with a logarithmic transform of data if necessary [44]. The broad-sense heri-

tability (h2) of RRE and AAC was calculated according to Knapp et al [45]. Heritability was cal-

culated using the formula shown as follows: h2 = σg
2 / ((σe

2 / n) + σg
2), where σg

2 denotes the

genetic variance; σe
2 denotes the error variance; and n denotes the replication number. The

coefficient of variation was estimated as σg/μ, where μ represents the mean value. Phenotypic

Pearson’s correlations were calculated using the ‘PROC CORR’ option of the SAS program

between the two different traits [45]. Linear regression analysis was plotted using ‘MASS’ and

‘car’ package of R 3.5.4.
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Results

Phenotypic variation

To explore the appropriate AlCl3 concentration and treatment time, two parents and five ran-

domly selected lines were used to identify Al3+ tolerance characteristics. As shown in Fig 1, the

RRE change trend was highly consistent among these lines. With increasing Al3+ concentra-

tions, the RRE of each line decreased, showing strong inhibition of root elongation at high

concentrations. Likewise, prolonged treatment of the lines led to decreased root elongation, so

the 72-h treatment group exhibited the lowest RRE. In addition, the coefficient of variation

(CV) was calculated to detect variations within each treatment. Comparative analysis showed

that the condition with 25 μΜ [Al3+] and the 24-h treatment exhibited the highest CV

(20.20%), which provided the greatest degree of dispersion among the five lines (Fig 1). More-

over, the two parents ZH 24 and HX 3 also showed the most significant difference under this

condition (25 μΜ [Al3+], 24 h). Thus, 25 μΜ AlCl3 and 24 h of treatment were selected to

obtain the widest separation in the RIL population.

The ANOVA results demonstrated significant phenotypic differences among the RILs in

RRE as well as AAC (P<0.01), but no significant differences among the three replications. The

RRE results for all the lines showed a continuous distribution ranging from 34.78 to 103.60%

among all the 160 F12 RILs with a mean of 71.26 ± 16.92% and CV of 23.74% (Tables 1 and

S3). The average RREs of HX 3 and ZH 24 were 79.34% and 46.90%, respectively. Correspond-

ingly, the AAC results showed a wide range from 49.11 to 175.46 μg/g in the RILs, with a high

CV of 33.64%. The AAC value of ZH 24 was 114.55 μg/g while that of HX 3 was 92.10 μg/g

(Tables 1 and S3). In addition, there was significantly negative correlation between RRE and

AAC (spearman value -0.70) (Table 1). The linear regression analysis demonstrated that the

AAC was significant negatively correlated with the RRE (R2 = 0.49, P < 0.001) (Fig 2).

The frequency distribution of RRE and AAC is shown in Fig 3. The phenotypic data of the

two traits (RRE and AAC) in the F12 lines under Al3+ stress (Table 1 and Fig 3) showed there

were a normal distribution for RRE and a slightly skewed distribution for AAC with a large

degree of separation. Moreover, the extensive transgressive segregation on either side of the

parents in RRE and AAC indicated that the traits were inherited as quantitative characteristics

and affected by multiple genetic factors (Table 1 and Fig 3). The estimated heritability of RRE

and AAC were 92.59% and 64.90%, respectively (Table 1).

Fig 1. The responses of relative root elongation to Al3+ treatments of ZH24, HX3 and 5 RIL lines.

https://doi.org/10.1371/journal.pone.0223674.g001
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Construction of the genetic linkage map

A total of 47,472 high-quality polymorphic SNPs were detected by genotypic analysis (S1 Fig).

The recombination breakpoints for each individual were determined, and a total of 2,639 bin

markers were obtained for the RILs (S2 Fig). The physical length of the bins ranged from 20.01

kb to 17.43 Mb with an average length of 360.01 kb. Using the 2,639 bins, a high-density linkage

map was constructed, covering the genome length of 2638.24 cM with an average distance of

Table 1. Phenotypic performance of Al3+ tolerance traits in two parents and RIL populations.

Traitsa Parentsb RILsc

ZH 24 HX 3 Mean Min Max SDd CVe Heritability Skewness Kurtosis rf

RRE (%) 46.90 ± 1.25 79.34 ± 0.23 71.37 ± 1.30 34.78 103.60 16.92 23.74 92.59% -0.12 -0.78 -0.70��

AAC 114.55 ± 1.99 92.10 ± 4.33 90.83 ± 2.02 49.11 175.46 30.61 33.64 64.90% 0.98 0.77

a RRE: relative root elongation; AAC, apical Al3+ content.
b Parents were cultivated and measured in each replicate of experiment, and the mean value is presented.
c F12 RIL population size, n = 160, replicates r = 3, and the mean value is presented.
d Standard deviation.
eCoefficient of variation.
f r, Correlation coefficient for phenotypic data between RRE and AAC

��P<0.01.

https://doi.org/10.1371/journal.pone.0223674.t001

Fig 2. Relationship between RRE and AAC of RILs by linear regression analysis.

https://doi.org/10.1371/journal.pone.0223674.g002
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1.00 cM between adjacent markers (S1 File) [35]. Chi-square test of 2639 bin markers showed

that 2356 markers (account for 89.28% of total markers) presented between parents with 1:1

segregation ratio (P>0.05), which was consistent with the characteristics of monogenic mark-

ers. There were 283 markers (account for 10.72%) showed separation distortion (P<0.05). In

addition, most of the bin markers tend to be homozygous, and the heterozygous rate of bin

markers was less than 4.79% (S4 Table). The linkage map was used for mapping analysis [35].

QTL analysis

The results of CIM showed that five QTLs were detected on 4 chromosomes (Chr. Gm04,

Gm16, Gm17, Gm19) (Table 2 and Figs 4 and 5). Three QTLs for RRE, namely, qRRE_04,

qRRE_16 and qRRE_17, were mapped on chromosomes Gm04, Gm16, and Gm17, with phe-

notypic variation (R2) explained by 7.09%-8.52% and LOD values ranging from 2.73 to 3.32

(Table 2). Two QTLs for AAC, namely, qAAC_04 and qAAC_19, were identified, with pheno-

typic variation explained by 8.98% and 7.26% and LOD values of 3.27 and 2.66, respectively

(Table 2). The comprehensive genetic effects explained by all QTLs for RRE and AAC were as

high as 39.65%. Furthermore, the QTLs qRRE_04 and qAAC_04 were detected by the markers

bin93-bin94 on Chr.04 in a genetic region between 90.50 and 92.30 cM (Table 2 and Fig 5),

which indicated a new QTL on Chr.04 for the Al3+ tolerance trait of soybean root.

Fig 3. Frequency distribution of RRE and AAC among the RILs.

https://doi.org/10.1371/journal.pone.0223674.g003

Table 2. QTLs for two traits identified by the CIM method in the RIL population.

Traita QTL nameb Chr. Marker interval Physical location (bp) Physical distance (bp) CI (cM)c LODd Adde R2(%)f

RRE qRRE_04 Gm04 Gm04_bin93-bin94 45290936–46017212 726277 90.50–92.30 2.76 -0.05 7.09%

qRRE_16 Gm16 Gm16_bin8 4038850–4099407 60558 20.30 2.73 -0.05 7.80%

qRRE_17 Gm17 Gm17_bin93 38592282–38624563 32282 89.70 3.32 0.05 8.52%

AAC qAAC_04 Gm04 Gm04_bin93-bin94 45290936–46017212 726277 90.50–92.30 3.27 7.72 8.98%

qAAC_19 Gm19 Gm19_bin19 10253846–10556775 302930 27.10 2.66 6.85 7.26%

CIM: composite interval mapping.
a RRE: relative root elongation; AAC: apical Al3+ content.
b The QTL names are a composite of traits followed by the chromosome number.
c Physical position corresponding to the 95% confidence interval for the detected QTL based on the Glyma.Wm82. a1. v1.1 gene model.
d LOD indicates the logarithm of the odds score.
e Additive effect of the alleles of parents.
f R2 indicates the phenotypic variance explained by individual QTLs.

https://doi.org/10.1371/journal.pone.0223674.t002
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Gene ontology (GO) enrichment analysis of genes in QTLs

The Soybase database (https://www.soybase.org/) was used to investigate effective candidate

genes associated with aluminum tolerance. The analysis showed that 66 annotated genes were

Fig 4. Distribution of LOD values of mapped QTLs of RRE (a) and AAC (b).

https://doi.org/10.1371/journal.pone.0223674.g004

Fig 5. QTL positions on linkage groups of ZH 24 × HX 3. The virtual lines represent the truncated segments of

chromosomes.

https://doi.org/10.1371/journal.pone.0223674.g005
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mapped on the regions of the five QTLs (S5 Table). A total of 54 genes were detected in

Gm04_bin93-bin94, from 45290936 bp to 46017212 bp. There were 6, 2 and 4 annotated genes

in the three short intervals on Chr. Gm16 (Gm16_bin8), Gm17 (Gm17_bin93) and Gm19

(Gm19_bin19), respectively. To analyze the functional annotation of each gene, the AgriGO

toolkit (http://bioinfo.cau.edu.cn/agriGO/index.php) was used to perform gene ontology

(GO) analysis [46]. A total of 48 out of 66 genes were verified to have at least one GO annota-

tion. All 48 genes were predicted to be involved in biological processes, cellular components or

molecular functions. These genes could be grouped into seven categories, including cellular

processes, biological regulation, metabolic processes, cell part, organelle, catalytic activity, and

binding function (S6 Table).

Expression analysis of the candidate genes

To investigate the responses of the annotated genes to aluminum stress, RT-PCR analysis was

carried out using the two parents ZH 24 and HX 3 with or without Al3+ treatment. Fifteen dif-

ferentially expressed genes were detected in the QTL regions of Chr. Gm04 and Gm16 (S3

Fig). Furthermore, qRT-PCR was used to analyze the expression patterns of these 15 annotated

genes under Al3+ treatment. Most of the 15 annotated genes could respond to aluminum stress

with similar RT-PCR results between the two parents. There were 6 genes that showed signifi-

cant differential expression after Al3+ exposure between the two parents ZH 24 and HX 3 (Fig

6). Glyma.04g218700, which encodes a WRKY transcription factor, was dramatically induced

by aluminum stress but exhibited decreased expression in the absence of Al3+ treatment. Gly-
ma.04g212800, Glyma.04g213300 and Glyma.04g217400 were markedly upregulated in ZH 24,

with more than a 5-10-fold increase in gene expression. Likewise, Glyma.04g216100 and Gly-
ma.04g220600 showed higher expression levels in HX 3 under conditions of Al3+ treatment

than that in the control treatment (Fig 6). Therefore, our results suggested that these candidate

genes may play important roles in the response to aluminum stress in soybean.

Discussion

RRE correlates with AAC content in soybean

Evaluation of the phenotypic characteristics of aluminum tolerance of soybean is challenging

due to the complex variations among interacting factors and multiple tolerance mechanisms.

Fig 6. The relative expression of candidate genes by qRT-PCR in apical roots in both ZH 24 and HX 3 before (0

hrs) and after Al3+ exposure (24 hrs). The ordinate value represents the fold change in gene expression.

https://doi.org/10.1371/journal.pone.0223674.g006
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Different screening methods for phenotypic identification have been proposed to elucidate the

inheritance of Al3+ tolerance in diverse genotypes [47–50]. Hydroponic cultivation is preferred

as feasible method for estimation of Al3+ resistance that achieves consistent modulation of

conditions, while sand cultivation is thought to mimic the actual growth environment [51, 52].

In addition, researchers commonly use physiological and morphological indicators to indi-

rectly determine Al3+ tolerance in spite of disparate growth stages [5, 48, 53]. RRE has been

considered to be the most reliable indicator of Al3+ tolerance under solution culture conditions

in crop seedlings and has been successfully used for genetic analysis of RIL populations in rice

[54], maize [20], wheat [55, 56], and soybean [24]. Kopittke et al. demonstrated that root elon-

gation could be inhibited by only 30 min of exposure to 30 μM [Al3+] and experienced 76%

inhibition after 48 h of treatment. In our study, the average inhibition rate for root elongation

in our lines was 29% when treated with 25 μΜ [Al3+] for 24 h, indicating a reasonable hypothe-

sis consistent with that of Kopittke [57].

On the other hand, root regeneration length (RRL), hematoxylin staining and root dry

weight have been widely used as indicators for the assessment of Al3+-tolerant cultivars [58–

62]. Hematoxylin staining technique was reported to be an efficient method for determination

of Al3+ tolerance in barley [59], which indicates a specific association between AAC and Al3+

tolerance. But AAC has not been widely used to evaluate Al3+ tolerance in soybean RIL popu-

lations. In our study, AAC was applied as an indicator for QTL mapping of Al3+ tolerance in

RILs population of soybean. A significant negative correlation was observed between RRE and

AAC in a large population of 160 RILs (Fig 2). Indeed, the relationship between AAC and Al3

+-tolerance of plant was closely associated with exclusion mechanisms and internal detoxifica-

tion mechanisms [5]. Previous studies have shown that Al3+-sensitive genotypes accumulated

more total Al3+ in root apices than Al3+-tolerant genotypes [63], and similar results have also

been obtained in rice and Arabidopsis [49, 64]. Undoubtedly, exclusion mechanisms support

that the plant of higher tolerance always with the less AAC. However, the relationship of inter-

nal detoxification and AAC was ambiguous as Al3+ might accumulate in vacuole, though

which was just one part of detoxification mechanisms [65]. The significant relationship

between RRE and AAC in this study indicated a crucial role of the exclusion mechanism in

Al3+ tolerance. And the correlation degree between RRE and AAC was different among the

various lines (Fig 2), which may depend on genotypic differences and the complex coordina-

tion of Al3+ tolerance mechanisms in soybean.

Moreover, the estimated heritability of RRE was 92.59% indicating the trait tolerant to Al

stress using RRE index had high selection efficiency. The heritability of AAC was 64.90% lower

than that of RRE, which might be related to the effect of genotype-environment interactions.

QTLs associated with Al3+ tolerance

A practical way to study the genetics of quantitative traits is to construct a genetic linkage map

and map QTLs with segregation of populations based on those traits. Several previous studies

have detected QTLs for Al3+ tolerance using different mapping populations. The two popula-

tions named Young × PI 416937 and Kefeng No. 1 × Nannong 1138–2 are favored by research-

ers. Various QTLs associated with Al3+ resistance were identified by improving the genetic

linkage map established by RFLP and SSR markers using the same RIL populations [21, 23, 24,

34, 66]. In our study, the stable RIL population exceeded F12 generations with diversified segre-

gation, and there were considerable differences between the two parents in terms of Al3+ toler-

ance traits. Moreover, high-density genetic maps have been constructed using the RAD-seq

technology with SNP markers and have been applied to multiple traits [35, 36]. These advan-

tages provided a suitable precondition for our research.
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In the present study, a genetic map was used to map the QTLs for Al3+ resistance in soy-

bean. As a result, a total of five Al3+ tolerance QTLs explaining 39.65% of the total variation

were mapped on four chromosomes with narrow intervals (Table 2). One of the five QTLs

(qRRE_17) is close to the SSR marker Satt186 in the genome of Williams 82 version 1.01,

which was associated with Al3+ tolerance in previous studies [66] (Table 3). The other four

QTLs (qRRE_04, qRRE_16, qAAC_04, qAAC_19) are novel loci. Bianchihall et al. [23] and

Abdel-Haleem et al. [34] also identified QTLs for Al3+ tolerance on Chr. Gm16 and Gm19,

which could not be detected here (Table 3). These discrepancies could be ascribed to the differ-

ent genetic backgrounds and differences in screening methods.

Notably, qRRE_04 or qAAC_04 are located in the same bin marker on Chr. Gm04, indicat-

ing that it could be an important locus for Al3+ resistance (Fig 5). Moreover, qRRE_04 is a

colocalized QTL that overlaps with the QTL for low-P stress from Zhang et al. [67]. Similar

results were also obtained by QTL mapping for Al3+ tolerance in common bean [68]. Recent

research has shown that phosphorus application could reduce aluminum toxicity [69]. Taken

together, these results demonstrated that there are some QTLs in the colocalized intervals that

may be associated with Al3+ tolerance and P stress in soybean.

Analysis of candidate genes

A total of 66 genes were predicted in the regions of four mapped QTLs, while 54 genes were pre-

dicted in the colocalized loci of qRRE_04 (S5 Table). Six genes showed more significant differen-

tial expression under Al3+ treatment in both ZH 24 and HX 3 than other candidate genes (Fig 6).

None of the genes have been studied in terms of Al3+ tolerance, but some were mentioned in pre-

vious reports. Glyma.04g218700, a member of the WRKY transcription factors, named WRKY21
by Zhou et al. [42], was reported to respond to cold stress. In the present study, Glyma.04g218700
was strongly induced after Al3+ exposure, especially in HX 3 (Fig 6). Glyma.04g217400, encoding

the ethylene-responsive transcription factor ABR1, may be closely associated with abiotic stress

because the homologous gene AtABR1 can be induced by chilling, salt stress and drought stress

in Arabidopsis, showing a strong response to ABA (Fig 6) [70]. Glyma.04g213300 (NAC) and Gly-
ma.04g216100 (Trihelix), encoding two transcription factors, were also reported to respond to

multiple forms of abiotic stress [71, 72]. In addition, an upregulated gene, Glyma.04g220600, was

recorded to encode a peroxidase (POD) activated by reactive oxygen species (ROS), which may

contribute to Al3+ resistance by inducing the production of ROS in plant roots [73]. We also

observed that the Glyma.04g212800 gene upregulated by aluminum stress encodes a GDP-man-

nose transporter with an ambiguous relationship between GDP-mannose transport and alumi-

num stress. Thus, these 6 genes were identified as candidate genes for aluminum stress tolerance

based on the potential response to other forms of abiotic stress (Fig 6). Among the six genes, Gly-
ma.04g218700 may be the strongest candidate gene for aluminum stress tolerance.

Conclusions

In summary, an RIL population derived from ZH 24 × HX 3 was used to investigate the quan-

titative inheritance of RRE and AAC for Al3+ tolerance in soybean. A high-density soybean

genetic map was constructed using 2,639 recombination bin markers by the RAD-seq

approach to identify QTLs. A total of five QTLs (qAAC_04, qRRE_04, qRRE_16, qRRE_17 and

qAAC_19) were mapped on four chromosomes (Chr. Gm04, Gm16, Gm17, and Gm19) with

comprehensive genetic effects of 39.65%. The QTLs qRRE_04 and qAAC_04 could be detected

by the same markers in a genetic region between 90.50 and 92.30 cM, indicating a new QTL

on Chr.04 for the Al3+ tolerance trait of soybean. In addition, 66 annotated genes were pre-

dicted in the regions of the five QTLs, with six genes showing significantly different expression
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after Al3+ exposure by qRT-PCR. Glyma.04g218700upregulated by Al3+ treatment with the

highest expression level may be a candidate gene with potential roles in the response to alumi-

num stress. Therefore, our efforts will enable future functional analysis of candidate genes and

will contribute to the strategies for improvement of aluminum tolerance in soybean.

Table 3. QTLs detected by previous studies and the present study associated with Al3+ tolerance in soybean.

Chr Interval (a1.v1) CI (cM) Physical positions R2(%) Indicators Ref.

Gm08 BARC-014837-01682-Satt333 117.50–119.50 35598937–39910959 Tap root extension Bianchihall et al.2000

Gm11 Sat_270-Sat_272 19.00–21.00 4234139–2718892 Bianchihall et al.2000

Gm11 Satt638-BARC-042837-08435 39.10–41.10 6971135–8150135 Bianchihall et al.2000

Gm13 BARC-045205-08910-SOYHSP176 66.20–68.20 26196486–29041580 Bianchihall et al.2000

Gm16 Sat_366-BARC-024047-04716 56.20–58.20 30404629–31474289 Bianchihall et al.2000

Gm19 Satt723- BARC-039375-07304 3.10–5.10 264193–843081 Bianchihall et al.2000

Gm02 Satt703-LE45 87.50–98.10 24.60 Plant hight

Noleaves

Shoot dry wight

Root dry weight

Qi et al.2008

Gm02 A516-A953 101.70–109.30 1.90 Qi et al.2008

Gm11 GMKF046-GMKF080 65.10–80.60 8.90 Qi et al.2008

Gm17 GMKF058-Satt397 108.00–124.00 9.07 Qi et al.2008

Gm17 Satt397-satt669 120.50–127.80 6.83 Qi et al.2008

Gm19 satt278-sat_195 49.60–57.00 6.01 Qi et al.2008

Gm19 satt278-sat_195 42.50–63.70 5.70 Qi et al.2008

Gm20 B39-Sat_419 97.10–107.90 10.50 Qi et al.2008

Gm06 Satt202-Satt371 126.23–145.47 48441504–49759893 34.00 Root tolerance index

Root relative mean growth

Sharma et al.2010

Gm13 Satt252-Satt160 16.08–33.18 16454986–17875691 31.00 Sharma et al.2010

Gm02 Satt698-BARC-030679-06925 38.04–42.04 8827384–10906849 5.06 Plant dry weight

Shoot dry wight

Root dry weight

Korir et al.2011

Gm09 BARC-042823-08429-BARC-044609-08738 60.32–62.32 19422282–41745478 4.91 Korir et al.2011

Gm10 BE801128- Sat_242 68.97–74.05 38957017–39392879 Korir et al.2011

Gm11 Satt197-Sat_128 46.38–53.41 8898878–10011307 9.23 Korir et al.2011

Gm17 satt514-Sat_001 86.42–95.55 18425834–36745724 6.64 Korir et al.2011

Gm19 Satt313- Satt284 34.54–38.16 34753106–35672961 7.53 Korir et al.2011

Gm02 Satt005 75.29 30874668 Relative root elongation Korir et al.2013

Gm06 Satt286 101.75 16171860 Korir et al.2013

Gm08 Satt209 128.44 42190891 8.36 Korir et al.2013

Gm09 Sct_190 77.37 39455480 6.38 Korir et al.2013

Gm10 GMES1703 60.60 Korir et al.2013

Gm11 Sat_364 84.25 31594010 8.92 Korir et al.2013

Gm13 Sat_240 25.58 1346775 5.73 Korir et al.2013

Gm17 Satt186 92.23 39047273–39047329 16.54 Korir et al.2013

Gm20 Sat_174 36.59 24547862 Korir et al.2013

Gm03 Satt237-K494_1 101.31 10.30 Tap root extension at HIAL

Tap root extension at NOAL

Relative root extension

Abdel-Haleem et al.2014

Gm08 BARCSOYSSR_08_1664-Satt409 152.07 44.80 Abdel-Haleem et al.2014

Gm16 B122_1-Satt431 39.01 12.80 Abdel-Haleem et al.2014

Gm16 Sat_093-Satt431 38.01 8.80 Abdel-Haleem et al.2014

Gm18 Satt570-Satt501 50.03 9.40 Abdel-Haleem et al.2014

Gm19 A169_1-A106_1 1.99 5.60 Abdel-Haleem et al.2014

Gm04 bin93-bin94 90.50–92.30 45290936–46017212 7.09 Relative root elongation

Apical Al3+ content

In this study

Gm04 bin93-bin94 90.50–92.30 45290936–46017212 8.98 In this study

Gm16 bin8 20.30 4038850–4099407 7.80 In this study

Gm17 bin93 89.70 38592282–38624563 8.52 In this study

Gm19 bin19 27.10 10253846–10556775 0.07 In this study

https://doi.org/10.1371/journal.pone.0223674.t003
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