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Abstract
To solve major limitations in algorithms for the metabolite-based prediction of psychiatric phenotypes, a novel
prediction model for depressive symptoms based on nonlinear feature selection machine learning, the
Hilbert–Schmidt independence criterion least absolute shrinkage and selection operator (HSIC Lasso) algorithm, was
developed and applied to a metabolomic dataset with the largest sample size to date. In total, 897 population-based
subjects were recruited from the communities affected by the Great East Japan Earthquake; 306 metabolite features
(37 metabolites identified by nuclear magnetic resonance measurements and 269 characterized metabolites based on
the intensities from mass spectrometry) were utilized to build prediction models for depressive symptoms as
evaluated by the Center for Epidemiologic Studies-Depression Scale (CES-D). The nested fivefold cross-validation was
used for developing and evaluating the prediction models. The HSIC Lasso-based prediction model showed better
predictive power than the other prediction models, including Lasso, support vector machine, partial least squares,
random forest, and neural network. L-leucine, 3-hydroxyisobutyrate, and gamma-linolenyl carnitine frequently
contributed to the prediction. We have demonstrated that the HSIC Lasso-based prediction model integrating
nonlinear feature selection showed improved predictive power for depressive symptoms based on metabolome data
as well as on risk metabolites based on nonlinear statistics in the Japanese population. Further studies should use HSIC
Lasso-based prediction models with different ethnicities to investigate the generality of each risk metabolite for
predicting depressive symptoms.

Introduction
Metabolomics, an emerging field involving the mea-

surement of a comprehensive small-molecule profile in a
biological sample in a single experiment, may be one of the
most promising approaches for providing global insight
into the mechanisms underlying depressive symptoms1. A
profile of metabolites in plasma, which are accessed rela-
tively easily in clinical situations, can be an intermediate

phenotype between the genome/transcriptome and gen-
eral conditions of the body reflecting phenomena relevant
to depression. There is increasing evidence indicating the
potential contribution of plasma metabolome profiles to
the understanding of depression1–3.
Instead of utilizing a single metabolite as a risk factor to

predict depression, prediction models utilizing metabo-
lomic data have recently been proposed to improve the
accuracy of the prediction of depressive symptoms4,5.
However, these initial trials to identify specific metabolite
markers have not been well replicated2,3,6. As major lim-
itations underlying current attempts to detect the risk
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metabolites for depression, issues regarding statistics and
sample size remain to be addressed.
Among the statistical challenges in dealing with meta-

bolomic data, the abundance of data encompasses both
useful and useless information for prediction, and non-
linear characteristics of data may be major problems to be
solved. Comprehensive metabolomic data include a large
number (several hundreds) of variables not contributing
to prediction accuracy, consisting of variables not asso-
ciated with the phenotype of interest, and variables highly
correlated with other variables without adding new
information to the prediction model, which are referred to
as redundancies. In addition to the fact that the prediction
model utilizing multiple linear/logistic regression cannot
be built with a larger number of metabolites than samples,
prediction models including useless predictor variables
result in insufficient prediction accuracy due to multi-
collinearity or overfitting. One of the effective ways to
avoid multicollinearity or overfitting is to choose a set of
prioritized predictor variables, a process referred to as
feature selection. Machine learning is frequently utilized
for this purpose because it is difficult to select the best set
of predictive variables to increase prediction accuracy
based on a list of statistics calculated for each metabolite
based on traditional statistics7.
Least absolute shrinkage and selection operator (Lasso)

is one of the most commonly used machine learning
prediction methods incorporating feature selection8.
Although Lasso solves the first limitation, the abundance
of metabolomic data, by applying feature selection, it does
not handle the second limitation, the nonlinearity of
metabolomic data, because it stands on the assumption
that all variables have linear relationships. Nonlinear
associations were reported among metabolites9, between
metabolite concentrations and covariates, e.g., age10 and
body mass index (BMI)11, and between depressive phe-
notype and covariates12. One of the potential solutions
addressing nonlinearity among metabolites is the imple-
mentation of kernel-based machine learning methods,
such as a support vector machine (SVM) for categorical
phenotypes and kernel regression (KR) for quantitative
phenotypes; these are the most commonly utilized
machine learning methods to handle data with nonlinear
relationships among variables7. However, these methods
can be affected by overfitting in certain situations using
omics datasets. The omics datasets can be characterized
by a small sample size, a large number of features, and
only a small proportion of useful features for prediction.
Although SVM uses support vectors to protect the
methods against overfitting to a certain degree, several
previous studies have reported that SVM, which does not
integrate a feature selection process, is more overfitted
than other models with feature selection based on omics
datasets13,14.

Hilbert–Schmidt independence criterion (HSIC) Lasso
is a novel nonlinear feature selection model developed by
Yamada et al.15 to overcome the above limitations. HSIC
Lasso extracts a set of predictor variables, which are
dependent on a response variable and independent from
other selected predictor variables, where dependencies
between variables are evaluated by HSIC statistics, which
is a nonparametric score for dependency15,16. Unlike
Lasso, which incorporates both feature selection and
prediction algorithms, HSIC Lasso is solely used for fea-
ture selection; therefore, it should be combined with other
algorithms for prediction. Herein, we propose a novel
statistical approach combining HSIC Lasso-based feature
selection and SVM- or KR-based prediction to predict a
depressive phenotype based on metabolomic data.
In addition to the statistical issues, another major lim-

itation is that most previous studies have had limited
sample sizes to perform machine learning3,4,6. Although
machine learning is an effective approach for analyzing
metabolomic data, it usually requires larger sample sizes
than traditional statistics because of the much greater
number of degrees of freedom that ought to be covered17.
However, the sample sizes of the prior metabolomic
studies to predict depressive symptoms, utilizing either
traditional statistics or machine learning, included up to a
couple of hundred samples3,4,6.
In this study, we applied the novel nonparametric pre-

diction model utilizing HSIC Lasso and SVM/KR to the
prediction of depressive symptoms based on metabolomic
data from 897 plasma samples, which is more than double
the number of samples in the largest previous studies3,4,6.
The samples were collected by the Tohoku University
Tohoku Medical Megabank Organization to survey the
health condition of residents of prefectures that were
primarily affected by the Great East Japan Earthquake and
Tsunami18. The predictive powers of HSIC Lasso-based
prediction models were compared with those of state-of-
the-art prediction models, including Lasso, SVM/KR
without feature selection, random forest, partial least
squares (PLS), sparse PLS (SPLS), neural network, and
multiple linear/logistic regression. The metabolites
extracted by feature selection using our model were also
investigated by comparing them with the metabolites
selected by other models or with metabolites with small
P values in the traditional statistical analyses.

Materials and methods
Study population
This study has a population-based cross-sectional

design. The subjects included in the first batch (n= 1008)
of the Japanese Multi Omics Reference Panel (jMorp)19

were included in the current analyses. There were
48 subjects (4.7%) whose CES-D scores were missing
(listwise deletion) and 63 subjects (6.2%) whose CES-D
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answers were unreliable under the criteria described
below. After the exclusion of these 111 subjects,
897 subjects were subjected to the analyses described
below. All protocols of the studies were approved by the
Ethics Committee of Tohoku University. Written
informed consent was obtained from all subjects at the
time of study enrolment.

Outcome measures
The Center for Epidemiologic Studies-Depression Scale

(CES-D) was used as an indicator of depressive symp-
toms20. The details of the CES-D scores are provided in
the Supplementary Methods. As outcome measures, not
only quantitative CES-D scores but also binary CES-D
traits using cutoff values were utilized. We set two cutoff
values (≥16 and ≥19 to define the depressive group) for
prediction analyses for the binary CES-D traits and
compared the results.

Nuclear magnetic resonance (NMR) measurements and
mass spectrometry (MS) measurements
NMR and MS measurements are detailed in Supple-

mentary Methods. In brief, plasma was prepared and
stored at −80 °C. Metabolites were extracted using a
standard methanol extraction procedure. All NMR
experiments were performed at 298 K using a Bruker
Advance 600MHz spectrometer (Bruker BioSpin, Billerica,
MA, USA). After standard 1D nuclear Overhauser effect
spectroscopy (NOESY) and Carr–Purcell–Meiboom–Gill
(CPMG) spectra were measured for each sample, data were
processed utilizing the Chenomx NMR Suite (Chenomx,
Edmonton, Canada). Identification and quantification of
metabolites were performed using the target profiling
approach implemented in the Chenomx Profiler module.
Ultrahigh-performance liquid chromatography quadru-

pole time-of-flight MS analysis was performed on an
ACQUITY Ultra Performance liquid chromatography I-
class system (Waters Corp., Milford, MA, USA), which
was interfaced with a Waters Synapt G2-Si quadrupole
time-of-flight MS with an electrospray ionization (ESI)
system utilized in positive-ion mode. A C18 column
(ACQUITY HSS T3, Waters Corp.) was used for liquid
chromatography separation. The data collection were
performed using MassLynx, v4.1 software (Waters Corp.).
A NANOSPACE SI-2 HPLC (Shiseido, Tokyo, Japan) and
a Q Exactive Orbitrap MS (Thermo Fisher Scientific,
Waltham, MA, USA) equipped with a heated-ESI-II
source were integrated into the liquid chromatography
Fourier Transform MS system for negative ion mode. A
HILIC column (ZIC-pHILIC, SeQuant, Darmstadt, Ger-
many) was used for liquid chromatography separation.
The data collection was performed using Xcalibur
v4.1 software (Thermo Fisher Scientific).

Covariates
Sex, age, BMI, marital status, damage from the Great

East Japan Earthquake, antidepressant intake, Lubben
Social Network Scale 6, and social capital score were
utilized as covariates. These covariates, as well as meta-
bolites, were included in the variable selection, and
selected covariates in each fold of the outer-loop cross-
validation are shown in Supplementary Table S1.
Sex, age, BMI, and antidepressant intake were fre-

quently used as covariates in previous studies2,3,6.
Experiencing the natural disaster, which was associated
with the CES-D score21,22, was also reported to be asso-
ciated with metabolite profile (i.e., lipids, blood sugar, and
inflammation-related factors)23, which is possibly due to
environmental change (changing residence or living in a
shelter) and chronic stress. The damage from the Great
East Japan Earthquake was coded based on the categories
of house damage evaluated by the local government fol-
lowing the National Damage Certification Standards of
Disaster as follows: 4= entirely collapsed (uninhabitable),
3= large-scale damage (requires significant repairs), 2=
half-scale damage (habitable with repairs), 1= small-scale
damage, and 0= no damage21.
In addition, there is accumulating evidence that

environmental factors related to lifestyle (i.e., marital
status and social engagement), which are associated with
depressive symptoms, are also associated with metabolite
profiles (especially lipids)24–27 through dietary and other
health behaviors28,29. Social engagement in particular is
one of the strongest environmental factors for depressive
symptoms in the Japanese population suffering from the
natural disaster22. The questionnaire-based scales that
have already been validated in Japanese people (i.e., the
Lubben Social Network Scale 630 and the social capital
score22) were utilized to evaluate social engagement.
Since we are interested in the association between
metabolites and CES-D score adjusted by environmental
factors, these environmental factors were included as
covariates.

Cross-validation
Evaluation of the predictive powers and tuning para-

meters for each prediction model was based on fivefold
cross-validation. In fivefold cross-validation, all the subjects
were randomly split into five roughly equal-sized groups.
We predicted each group (test dataset) using the model
fitted on the remaining four groups of data as training
datasets. We repeated this process for each of the five
groups and obtained five estimates of predictive power.
This cross-validation for evaluating predictive power was
referred to as the “outer loop”. Predictive power was
evaluated based on the predictive correlation coefficient
(i.e., Pearson’s correlation coefficient between the predicted
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and measured CES-D scores) for quantitative traits and the
area under the curve (AUC) for binary traits.
The parameters for the prediction models (i.e., hyper-

parameters) were also selected based on fivefold cross-
validation. Training datasets from the outer loop were
split into five parts again, and each group was used as a
test dataset; the remaining four parts were used as train-
ing datasets repeatedly. The mean of the estimates of the
five predictive powers were calculated, and the parameters
that gave the maximum predictive power were used as the
optimized parameters. This cross-validation is also known
as the “first inner loop”. If the prediction models consisted
of separate algorithms for feature selection and predic-
tion, the parameters for the feature selection were tuned
in the first inner loop; then, the training datasets from the
first inner loop were further split into five datasets, and
fivefold cross-validation was performed yet again to select
the optimized parameters for the prediction part (the
“second inner loop”). The subject sets included in the
outer loop, the first inner loop, and the second inner loop
were common in all the prediction models.

HSIC Lasso-based prediction model
HSIC Lasso was used for feature selection. Although

“Lasso” is included in the method name, HSIC Lasso can
be categorized as a screening method, such as sure
independence screening (SIS)31, rather than as a predic-
tion method, since HSIC Lasso transforms the output
variable y (e.g., CES-D score) to a Gram matrix L and
cannot directly estimate y15. SIS is a widely studied feature
selection method in the statistics community32; it first
screens a small number of features without considering
the prediction accuracy of the constructed prediction
model (e.g., using mutual information and correlation)
and then predicts the output by using an existing pre-
diction model with the screened features. HSIC Lasso can
screen features by considering feature–feature nonlinear
relationships in addition to feature–output relationships,
unlike SIS, which only considers the feature and output
relation to screen features. HSIC Lasso’s approach for
feature selection is similar to the minimal redundancy
maximal relevance criterion33, which selects the features
that were not redundant (independent) with each other
and had maximal statistical dependency on the output
variable. Similar to classical Lasso-based feature selection,
the minimal redundancy maximal relevance criterion
focuses on mutual information, does not consider the
interaction effects between features and can be performed
for datasets whose sample sizes are smaller than the fea-
ture size (n < p). In contrast to classical Lasso, HSIC Lasso
uses HSIC statistics, a kernel-based independence mea-
sure, to assess the nonlinear dependency between two
variables (i.e., between two features or between the output
variable and a feature). HSIC statistics takes a nonnegative Ta
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value and is zero only if the two variables are statistically
independent.
After selecting features with HSIC Lasso, we built a

model for predicting quantitative response variables via
KR and for predicting binary response variables via SVM
using the R kernlab and CVST packages. The character-
istics of this new model, along with those of the frequently
utilized conventional models, are summarized in Table 1.
For KR and SVM, a radial basis function kernel was uti-
lized. For the tuning parameters, the first inner loop of the
fivefold cross-validation was used to select the optimal
number of features selected by HSIC Lasso. The second
inner loop of the fivefold cross-validation was used to
select the optimal sigma and lambda/C parameters for
KR/SVM.

Additional prediction models for comparison to the HSIC
Lasso-based prediction model
Lasso was included as a feature selection and prediction

model with linear assumptions using the R glmnet pack-
age. The tuning parameter for Lasso (lambda) was
determined by the first inner loop of fivefold cross-
validation. SVM/KR was utilized as a prediction model
without linear assumptions. In addition to the SVM/KR
without feature selection, SVM/KR with P < 0.05 vari-
ables, SVM/KR with Lasso-based feature selection, and
SVM/KR with only covariates were performed. For SVM/
KR without feature selection, SVM/KR with P < 0.05
variables, and SVM/KR using only covariates, the optimal
sigma and lambda/C parameters were selected in the first
inner loop of the fivefold cross validation. For SVM/KR
with Lasso-based feature selection, the optimal para-
meters for Lasso (lambda) and the optimal parameters for
SVM/KR were selected in the first and second inner loops
of the cross-validation, respectively. Random forest is a
nonlinear machine learning method without feature
selection, which builds multiple decision trees and merges
them together to obtain a more accurate and stable pre-
diction34. Using the R randomForest package, the mtry
parameter (the number of variables randomly sampled as
candidates at each split) was optimized with respect to the
Out-of-Bag error estimate. The number of trees in the
random forest was set to 500, which is the default value in
the R randomForest package. The prediction power of
various numbers of trees in the random forests is shown
in Supplementary Table S2. PLS is a technique that
reduces the predictors to a smaller set of uncorrelated
components and performs least squares regression/clas-
sification on these components instead of on the original
data7. SPLS is a modified PLS that directly imposes
sparsity on the dimension reduction step of PLS to
achieve accurate prediction and variable selection35. For
PLS, the number of components was decided by the first
inner loop of the fivefold cross-validation. For SPLS, the

number of components and the thresholding parameter
(eta) were decided by the first inner loop of the fivefold
cross-validation. The R caret package was utilized for PLS
and SPLS. A neural network, which is inspired by biolo-
gical neural networks, is a computational model whose
architecture is composed of layers and nodes36. A neural
network can be a nonlinear prediction model when a
nonlinear activation function is used. For the neural
network, two hidden layers with 128 nodes and the Rec-
tified Linear Unit activation function were utilized. This
architecture was determined based on previous stu-
dies37,38 and preliminary trials. The epoch size for training
was selected based on the first inner loop of the fivefold
cross-validation. The Python keras package was utilized.
The prediction power of various neural network archi-
tectures is shown in Supplementary Table S3.

Results
Demographic information
The demographics of the subjects between the high and

low CES-D groups using a cutoff of 16 are shown in Table
2, and those using a cutoff of 19 are shown in Supple-
mentary Table S4. The percentage of females, marital
status, house damage from the 2011 Great East Japan
Earthquake and Tsunami, medications, and social
engagement scores were significantly different between
the high and low CES-D groups. The self-reported post-
traumatic stress disorder (PTSD) symptoms are also
shown in Table 2 and Supplementary Table S4. The
proportion of subjects who complained of PTSD symp-
toms was significantly higher in the high CES-D group.

Predictive powers
The predictive powers of all conducted models are

shown in Figs. 1 and 2. The receiver operating char-
acteristic curve for the score that predicts binary traits is
shown in Supplementary Fig. S1. In the prediction of both
the quantitative CES-D score and the binary CES-D traits,
the predictive power of HSIC Lasso with SVM/KR was
higher than that of the other prediction models.

Selected metabolites
During the fivefold cross-validation in the predictions

integrating feature selections, five sets of metabolites were
selected from the training data (four-fifths of total sub-
jects) to be subjected to validation utilizing the test data
(the remaining one fifth). Frequently selected metabolites
among the five replications of feature selections can be
interpreted as useful metabolites to predict depression.
The metabolites with frequencies of more than four times
out of the five replicated feature selections for both CES-
D quantitative variable models and binary variable models
are shown in Table 3. Three metabolites—3-hydro-
xyisobutyrate (NMR), gamma-linolenyl carnitine (MS in
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C18 mode) and L-leucine (MS in C18 mode)—were fre-
quently selected in both nonlinear and linear feature
selection models. Uric acid (MS in C18 mode) was fre-
quently selected only in linear feature selection models
(Lasso and multiple linear/logistic regression with P <
0.05), and L-gamma-glutamyl L-leucine (MS in C18 mode)

was frequently selected only in multiple linear/logistic
regression with P < 0.05 (Table 3).

Dependencies among CES-D and features
Dependencies among CES-D score, metabolites, and

covariates were investigated utilizing HSIC statistics. The
HSIC statistics between CES-D score, covariates, and the
five selected metabolites are shown in Table 4. HSIC
statistics between all possible variable pairs (CES-D score,
covariates, and all metabolites) are shown in Supple-
mentary Table S5.
No strong dependency was observed (HSIC statistics=

0.6–6.9) among the three metabolites consistently selec-
ted by HSIC Lasso (i.e., 3-hydroxyisobutyrate, gamma-
linolenyl carnitine, and L-leucine). The HSIC statistics
between CES-D score and these 3 metabolites (0.9–1.2)
are close to those between CES-D score and sex (0.9), age
(1.0), BMI (1.0), marital status (0.6), damage from the
Great East Japan Earthquake (0.9), or antidepressant use
(0.4) and smaller than the HSIC statistics between CES-D
score and the social engagement scores LSNS-6 (1.6) and
social capital score (1.4). Uric acid, a metabolite only
selected by linear feature selection models, had strong
dependency on sex (HSIC statistics= 29.5). L-gamma
glutamyl-L-leucine, a metabolite selected only by P values,
had strong dependency on the other selected metabolite
by the same prediction model (i.e., L-leucine).

Discussion
To the best of our knowledge, the current study utiliz-

ing 897 subjects was the largest analysis to elucidate a
metabolite expression profile specific to depressive
symptoms and the first study utilizing nonlinear feature
selection-integrated machine learning models to predict a
depressive symptoms based on metabolomic data. Our
nonlinear machine learning model with feature selection
successfully (i) exhibited better prediction accuracy than
those achieved with frequently utilized machine learning
methods, such as Lasso, SVM/KR, random forest, and
partial least squares, and (ii) revealed candidate metabo-
lite markers useful for the prediction of depressive
symptoms by avoiding redundancies among metabolites
as well as with covariates, including sex and BMI.
This study demonstrated that nonlinear feature selec-

tion (HSIC Lasso)-based prediction models showed better
predictive powers than prediction models with assump-
tions of linearity (Lasso, PLS, SPLS, and multiple regres-
sion). HSIC Lasso-based models showed even better
predictive power than a nonlinear prediction model
(SVM/KR) with linear feature selection (Lasso or P <
0.05). These results suggested that feature selection
without a linear assumption would improve the predictive
power for depressive symptoms based on metabolome

Table 2 Demographic information.

High CES-D Low CES-D P valuea

CES-D range ≥16 ≤15

CES-D, mean (SD) 22.2 (6.4) 9.8 (3.8) 1.26 × 10−106

Subjects 298 599

Percentage of females 64.0% 54.5% 7.87 × 10−3

Age, mean (SD) 56.8 (11.7) 58.2 (11.6) 0.105

BMI, mean (SD) 23.50 (4.13) 23.49 (3.31) 0.972

Marital status

Married 226 (75.83%) 510 (85.14%) 7.28 × 10−3

Widowed 26 (8.72%) 33 (5.50%)

Divorced 18 (6.04%) 19 (3.17%)

Single 28 (9.39%) 37 (6.17%)

House damage from the GEJE

Total collapse 75 (25.2%) 75 (12.5%) 8.80 × 10−5

Large-scale damage 36 (12.1%) 74 (12.3%)

Half-scale damage 38 (12.8%) 82 (13.6%)

Small-scale damage 99 (33.2%) 239 (39.8%)

No damage 50 (16.8%) 129 (21.5%)

Medication

Antidepressants 9 (3.0%) 0 (0.0%) 4.54 × 10−5

Hypnotics 57 (19.1%) 18 (3.0%) 2.43 × 10−15

Anxiolytics 94 (31.5%) 21 (3.5%) 1.22 × 10−30

Social engagement

LSNS-6 score, mean (SD) 14.0 (5.8) 16.23 (5.4) 2.30 × 10−8

Social capital score, mean (SD) 5.7 (2.9) 4.44 (2.4) 5.27 × 10−12

Gap time between the GEJE and
measurement of CES-D (months),
mean (SD)

27.3 (1.0) 27.4 (1.0) 0.111

Self-reported PTSD symptomsb

1. Intrusive images or nightmares 102 (34.2%) 49 (8.1%) 1.91 × 10−21

2. Emotionally upset when
reminded of the GEJE

102 (34.2%) 50 (8.3%) 5.63 × 10−21

3. Physiological reactions when
reminded of the GEJE

45 (15.1%) 16 (2.6%) 2.84 × 10−11

4. Avoidance of reminders
associated with the GEJE

86 (28.8%) 67 (11.1%) 1.32 × 10−10

5. Interference with everyday life 36 (12.0%) 8 (1.3%) 1.41 × 10−11

CES-D Center for Epidemiologic Studies—Depression Scale, SD standard
deviation, BMI body mass index, PTSD posttraumatic stress disorder, GEJE the
2011 Great East Japan Earthquake and Tsunami.
aP values were calculated using Student’s t tests for CES-D, age, BMI, LSNS-6
score, social capital score, and the gap time between the 2011 Great East Japan
Earthquake and the CES-D measurement. P values were calculated using Fisher’s
exact tests for the percentage of females, marital status, house damage from the
2011 Great East Japan Earthquake and Tsunami, medication, and self-reported
PTSD symptoms.
bSelf-reported PTSD symptoms show the number of subjects who answered
“Yes” to the following questions in the questionnaire. “Below is a list of problems
that people sometimes have after experiencing a traumatic event. Have you
experienced the following problems two times or more within one week? 1.
Unwanted upsetting memories about the GEJE or bad dreams or nightmares
related to the GEJE. 2. Feeling very emotionally upset when reminded of the
GEJE. 3. Having physical reactions when reminded of the GEJE (for example,
sweating or heart racing). 4. Trying to avoid thoughts or feelings related to the
GEJE or trying to avoid activities, situations, or places that remind you of the
GEJE or that feel more dangerous since the GEJE. 5. The difficulties have been
interfering with your everyday life.” These questions were based on the report
by Itoh et al.46, which validated a new short version of the Posttraumatic
Diagnostic Scale47 among Japanese people.
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data compared with prediction models implementing
feature selection with a linear assumption.
HSIC Lasso also performed better in predicting CES-D

score than the most widely utilized machine learning
SVM/KR (nonlinear prediction without feature selection).
The prediction accuracy of SVM was lower than that of
most of the other tested machine learning algorithms with
feature selection, most likely due to the excessively
abundant metabolite information. Whereas the previous
metabolomic data-based SVM prediction of depressive
symptoms utilized merely several dozen metabolite
information4,39, our study utilized high-throughput
metabolomic data, consisting of 306 metabolite markers.
Han et al.13 comprehensively investigated the perfor-
mance of SVMs to predict various diseases based on high-
dimensional omics data and showed that SVM perfor-
mance decreased due to overfitting, especially when a
larger number of predictor variables was utilized from
high-throughput omics data. Our data indicated that
high-throughput data given from recent technological

0.2 0.3 0.4
PCC

HSIC Lasso + KR

SPLS

KR P<0.05

Lasso + KR

KR

MLR P<0.05

Lasso

Random Forest

Neural Network

PLS

MLR all

KR covariates

MLR covariates

Fig. 1 Predictive power for quantitative CES-D scores. Boxplots
show the predictive powers in the fivefold cross-validations of each
prediction model utilizing CES-D scores as response variables and
metabolites and other covariates as predictive variables.
Abbreviations: CES-D Center for Epidemiologic Studies-Depression
Scale, HSIC Hilbert–Schmidt independence criterion, Lasso least
absolute shrinkage and selection operator, KR kernel regression, SPLS
sparse partial least squares, KR P < 0.05 kernel regression with P < 0.05
variables, Lasso+ KR kernel regression with variables selected by
Lasso, MLR P < 0.05 multiple linear regression with P < 0.05 variables,
PLS partial least squares, MLR all multiple linear regression with all
variables, KR covariates kernel regression with only covariates, MLR
covariates multiple linear regression with only covariates, PCC
predictive correlation coefficient.

Fig. 2 Predictive power for binary CES-D traits. Boxplots show the
predictive power in the fivefold cross-validations of each prediction
model utilizing binary CES-D traits as response variables and
metabolites and other covariates as predictive variables.
Abbreviations: CES-D Center for Epidemiologic Studies-Depression
Scale, HSIC Hilbert–Schmidt independence criterion, Lasso least
absolute shrinkage and selection operator, SVM support vector
machine, SPLS sparse partial least squares, MLR P < 0.05 multiple
logistic regression with P < 0.05 variables, SVM P < 0.05 support vector
machine with P < 0.05 variables, Lasso+ SVM support vector machine
with variables selected by Lasso, PLS partial least squares, MLR all
multiple linear regression with all variables, SVM covariates support
vector machine with only covariates, MLR covariates multiple logistic
regression with only covariates, AUC area under the curve.
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advances, which encompassed both useful and useless
biomarkers for prediction, could have improved the pre-
diction accuracies of models only when feature selection
to extract superior biomarker sets for prediction would
have been implemented. The application of high-
throughput data to SVM or other algorithms without
feature selection would not sufficiently improve and
might even decrease the predictive power of the algorithm
because random noise due to a large number of useless
biomarkers would cause overfitting13.
Although prediction models based on metabolites and

covariates increased the predictive power compared with
the models based on only covariates, the degree of

improvement was moderate (i.e., 0.10–0.15 in PCC and
0.05–0.15 in AUC by HSIC Lasso-based prediction
models). As for a single metabolite feature, the strengths
of the associations evaluated by HSIC statistics between
CES-D score and the three metabolites consistently
selected by HSIC Lasso (i.e., 3-hydroxyisobutyrate,
gamma-linolenyl carnitine, and L-leucine) were close to
those between CES-D score and marital status or the
damage from the earthquake, which are reported to be
one of the relatively strong environmental risk factors for
depression22,28,29; however, the other metabolites had a
smaller association with CES-D score. The proportion of
CES-D score explained by metabolome datasets was

Table 4 Dependencies among CES-D score, metabolites, and covariates based on HSIC statistics.

Response

variable

Metabolites selected in both nonlinear and

linear models

Metabolites selected

only in linear models

Metabolite selected

only by P values from

multiple regression

CES-D score 3-Hydroxyisobutyrate Gamma-

linolenyl

carnitine

L-Leucine Uric acid L-gamma-glutamyl-L-

leucine

NMR MS C18 MS C18 MS C18 MS C18

Covariates

Sex 0.9 5.6 0.7 15.7 29.5 15.8

Age 1.0 1.3 1.5 1.5 1.7 3.0

BMI 1.0 2.3 0.3 3.6 4.7 2.8

Marital status 0.6 0.1 0.5 0.2 0.1 0.3

Damage from the Great

East Japan Earthquake

0.9 0.5 0.1 0.6 0.5 0.5

Antidepressants 0.4 0.3 0.1 0.2 0.0 0.1

LSNS-6 1.6 0.2 0.2 0.3 0.5 0.1

Social capital 1.4 0.6 0.4 0.3 0.2 0.2

sum 7.2 11.1 4.1 22.7 37.6 23.2

Metabolites

3-Hydroxyisobutyrate

NMR 1.2 NA 0.6 6.9 2.7 5.7

Gamma-linolenyl carnitine

MS C18 0.9 0.6 NA 1.0 0.7 2.3

L-leucine

MS C18 0.9 6.9 1.0 NA 6.1 24.4

Uric acid

MS C18 0.3 2.7 0.7 6.1 NA 8.1

L-gamma-glutamyl-L-leucine

MS C18 0.7 5.7 2.3 24.4 8.1 NA

Abbreviations: HSIC Hilbert–Schmidt independence criterion, CES-D Center for Epidemiologic Studies-Depression Scale, BMI body mass index, LSNS-6 Lubben Social
Network Scale 6, NMR nuclear magnetic resonance spectroscopy, MS C18 mass spectrometry in C18 mode.
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significant but not as large in the current datasets, which
could indicate the complexity of the depressive symptoms.
In other words, a single metabolite feature (biological
factor) or a single environmental factor can explain a
limited proportion of the variance in the depressive
symptoms. To improve the predictive power of the pre-
diction models, feature selection models based on datasets
including various biological data (not only metabolites but
also genomes or brain imaging) and various environ-
mental data could be a good approach for predicting
depressive symptoms. For this multidimensional data
approach, HSIC Lasso would be useful when predictor
variables include quantitative variables, among which
nonlinear relationships can exist.
There were only three metabolites that were con-

sistently selected by HSIC Lasso for both quantitative and
binary traits, although HSIC Lasso selected 5–15 meta-
bolites for each prediction in the fivefold cross-validation.
One of the reasons for the variety in the selected meta-
bolites would be that HSIC Lasso uses L1 norms for
penalty term, similar to classical Lasso, and selects only
one strongest feature among the metabolites that are
highly dependent on each other. Consequently, when
several metabolites have equivalent dependency on the
output variable and high dependency on each other, it can
be unstable which metabolite is selected for prediction. In
addition, slightly different metabolites were selected
between the models to predict quantitative CES-D scores
and binary CES-D traits. We performed a relatively con-
servative approach to find risk metabolites by focusing on
only those selected by both prediction models for quan-
titative and binary CES-D traits.
All three metabolites consistently selected by HSIC

Lasso were located on different pathways, each of which
was previously suggested to be associated with depression.
Three-hydroxyisobutylate is an intermediate of valine
catabolism and has recently been demonstrated to act as a
paracrine factor to stimulate endothelial fatty acid uptake
induced by PGC-1α40. One of the isoforms of PGC-1α,
PGC-1α1, has been suggested to modulate kynurenine
metabolism and to exert a protective effect against stress-
induced depression41. Gamma-linolenyl carnitine is one
of the acylcarnitines. Decreases in a set of medium-chain
acylcarnitines in patients with depression were reported
in one of the largest metabolomic studies3. In addition,
decreased plasma acylcarnitines were reported to distin-
guish depressed subjects from controls and were corre-
lated with the severity of depression in both HIV-positive
and HIV-negative patients42. L-leucine is one of the
essential amino acids and was recently reported to be
taken up into the brain, where astrocytes convert it to
alpha-ketoisocaproate via the transamination of alpha-
ketoglutarate to glutamate43.

We succeeded in showing several metabolites with
dependency on the CES-D score in a large dataset of the
Japanese population, but ethnicity needs to be con-
sidered when using the prediction model in different
populations. There is accumulating evidence that eth-
nicity influences the metabolite profile44 and the biolo-
gical risk markers for depression45. To apply the HSIC
Lasso-based prediction model to a different dataset with
different ethnicities, such as European and African
samples, updates for the training data would be needed,
i.e., using samples with ethnicities similar to those of the
target population. Future machine learning studies with
larger sample sizes are also recommended to cover a
greater number of degrees of freedom.
The current study included several limitations. First,

the outcome measure was the self-reported CES-D
score, not the diagnosis of depression. The correlation
between the clinician-rated severity of depressive
symptoms and the CES-D score can be limited in some
situations20. For example, the CES-D score can be high
even when subjects experience appropriate reactions to
a significant loss, which would not be diagnosed as
depression20. In the current datasets, although the gap
time between the CES-D measurements and the Great
East Japanese Earthquake was more than two years on
average, it is possible that there were subjects with high
CES-D scores, but their reactions were appropriate to
the significant loss resulting from the disaster. Another
limitation of using the CES-D score is that the CES-D
cannot rule out other diagnoses, and the high CES-D
group can include a heterogeneous population in terms
of these diagnoses. For example, the proportion of
subjects who complained of PTSD symptoms was sig-
nificantly larger in the high CES-D group. It is possible
that the high CES-D group included not only subjects
with only depression but also subjects with depression
and PTSD (comorbidity). Second, the current study
adopted a cross-sectional design. Several metabolites
have dependency on the CES-D score, but we are unable
to discuss the causal relationship between the CES-D
score and these metabolites (i.e., whether the metabo-
lites caused the depressive symptoms or the depressive
symptoms changed the metabolite profile).
In conclusion, the current study demonstrated the

usefulness of HSIC Lasso-based prediction models to
analyze the metabolome datasets of depressive pheno-
types because of its better predictive power than other
state-of-the-art prediction models and its good inter-
pretability in presenting a set of metabolites without
redundancies or linear assumptions. Further studies
should use HSIC Lasso-based prediction models with
different ethnicities to investigate the generality of each
risk metabolite for predicting depressive symptoms.

Takahashi et al. Translational Psychiatry          (2020) 10:157 Page 10 of 12



Acknowledgements
This work was supported by a grant from the Strategic Research Program for
Brain Sciences from the Japan Agency for Medical Research and Development
(AMED) under Grant number JP19dm0107099 and the Tohoku Medical
Megabank Project from the Ministry of Education, Culture, Sports, Science, and
Technology (MEXT) of Japan and AMED under Grant numbers JP19km0105001
and JP19km0105002. We are grateful to Drs. Atsushi Hozawa, Shinichi
Kuriyama, Ichiro Tsuji, Naoko Minegishi, Takako Takai-Igarashi, Nobuo Fuse,
Osamu Tanabe, Junichi Sugawara, Tadashi Ishii, Kiyoshi Ito, Eiichi N. Kodama,
Yasuyuki Taki, Masao Nagasaki, Ritsuko Shimizu, Akito Tsuboi, Kichiya Suzuki,
Hiroshi Tanaka, Hiroshi Kawame, Hiroaki Hashizume, Shinichi Higuchi, Nobuo
Yaegashi, Shigeo Kure, Sadayoshi Ito, and all faculties and stuffs of the Tohoku
University Tohoku Medical Megabank Organization (http://www.megabank.
tohoku.ac.jp/english/a191201/) for establishing the cohort which founded the
materials and information analyzed in this study, as well as the participants of
the Tohoku Medical Megabank Project for supporting this study.

Author details
1Graduate School of Medicine, Tohoku University, Sendai, Japan. 2Tohoku
Medical Megabank Organization, Tohoku University, Sendai, Japan.
3International Research Institute of Disaster Science, Tohoku University, Sendai,
Japan. 4RIKEN Center for Advanced Intelligence Project, Tokyo, Japan.
5Graduate School of Information Sciences, Tohoku University, Sendai, Japan.
6Institute for Development Aging and Cancer, Tohoku University, Sendai, Japan

Data availability
The datasets analyzed in the current study are not publicly available for ethical
reasons but are available upon request after approval from the Ethical
Committee of Tohoku University and the Materials and Information
Distribution Review Committee of the Tohoku Medical Megabank Project.

Code availability
The HSIC Lasso program code is available on the web (http://www.
makotoyamada-ml.com/hsiclasso.html).

Conflict of interest
The authors declare that they have no conflict of interest.

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Supplementary Information accompanies this paper at (https://doi.org/
10.1038/s41398-020-0831-9).

Received: 18 February 2019 Revised: 15 April 2020 Accepted: 21 April 2020

References
1. Martins-de-Souza, D. Proteomics, metabolomics, and protein interactomics in

the characterization of the molecular features of major depressive disorder.
Dialogues Clin. Neurosci. 16, 63–73 (2014).

2. Petrovchich, I. et al. Metabolomics in schizophrenia and major depressive
disorder. Front. Biol. 11, 222–231 (2016).

3. Liu, X. et al. Discovery and validation of plasma biomarkers for major
depressive disorder classification based on liquid chromatography-mass
spectrometry. J. Proteome Res. 14, 2322–2330 (2015).

4. Athreya, P. et al. Data-driven longitudinal modeling and prediction of
symptom dynamics in major depressive disorder: integrating factor
graphs and learning methods. In Proc 2017 IEEE Conference on Com-
putational Intelligence in Bioinformatics and Computational Biology
(CIBCB). (IEEE, 2017).

5. Zheng, P. et al. Plasma metabonomics as a novel diagnostic approach for
major depressive disorder. J. Proteome Res. 11, 1741–1748 (2012).

6. Kageyama, Y. et al. Plasma nervonic acid is a potential biomarker for major
depressive disorder: a pilot study. Int. J. Neuropsychopharmacol. 21, 207–215
(2018).

7. Friedman, J., Hastie, T., & Tibshirani, R. The Elements of Statistical Learning. Vol. 1
(Springer series in statistics, New York, 2001).

8. Tibshirani, R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser.
B Methodol. 58, 267–288 (1996).

9. Steuer, R. Review: on the analysis and interpretation of correlations in meta-
bolomic data. Brief. Bioinform. 7, 151–158 (2006).

10. Ke, C. et al. Plasma metabolic profiles in women are menopause dependent.
PloS ONE 10, e0141743 (2015).

11. Lind, P. M. et al. Serum concentrations of phthalate metabolites are related to
abdominal fat distribution two years later in elderly women. Environ. Health
11, 21 (2012).

12. de Wit, L. M., van Straten, A., van Herten, M., Penninx, B. W. & Cuijpers, P.
Depression and body mass index, a u-shaped association. BMC Public Health 9,
14 (2009).

13. Han, H. & Jiang, X. Overcome support vector machine diagnosis overfitting.
Cancer Inform. 13(Suppl 1), 145–158 (2014).

14. Han, H. & Li, X.-L. Multi-resolution independent component analysis for high-
performance tumor classification and biomarker discovery. BMC Bioinform. 12,
S7 (2011).

15. Yamada, M., Jitkrittum, W., Sigal, L., Xing, E. P. & Sugiyama, M. High-dimensional
feature selection by feature-wise kernelized Lasso. Neural Comput. 26, 185–207
(2014).

16. Gretton, A., Bousquet, O., Smola, A. & Schölkopf, B. Measuring statistical
dependence with Hilbert-Schmidt norms. International Conference on Algo-
rithmic Learning Theory. (Springer, 2005).

17. Raudys, S. J. & Jain, A. K. Small sample-size effects in statistical pattern-
recognition—recommendations for practitioners. IEEE Trans. Pattern Anal.
Mach. Intell. 13, 252–264 (1991).

18. Kuriyama, S. et al. The Tohoku Medical Megabank Project: design and mission.
J. Epidemiol. 26, 493–511 (2016).

19. Tadaka, S. et al. jMorp: Japanese multi omics reference panel. Nucleic Acids Res.
46(D1), D551–D557 (2017).

20. Radloff, L. The CES-D scale: a self-report depression scale for research in the
general population. Appl. Psychol. Meas. 1, 385–401 (1977).

21. Nakaya, N. et al. The association between medical treatment of physical dis-
eases and psychological distress after the Great East Japan Earthquake: the
Shichigahama Health Promotion Project. Disaster Med. Public 9, 374–381
(2015).

22. Tsuchiya, N. et al. Impact of social capital on psychological distress and
interaction with house destruction and displacement after the Great East
Japan Earthquake of 2011. Psychiatry Clin. Neurosci. 71, 52–60 (2017).

23. Kario, K., Shimada, K. & Takaku, F. Management of cardiovascular risk in disaster:
Jichi Medical School (JMS) Proposal 2004. Jpn. Med. Assoc. J. 48, 363 (2005).

24. Corella, D. et al. Environmental factors modulate the effect of the APOE
genetic polymorphism on plasma lipid concentrations: ecogenetic studies in a
Mediterranean Spanish population. Metabolism 50, 936–944 (2001).

25. Igna, C. V., Julkunen, J., Vanhanen, H., Keskivaara, P. & Verkasalo, M. Depressive
symptoms and serum lipid fractions in middle-aged men: physiologic and
health behavior links. Psychosom. Med. 70, 960–966 (2008).

26. Kilkkinen, A. et al. Vitamin D status and the risk of cardiovascular disease death.
Am. J. Epidemiol. 170, 1032–1039 (2009).

27. Gelaye, B. et al. Metabolomics signatures associated with an oral glucose
challenge in pregnant women. Diabetes Metab. 45, 39–46 (2019).

28. Lee, S. et al. Effects of marital transitions on changes in dietary and other
health behaviours in US women. Int. J. Epidemiol. 34, 69–78 (2004).

29. Eng, P. M., Kawachi, I., Fitzmaurice, G. & Rimm, E. B. Effects of marital transitions
on changes in dietary and other health behaviours in US male health pro-
fessionals. J. Epidemiol. Community Health 59, 56–62 (2005).

30. Kurimoto, A. et al. Reliability and validity of the Japanese version of the
abbreviated Lubben Social Network Scale. Nihon Ronen Igakkai Zasshi 48,
149–157 (2011).

31. Fan, J. Q. & Lv, J. C. Sure independence screening for ultrahigh dimensional
feature space. J. R. Stat. Soc. B 70, 849–883. (2008).

32. Saldana, D. F. & Feng, Y. SIS: an R Package for sure independence screening in
ultrahigh-dimensional statistical models. J. Stat. Softw. 83, 1–25 (2018).

33. Peng, H., Long, F. & Ding, C. Feature selection based on mutual information:
criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans.
Pattern Anal. Mach. Intell. 27, 1226–1238 (2005).

34. Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).
35. Chung, D. & Keles, S. Sparse partial least squares classification for high

dimensional data. Stat. Appl. Genet. Mol. Biol. 9, 17 (2010).

Takahashi et al. Translational Psychiatry          (2020) 10:157 Page 11 of 12

http://www.megabank.tohoku.ac.jp/english/a191201/
http://www.megabank.tohoku.ac.jp/english/a191201/
http://www.makotoyamada-ml.com/hsiclasso.html
http://www.makotoyamada-ml.com/hsiclasso.html
https://doi.org/10.1038/s41398-020-0831-9
https://doi.org/10.1038/s41398-020-0831-9


36. Ripley B. D. Pattern Recognition and Neural Networks. (Cambridge University
Press, 2007).

37. Yu, H., Samuels, D. C., Zhao, Y. Y. & Guo, Y. Architectures and accuracy of
artificial neural network for disease classification from omics data. BMC
Genomics 20, 167 (2019).

38. Trainor, P. J., DeFilippis, A. P. & Rai, S. N. Evaluation of classifier performance for
multiclass phenotype discrimination in untargeted metabolomics. Metabolites
7, 30 (2017).

39. Zheng, H. et al. Predictive diagnosis of major depression using NMR-based
metabolomics and least-squares support vector machine. Clin. Chim. Acta 464,
223–227 (2017).

40. Jang, C. et al. A branched-chain amino acid metabolite drives vascular fatty
acid transport and causes insulin resistance. Nat. Med. 22, 421 (2016).

41. Agudelo, L. Z. et al. Skeletal muscle PGC-1alpha1 modulates kynurenine
metabolism and mediates resilience to stress-induced depression. Cell 159,
33–45 (2014).

42. Cassol, E. et al. Altered monoamine and acylcarnitine metabolites in HIV-
positive and HIV-negative subjects with depression. J. Acquir. Immune Defic.
Syndr. 69, 18–28 (2015).

43. Yudkoff, M. Interactions in the metabolism of glutamate and the
branched-chain amino acids and ketoacids in the CNS. Neurochem. Res.
42, 10–18 (2017).

44. Lenz, E. et al. Metabonomics, dietary influences and cultural differences: a 1H
NMR-based study of urine samples obtained from healthy British and Swedish
subjects. J. Pharm. Biomed. Anal. 36, 841–849 (2004).

45. Chen, P. Y., Wang, S. C., Poland, R. E. & Lin, K. M. Biological variations in
depression and anxiety between East and West. CNS Neurosci. Ther. 15,
283–294 (2009).

46. Itoh, M. et al. A new short version of the Posttraumatic Diagnostic Scale:
validity among Japanese adults with and without PTSD. Eur. J. Psycho-
traumatol. 8, 1364119 (2017).

47. Foa, E. B., Cashman, L., Jaycox, L. & Perry, K. The validation of a self-report
measure of posttraumatic stress disorder: the posttraumatic diagnostic scale.
Psychol. Assess. 9, 445–451 (1997).

Takahashi et al. Translational Psychiatry          (2020) 10:157 Page 12 of 12


	Improved metabolomic data-based prediction of depressive symptoms using nonlinear machine learning with feature selection
	Introduction
	Materials and methods
	Study population
	Outcome measures
	Nuclear magnetic resonance (NMR) measurements and mass spectrometry (MS) measurements
	Covariates
	Cross-validation
	HSIC Lasso-based prediction model
	Additional prediction models for comparison to the HSIC Lasso-based prediction model

	Results
	Demographic information
	Predictive powers
	Selected metabolites
	Dependencies among CES-D and features

	Discussion
	Acknowledgements




