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+e gray contrast between the liver and other soft tissues is low, and the boundary is not obvious. As a result, it is still a challenging
task to accurately segment the liver fromCTimages. In recent years, methods of machine learning have become a research hotspot
in the field of medical image segmentation because they can effectively use the “gold standard” personalized features of the liver
from different data. However, machine learning usually requires a large number of data samples to train the model and improve
the accuracy of medical image segmentation.+is paper proposed a method for liver segmentation based on the Gabor dictionary
of sparse image blocks with prior boundaries. +is method reduced the number of samples by selecting the test sample set within
the initial boundary area of the liver. +e Gabor feature was extracted and the query dictionary was created, and the sparse
coefficient was calculated to obtain the boundary information of the liver. By optimizing the reconstruction error and filling holes,
a smooth liver boundary was obtained. +e proposed method was tested on the MICCAI 2007 dataset and ISBI2017 dataset, and
five measures were used to evaluate the results. +e proposed method was compared with methods for liver segmentation
proposed in recent years. +e experimental results show that this method can improve the accuracy of liver segmentation and
effectively repair the discontinuity and local overlap of segmentation results.

1. Introduction

Liver cancer is one of the most common cancers in the
world and one of the most common causes of cancer
death [1, 2]. Medical imaging is considered to be an
important technology to help doctors assess diseases,
optimize prevention, and control measures. In recent
years, computed tomography (CT) has become widely
used in clinical medical diagnosis and treatment due to its
high spatial resolution and fast imaging speed [3–5]. At
present, many studies focus on how to improve the ac-
curacy and efficiency of liver segmentation, but there are
still many problems to be solved, such as the complex

shape of the liver, low contrast between the liver and
adjacent organs, and no obvious boundary.

Against such a backdrop, the method based on machine
learning has developed rapidly and become a research
hotspot in recent years. Researchers have proposed a large
number of liver segmentation methods, such as region
growth, graph cut algorithm, level set, active contour,
statistical shape model, and clustering [6–11]. +e method
based on image segmentation is simple to operate, but the
segmentation effect is unstable and easily affected by the
contrast between the liver and surrounding organs. +e
segmentation method based on the model has stable
performance but requires multiple annotation data and
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high requirements for registration. +e clustering method
does not need image annotation and is an unsupervised
learning method. Deep learning is a branch of machine
learning algorithms. It can learn rules from a large number
of labeled datasets for liver training, determine the pa-
rameters of the segmentation model, automatically extract
deep features of the liver, and segment the liver, thereby
reducing the impact of human factors on the segmentation
results [12, 13]. However, every deep learning model built is
for specific data, resulting in poor versatility. Both of these
methods require a large amount of data, which reduces the
efficiency of segmentation. How to reach a balance between
the amount of sample data and the segmentation accuracy
has become a major difficulty in medical image segmenta-
tion [14]. To improve the efficiency of machine learning-
based algorithms, technologies such as the K-SVD (Singular
Value Decomposition) algorithm, sparse code, and inquiry
dictionaries have been widely applied. Zhang et al. [15]
proposed a sparse optimization model based on prior
knowledge that segmented the liver surface into many
subregions and used the K-SVD algorithm to establish the
shape information dictionary of the liver, thereby con-
straining the deformation model to approach the liver
boundary with sparse it. Liao et al. [16] replaced voxel in-
formation with features of local image patches and con-
structed a sparse dictionary model for liver segmentation,
which improved the segmentation accuracy of the low-
contrast regions to a certain extent. Wang et al. [17] used the
best sparse combination of shapes in the sample database to
represent the liver shape without any assumptions regarding
its parameter distribution. +is method can obtain the prior
shape of the liver accurately and rapidly from a large number
of samples. Shi et al. [18] proposed a prior shape model
based on the low-rank sparse decomposition, which reduced
the limitations on the application of the PCA dimension
reduction for existing statistical shape models. Xu et al. [19]
built an inquiry dictionary for the target region in the
training image with this method, divided the target image
into image patches of the same size to construct a test set,
and then defined the target boundary according to the
matching degree of the test set and the inquiry dictionary.
Wang et al. [20], by using the sparse representation of high-
dimensional medical structures based on tensors, not only
successfully retained the spatial structure inherent in high-
dimensional medical data but also captured the time in-
formation in multiphase medical images.

Although great progress has been made in algorithms
for liver segmentation based on sparse code, previous re-
search has shown [11] that the similarity of judgments over
small image patches would seriously affect the accuracy of
segmentation, and most existing algorithms, using a
grayscale dictionary to compare the similarity of images,
will have lower matching accuracy. In addition, the seg-
mentation results of existing methods present different
degrees of voids and overlaps, which in turn affect the
segmentation accuracy.

+ere are two novelties in this method: (1) by extracting
Gabor features, the boundary information of the liver can be
better extracted, and a sparse coding method is adopted to
reduce the number of training samples and remove re-
dundant information; (2) the segmentation results were
effectively repaired by cavity filling, and the redundant
boundary points were removed, so as to obtain a smooth
liver boundary.

2. Methods

2.1. 2e Overall Process of the Proposed Algorithm. +e flow
chart of the proposed approach is illustrated in Figure 1.
First, the abdominal image with the “gold standard” was
registered with the abdominal image to be segmented
through the registration technology, and Gabor feature
extraction was performed on the registered image, and the
“gold standard” after the registration is defined as the initial
boundary of the liver. Second, select N image blocks of the
same size as the training set on the liver boundary of the
Gabor feature image with the “gold standard” and then use
the K-SVD algorithm to train the query dictionary and the
corresponding sparse coding. +ird, select all voxel points in
the ten neighborhoods with each point on the initial
boundary of the liver as the center, and select the image
blocks with the same size as the training set as the boundary
point with each voxel point in the neighborhood as the
center test set. Fourth, use the trained query dictionary and
the test set (Orthogonal Matching Pursuit, OMP) algorithm
to calculate the sparse coding corresponding to the test set.
Finally, an operation for hole filling is performed on the
obtained liver boundary to obtain the final segmentation
result.

2.2. Liver Region Registration. To register the gold standard
image and image to be segmented, this paper, after re-
ferring to previous laboratory studies [21], selects the
corresponding marked points in the training image and
the target image, determines the deformation field
according to the matching relationship between these
points, and applies the deformation field to the gold
standard image. In this way, the approximate position and
contour of the liver in the target image are obtained. +e
registration flow chart is shown in Figure 2.

If the entire CT image is used to register the training
image and the target image, the liver region will be affected
by other similar density soft tissues, resulting in lower
registration accuracy [22]. To solve this problem, this paper
manually selected five sets of feature point pairs in the
training image and the target image, establishes the defor-
mation relationship between the feature points, uses the
B-spline interpolation method to calculate the overall de-
formation relation Vo ship of the liver, and thereby con-
structs the deformation field between the volume data. +e
method of calculating the initial boundary of the liver in the
test image is as follows.
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+e training image is defined as Vo. Its corresponding
gold standard liver image is Vs, and the target image is Vu− s.
In this light, the registration calculation process of and Vu− s

is as follows:

sopt � argmin Sim Vu− s, Vo ∘ si, s( 􏼁 +‖s‖
2

􏼐 􏼑. (1)

In this process, sopt is the optimal deformation field, si is
the original deformation field obtained via the registration of
the marked points, Sim(∗ ) refers to similarity measure,
‖∗ ‖ refers to the regularized constraint of the deformation
field, and “ ∘ ” indicates the application of the deformation
field to the abdominal volume data. +e optimal deforma-
tion field sopt is applied to the gold standard image Is to
obtain the approximate location and contour of the liver in
the target image Ii− s. +e calculation process is as follows:

Ii− s � Is ∘ sopt. (2)

2.3. Training Dictionary. So far, researchers have proposed
various different sparse dictionaries, i.e., the wavelet
dictionary, the local cosine dictionary, the Anisotropic
Refinement Gaussian (AR-Gaussian) multicomponent
dictionary, etc. [23–26]. Among all these dictionaries, the
separability and isotropy of wavelet atoms seriously affect
the ability of the dictionary to describe the boundary
structure of images. +e local cosine dictionary, though it
can effectively match the texture structure of images,
cannot effectively demonstrate the edge contour structure
of images. If the Gaussian function and second derivative
are used as the atom generating function, the edge
structure of images can be matched effectively, but the
dictionary contains a huge number of atoms, which in-
creases the complexity of the sparse decomposition. For
specific image modes, effective image representation
methods must be selected. Similarly, as for liver CT im-
ages, Gabor feature images are a good choice for building
dictionaries. +erefore, this paper established a Gabor
dictionary of images (for information on the extraction of
the Gabor features of images, please refer to previous
research results [11, 27]). Ten neighborhood image
patches are selected as the training set of the Gabor feature
dictionary from the liver boundary in an abdominal
Gabor image with the “gold standard” liver (as shown in
Figure 3).

In this paper, we adopted the K-SVD algorithm [28] to
train the Gabor feature dictionary on the liver boundary.
+e algorithm is a circulatory learning process. Given a
training set Ytraining and by defining an overcomplete

dictionary D � d
→

m1, d
→

m2, . . . , d
→

mt􏼚 􏼛 ∈ Rm×t in which m is

the number of rows of vector d
→

m1, t is the number of atoms
of the dictionary, m< t, where Xtraining is the sparse coef-
ficient of the dictionary, and T0 is the sparseness; the signal
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can be then represented by a sparse linear dictionary atom,
which can be shown as follows:

〈D, Xtraining〉 � min
D,Xtraining

Ytraining − DXtraining

�����

�����
2

F
􏼚 􏼛s.t. ∀i, xi

����
����≤T0.

(3)

In this process, D has been normalized via the following
formula:

D � d
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m1, . . . , d
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mt􏼚 􏼛
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d
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(4)

Such an optimization problem can be solved in the
following two steps.

2.3.1. Sparse Coding. At this stage, we assume that dictio-
naryD is fixed and take the optimization problem in formula
(3) as a process of finding optimal sparse coefficients Xtraining
in matrix X. +en, the above formula can be modified as
follows:

Ytraining − DXtraining

�����

�����
2

F
� 􏽘

N

i�1
yi − Dxi

����
����
2
2. (5)

+erefore, the optimization problem can be modified as
follows:

〈Xtraining〉 � min
D,Xtraining

􏽘

N

i�1
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����
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⎩
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⎭ s.t. xi
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(6)

In the formula, i � 1, 2, . . . , N. xi and yi are the coor-
dinates of the graph. If T0 is small enough, the problem can
be solved with the OMP [29] algorithm.

2.3.2. Dictionary Update. Assuming that coefficient Xtraining
and dictionary D are both fixed, the kth column d

→
k of the

dictionary shall be updated while all the columns in the
sparse matrix X are multiplied by the kth row in d

→
k that

shall be recorded as xk
T. In this light, target function (3) can

be rewritten as follows:

〈D〉 � yi − Dxi
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We decompose DXtraining into the sum of matrix K (rank:
1) and assume that K − 1 is fixed while the remaining one
column is the kth column to be updated, representing the error
rate relative to the original training set after removing atoms in
the Ek column. +en, we only keep nonzero elements for Ek

and xk
T and update d

→
k with the SVD algorithm.

2.3.3. Image Reconstruction. After obtaining the inquiry
dictionary D and corresponding sparse code Xtraining with
the training samples, we select ten neighborhood points in
the x, y, and z directions at the vertex of the initial liver
boundary of the image to be segmented, which results in a
total of 30 neighborhood points, and use these 30 neigh-
borhood points as the center to select 30 test sample sets with

the same size as the training sample set to form the test
sample set. +e sparse code corresponding to the test
samples is calculated by using the trained inquiry dictionary.
We calculate the reconstruction error of each group of
samples through the test samples, the inquiry dictionary, and
sparse coding. +e formula is as follows:

Lpatch � min Y
i
testing − DgaborXgabor􏼐 􏼑, (i � 1, 2, . . . , 1000).

(8)

+e image patch with the smallest reconstruction error is
selected as the liver boundary patch to calculate the center of
each boundary patch and it is used as the boundary point of
the liver.

Figure 3: Schematic diagram of the training set selection. In the figure, the left is the grayscale image with the “gold standard,” the middle is
the schematic diagram of selecting image patches in corresponding Gabor images, and the right is a locally amplified graph.
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2.4. Void Filling. +e algorithm proposed in this paper uses
image patches as the dictionary sample set, and the liver
boundary obtained may display discontinuity or even
boundary overlaps. In this paper, the surface convex hull
algorithm [29] and the void-filling algorithm [30] are in-
troduced to realize the interpolation and completion of the
discontinuous region on the liver boundary and thereby
obtain a smooth and continuous liver surface. +e detailed
calculation process is as follows:

(1) Input the liver segmentation result, and use the Scan-
conversion algorithm to perform octree decompo-
sition, decomposing the segmentation result into a
more refined subspace.

(2) Suspend the octree decomposition when the inter-
sections between all the decomposition lines and the
original model are all located on the leaves of the
octree.

(3) Mark the boundary with intersections as an
“intersecting edge.”

(4) Select a vertex from the original model and mark it
as “0.” Extend it along the boundary of the octree,
and when it passes the “intersecting edge” once,
the label will change to “1.” +e rest may be de-
duced by analogy. Every time the intersecting
boundary is passed, the label would change once,
which would continue until the entire octree
traversal ends.

(5) Reconstruct the vertexes that only contain “0”s and
“1”s accurately with the Dual Contouring algorithm
to obtain the model after void filling.

3. Experiments

3.1.Datasets. +is article tested our method on the MICCAI
2007 (https://www.sliver07.org/index.php) dataset and the
ISBI2017 dataset and validated it on image data from the
Affiliated Hospital of Hebei University. +e MICCAI 2007
train dataset contains 20 contrast-enhanced CT volumes
with standard segmentation, all of which have a pixel spacing
of 0.55 to 0.8mm, and a slice spacing of 1 to 3mm, without
any overlap between the slices. +e ISBI2017 dataset con-
tained 131 and 70 contrast-enhanced three-dimensional
abdominal CT scans, which were used for training and
testing, respectively. +e dataset was obtained from six
different clinical sites through different scanners and pro-
tocols, with a large difference in planar resolution from
0.55mm to 1.0mm and slice spacing from 0.45mm to
6.0mm. +e dataset of the hospital contains 100 contrast-
enhanced CT volumes. +e pixel spacing and slice thickness
vary from 0.64 to 0.65mm and 5.0mm, respectively, with the
in-plane resolution of pixels in all cases.

To validate the proposed method, experiments were
conducted on a Windows 10 personal computer (PC)
with an Intel i7-7700K CPU and Nvidia GPU RTX3090.
+e proposed algorithm was implemented in Python. +e
insight segmentation and registration toolkit ITK
(https://www.itk.org/) and the visualization toolkit VTK

(https://www.vtk.org/) were used for basic 3D image
processing and 3D visualization of segmentation results,
respectively.

3.2. Evaluation Measures. To further verify the segmen-
tation accuracy of the algorithm, the experiment applies
five evaluation criteria provided by MICCAI 2007 for
evaluation, including the following: the Volumetric
Overlap Error (VOE), the Relative Volume Difference
(RVD), the Average Symmetric Surface Distance (ASSD),
the Root Mean Square Symmetric Surface Distance
(RMSSSD), and the Maximum Symmetric Surface Dis-
tance (MSSD).+e smaller the values of the five evaluation
criteria are, the better the performance is. +e region the
of segmentation result is defined as A while the “gold
standard” region is B. S(∗ ) is the surface voxel of data
“ ∗ ” and refers to any point on the surface voxel. D(∗ )

refers to the Euclidean distance. +e calculation processes
of the five kinds of accuracy are as follows (for reference).

(1) Volume overlap error

VOE � 100 · 1 −
(|A∩B|)

(|A∪B|)
􏼠 􏼡. (9)

(2) Relative volume error

RVD � 100 ·
(|A| − |B|)

|B|
􏼠 􏼡. (10)

(3) Average symmetrical surface distance

ASSD �
􏽐SA∈S(A)D SA, S(B)( 􏼁 + 􏽐SB∈S(B)D SB, S(A)( 􏼁􏼐 􏼑

(|S(A)| +|S(B)|)
,

(11)

where D(v, S(A)) � minSA∈S(A)‖v − SA‖, and ‖∗ ‖ is
the Euclidean distance.

(4) Root mean square symmetric surface distance

RMSSSD �

���������������������������������������
􏽐SA∈S(A)D

2
SA, S(B)( 􏼁 + 􏽐SB∈S(B)D

2
SB, S(A)( 􏼁􏼐 􏼑

􏽱

��������������
(|S(A)| +|S(B)|)

􏽰 .

(12)

(5) Maximum symmetrical surface distance

MSSD � max max
SA∈S(A)

D
2

SA, S(B)( 􏼁, max
SB∈S(B)

D
2

SB, S(A)( 􏼁􏼨 􏼩.

(13)

4. Results

Before selecting the test set, it is necessary to register the gold
standard image with the target image and then use the
registered gold standard image as the initial boundary of the
liver to be segmented. +erefore, the accuracy of the reg-
istration result directly affects the accuracy of the initial
boundary and the test set.+is paper selected two sets of gold
standard images for registration used the initial boundary
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after registration and the gold standard to calculate the
spatial distance error and thereby used this to evaluate the
registration accuracy (as shown in Figure 4). Figure 4(a) is
the training image, Figure 4(b) is the gold standard image of
the liver relative to Figures 4(a) and 4(e) is the target image.
Points marked with (1)∼(5) in Figures 4(a) and 4(e) are
selected marked points, which are used to register
Figures 4(a) to 4(e). Registered Figure 4(a) is deformed into
Figure 4(c) while the gold standard Figure 4(b) is deformed
into Figure 4(d) under the impact of the deformation field.
Figure 4(f) is the posture of the registered gold standard
image of the liver in the target image, proving that the
registration method constructed in this paper can register
the gold standard image and the target image accurately and
obtain a relatively precise initial liver boundary, which also
provides possible conditions for the selection of the ap-
propriate training set.

+is paper only selects the test set in the neighborhood of
the initial boundary of the liver, which can effectively im-
prove the segmentation efficiency. To test the accuracy of the
region selection, 12 sets of CT data are used as the source
images to be registered, two pairs of CT data are randomly
selected for registration, and the deformation field after
registration is applied to the gold standard image (as shown
in Figure 5). Figures 5(a)∼5(f ) show the visualization effects
of the six sets of registration results in the gold standard
image. +e red region is the liver region in the target image,
and the green region is the deformed gold standard liver
region (the initial contour of the liver to be segmented).
According to the figure, the liver boundary error after
registration is very small (less than 10 voxels on average),
which proves the feasibility of the algorithm proposed in this
paper.

Since Gabor features are symmetrical features, this paper
chose an angle every 20° within the range of 0 to 180° to form
972 Gabor filters with 243 angles and 4 scales. +e Gabor
filter bank convolutes with each image patch in airspace, and
each image patch can obtain 972 filter outputs—images with
the size of the image patch (as shown in Figure 6). If it is used
as a feature vector directly, the dimensionality of the feature
space will be very large. In this light, this paper selected the
grayscale average value to form a 24×1 column vector as the
Gabor feature of the image patch.

Figure 7 shows how the image patch selection results of
the dictionary are displayed in the slice. Figures 7 (A1)∼(A3),
(B1)∼(B3), and (C1)∼(C3) display the effects of the con-
structed dictionary image patches on the cross section,
sagittal plane, and coronal plane, respectively. As seen from
the figure, this paper selected the image patch on the liver
boundary as the training set to ensure that the training set
contains information about the liver boundary and thereby
make the inquiry dictionary able to effectively express the
features of the liver boundary.

Figure 8 shows the liver segmentation result obtained
with sparse code and the training dictionary. Figures 8
(A1)∼(A3) and (B1)∼(B3) are the cross-sectional, sagittal,
and coronal planes of the liver segmentation results of the
two sets of CT data, respectively. Figures 8 (a1)∼(a3) and
(b1)∼(b3) are the locally amplified views of the images in the

green boxes of Figures 8 (A1)∼(A3) and (B1)∼(B3), re-
spectively. It can be seen from the figure that the liver
boundary obtained through sparse coding and dictionary
querying is an image voxel point set with common features.
If the liver boundary in the target image is blurred, a large
number of image patches in the selected test set will match
the inquiry dictionary, generating a relatively large amount
of redundant information. However, when the image
patches in the test set fail to match the grayscale information
and Gabor feature information in the inquiry dictionary, the
application of sparse coding and dictionary querying only
would lead to voids on the liver boundary. After partially
amplifying Figures 8 (a1), (a2), and (b1), it can be observed
that the voxel points obtained on the liver boundary have
generated a lot of overlapping redundant information, which
will generate multiple liver boundaries and lead to inac-
curate segmentation. According to Figures 8 (a3), (b2), and
(b3), the liver boundary obtained through sparse coding and
dictionary querying has produced discontinuous voids,
which could lead to discontinuous segmentation results. To
tackle this problem, this paper constructed a void-filling
method to compensate for the discontinuity of the seg-
mentation results. +e specific results are shown in Figure 9.

Figure 9 shows the segmentation results of a set of 3D
liver CT data. As seen from Figure 9 (a1), since the local
boundary of the liver is not clear, it is difficult to find image
patches that could be well matched with the inquiry dic-
tionary in the test set, which has generated a relatively large
number of overlapping regions in the segmentation result
obtained through dictionary querying and sparse coding. In
contrast, as for the segmentation after void filling, the liver
boundary becomes smooth and free of voids (as shown in
Figure 9 (a2)). In Figures 9 (b2) and (c2), the grayscale
contrast between the liver boundary and its adjacent tissue is
quite small, generating redundant boundary points in var-
ious regions of the segmentation result after void filling,
which has reduced the segmentation accuracy. On the
contrary, redundant boundary points have been eliminated
from the results after void filling, obtaining a smooth liver
boundary and fully proving the feasibility of the algorithm
proposed in this paper.

Figure 9 shows the segmentation results of a set of 3D
liver CT data. +e first line is the segmentation result ob-
tained by dictionary query and sparse coding method; the
second line is the segmentation result after hole filling; the
third line is the comparison chart of the segmentation result
of this method and the gold standard. +e fourth row to the
sixth row are the enlarged images corresponding to the blue
boxes in the first row to the third row, respectively. It can be
seen from the fourth row of Figure 9 that because the local
boundary of the liver is not clear, it is difficult to find an
image block that matches the query dictionary well in the
test set. +is makes it appear that there are more blank and
overlapping areas when using only query dictionaries and
sparse coding methods. In contrast, for the segmentation
result after hole filling, the liver boundary becomes smooth
and there are no holes (as shown in the fifth row in Figure 9).
In the first and second images in the fourth row in Figure 9,
the grayscale contrast between the liver boundary and its
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(a) (b)

(c) (d)

(e) (f )

Figure 4: Registration process and results: (a) the training image, (b) the gold standard image of the liver relative to (a), (c) the deformed
version of registered image (a), (d) the gold standard image of liver relative to Figure (c), (e) the target image, where the points marked with
(1)∼(5) in (a) and (e) are the selected marked points, and (f) the posture of the registered gold standard image of the liver in the target image.

(a) (b) (c)

(d) (e) (f )

Figure 5: Examples of registration results: (a)∼(f ) how six sets of registration results are displayed in binary images.
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(a) (b)

Figure 6: Gabor dictionary.

(a)

(b)

(c)

Figure 7: Images of the image patch selection results of the dictionary in the slice. (a)∼(c) are 3 sets of liver data.+e first column to the third
column is the display effects of the training set on the cross section, sagittal plane, and coronal plane, respectively.
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adjacent tissues is very small, so that the segmentation re-
sults that have not undergone hole filling processing have
redundant boundary points in multiple regions, which af-
fects the accuracy of segmentation, and the result of hole
filling effectively removes the redundant boundary points
and obtains a smooth liver boundary, which fully proves the
effectiveness of the algorithm in this paper.

Figure 10 shows five sets of randomly selected CT data
and their liver segmentation results. +e first to third col-
umns in Figure 10 show the cross-sections, sagittal planes,
and coronal planes of the segmentation results of original CT
images. +e red line in the figure represents the gold
standard image of the liver manually segmented by experts,
while the green line represents the liver segmentation result
obtained with the algorithm proposed in this paper.
According to the result shown in Figure 10, the boundary of
the segmentation result is very consistent with the real

boundary of the liver. +e blurred liver boundary is also
soundly segmented, which proves the efficiency of the Gabor
dictionary in the algorithm and demonstrates the accuracy
of selecting the test set on the initial boundary of the liver
after registration. As can be seen from the third column in
Figure 10 that the algorithm proposed in this paper can
accurately segment the sharp corners and depression regions
of the liver, which effectively proves that the inquiry dic-
tionary established by this method can accurately represent
the boundary features of the liver, and it can also soundly
match the boundary features of sharp corners and depressed
regions. In addition, the void-filling method has effectively
repaired the void and redundant information of the seg-
mentation result, obtained a smooth liver boundary, and
improved the segmentation accuracy.

Figure 11 is a three-dimensional display comparison
diagram of the liver segmentation results of five groups of

(a)

(b)

Figure 8: Results of the liver boundary point set obtained by the sparse dictionary method. (A1)∼(A3) and (B1)∼(B3) offer two sets of
segmentation results, respectively. Columns 1–3 show the cross-sectional, sagittal, and coronal planes of the same data, respectively.
(a1)∼(a3) are the locally amplified views corresponding to the green boxes in (A1)∼(A3), respectively.
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randomly selected CT data. +e second and third rows of
Figure 11, respectively, show the liver segmentation results
of the same CT before and after hole filling. +e first and last
rows of the figure show the partially enlarged images cor-
responding to the blue boxes in the second and third rows.
As can be seen from the second row of the figure, the
segmentation result before filling the holes has holes and the
surface is not smooth. However, the segmentation results of
the third row of Figure 11 after filling the holes are very
smooth, and the grid information is continuous.

For the MICCAI 2007 dataset, Table 1 presents the
results of the evaluation for segmentation accuracy of the
proposed algorithm using five randomly selected CT data
sets. +e mean values of VOE, RVD, ASSD, RMSSSD, and
MSSD after liver segmentation of the five groups of CT
data by this algorithm were 4.7 ± 0.4%, 1.6 ± 0.7%,
0.8 ± 0.3mm, 1.3 ± 0.5 mm, and 12.7 ± 5.1 mm, respec-
tively. As can be seen from the values of ASSD and
RMSSSD in the table, the construction of the liver surface
void-filling algorithm in this algorithm makes the

Figure 9: Segmentation results. In the figure, the three columns are the coronal plane, cross section, and sagittal plane of liver segmentation
results, respectively. +e last three rows are partially enlarged views corresponding to the first three rows of images.
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segmentation results have a high smoothness, which can
basically make the surface of the segmentation results
consistent with the surface of the gold standard liver. +e
total runtime was 25.43 s on average.

Table 2 lists the comparison results of the segmentation
error between the method proposed in this paper and the six
methods in the MICCAI2007. +e methods of [9, 11, 33] are
semiautomatic segmentation algorithms. +e methods ap-
plied in [34], reference [31, 32] are automatic segmentation
algorithms. Compared with the six algorithms in the ref-
erences, through the dictionary established that can accu-
rately represent the boundary features of the liver, the void-
filling method has effectively obtained a smooth liver
boundary and improved the segmentation accuracy. +e
VOE is reduced by 1.8%, 0.1%, 3.43%, 0.55%, 0.6%, and
3.17%, respectively; the RMSSSD is reduced by 0.9mm,
0.1mm, 1.08mm, 0.93mm, 0.1mm, and 1.2mm, respec-
tively; and the MSSD is reduced by 10.1mm, 3.2mm,
8.6mm, 12.1mm, 6.7mm, and 10.86mm, respectively.
Compared with [9, 11] and [31], the RVD decreased by 0.2%,
1.2%, and 0.1%, respectively. Compared with [9, 33, 34] and

[32], the ASSD is reduced by 0.3mm, 0.13mm, 0.51mm, and
0.49mm, respectively, which further effectively demon-
strates that the method in this paper can better segment the
liver region.

Table 3 presents the results of the evaluation for seg-
mentation accuracy of the proposed algorithm using five
randomly selected CT data types on ISBI 2017 datasets.
Table 4 lists the comparison results of the segmentation
errors of the method and [1] in the ISBI 2017. In the table,
“—” indicates that the relevant value has not been calculated
in the references. Compared with [1], the VOE is reduced by
0.14% and the ASSD is reduced by 0.67mm. Its performance
is slightly poorer than that of [1] in terms of the RVD and
MSSD.

+e hospital data includes 100 contrast-enhanced CT
volumes. Table 5 shows five groups of data randomly se-
lected from the 100 CTs to verify the segmentation accuracy
of the algorithm proposed in this paper. +e quantitative
results for these five data were 5.23± 0.6%, 2.3± 0.8%,
1.18± 0.4mm, 2.25± 0.68mm, and 17.2± 6.8mm,
respectively.

Figure 10: Segmentation results of five sets of liver data.
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Figure 11: +ree-dimensional display comparison diagram of the liver segmentation results.

Table 1: Quantitative evaluation of segmentation results on MICCAI 2007 datasets.

Data number VOE (%) RVD (%) ASSD (mm) RMSSSD (mm) MSSD (mm)
1 4.54 0.7 0.65 0.71 9.16
2 4.9 2.58 1.03 1.89 16.91
3 4.16 1.24 0.42 0.97 6.33
4 4.78 1.67 0.82 1.4 12.8
5 5.28 2.02 1.26 1.71 18.42
Average 4.7± 0.4 1.6± 0.7 0.8± 0.3 1.3± 0.5 12.7± 5.1

Table 2: Comparative results with previous methods on MICCAI 2007 datasets.

Method VOE (%) RVD (%) ASSD (mm) RMSSSD (mm) MSSD (mm)
Proposed method 4.7± 0.4 1.6± 0.7 0.8± 0.3 1.3± 0.5 12.7± 5.1
Ref. [11] 4.8± 0.7 1.8± 0.4 0.8 ± 0.1 1.4± 0.4 15.9± 4.3
Ref. [9] 6.5± 0.6 2.8± 0.9 1.1± 0.3 2.2± 0.8 22.8± 7.6
Ref. [31] 8.13± 2.08 0.42± 3.64 1.31± 0.44 2.38± 0.68 21.35± 3.27
Ref. [32] 5.3± 2.1 1.7± 1.5 0.8± 0.5 1.4± 0.7 19.4± 5.3
Ref. [32] 7.87 1.31 1.29 2.50 23.56
+e bold values indicate that reference [11] is slightly better than our proposed method in RVD values.

Table 3: Quantitative evaluation of segmentation results on hospital datasets.

Data number VOE (%) RVD (%) ASSD (mm) RMSSSD (mm) MSSD (mm)
1 4.05 1.65 0.64 1.66 6.24
2 5.65 3.2 1.32 3.19 20.64
3 5.16 2.08 1.14 2.21 15.84
4 4.61 0.94 0.96 1.14 10.16
5 6.07 2.64 1.46 2.8 26.16
Average 5.1± 0.8 2.1± 0.9 1.1± 0.3 2.2± 0.8 15.8± 7.6
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5. Discussion and Conclusion

In this paper, an efficient liver segmentation was proposed
which was based on the Gabor dictionary of sparse image
patches selected in prior boundaries from CT images. To
solve the problem that the machine learning-based method
needs a large number of training samples (which would
affect the segmentation efficiency), this paper used the gold
standard image and the target image to obtain the initial
boundary of the liver and selected the test sample set within
the neighborhood of the initial boundary, effectively re-
ducing the number of samples. In the Gabor image of the
training image, an image patch corresponding to the liver
boundary was selected to construct an inquiry dictionary
and two sets of inquiry dictionaries were used to obtain the
corresponding sparse coefficients, effectively expressing
information about the liver boundary by combining the
inquiry dictionary and sparse coefficients. In addition, the
reconstruction error of the test sample and the inquiry
dictionary was optimized.+e center of the image patch with
the smallest reconstruction error was used as the liver
boundary, and the segmentation model was completed and
filled by applying the void-filling method to the liver surface,
which ensured the smoothness and accuracy of the seg-
mentation result.

+e method for liver segmentation was validated with
two popular public datasets and clinical datasets. In the
MICCAI 2007 dataset, compared with the segmentation
methods proposed in recent years, our method has improved
in VOE, RMSSSD, and MSSD. On the ISBI 2017 dataset, the
ASSD value of this method is 0.67mm lower than that
proposed by Qin et al. Our methods are competitive with
previous methods in both accuracy and efficiency, and we
validate the proposed method in clinical datasets.+e results
proved the validity of the Gabor information mentioned in
this paper in establishing an inquiry dictionary. In addition,
it can also be concluded from the experiment that the
segmentation results after void filling were obviously more
accurate than the results that did not undergo the void filling
process. After void filling, the discontinuity and local overlap
of the segmentation result was also repaired, which shows
that the algorithm in this paper can realize the accurate
segmentation of the liver in CT images.

However, since the method proposed in this paper
mainly uses the registered and deformed liver model as the
initial boundary of the target image and selects the image
patch within the initial boundary as the test sample set,
accurate liver boundary segmentation could not be achieved
for large deformed regions that have not been registered
accurately.
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