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Impact of aromatase absence on 
murine intraocular pressure and 
retinal ganglion cells
Xiaomin Chen1,2, Yang Liu1, Yi Zhang1,3, Wendy R. Kam1, Louis R. Pasquale1,4 &  
David A. Sullivan1

We hypothesize that aromatase, an enzyme that regulates estrogen production, plays a significant 
role in the control of intraocular pressure (IOP) and retinal ganglion cells (RGCs). To begin to test our 
hypothesis, we examined the impact of aromatase absence, which completely eliminates estrogen 
synthesis, in male and female mice. Studies were performed with adult, age-matched wild type (WT) 
and aromatase knockout (ArKO) mice. IOP was measured in a masked fashion in both eyes of conscious 
mice at 12 and 24 weeks of age. Retinas were obtained and processed for RGC counting with a confocal 
microscope. IOP levels in both 12- and 24-week old female ArKO mice were significantly higher than 
those of age- and sex-matched WT controls. The mean increase in IOP was 7.9% in the 12-week-, and 
19.7% in the 24-week-old mice, respectively. These changes were accompanied by significant 9% and 
7% decreases in RGC numbers in the ArKO female mice, relative to controls, at 12- and 24-weeks, 
respectively. In contrast, aromatase deficiency did not lead to an increased IOP in male mice. There was 
a significant reduction in RGC counts in the 12-, but not 24-, week-old male ArKO mice, as compared 
to their age- and sex-matched WT controls. Overall, our findings show that aromatase inhibition in 
females is associated with elevated IOP and reduced RGC counts.

Several researchers have hypothesized that estrogen deficiency predisposes to optic nerve degeneration1–3. This 
hypothesis is supported by a myriad of observational studies linking estrogen deprivation to an increased risk of 
open-angle glaucoma4–7. Furthermore, variations in several genes involved in estrogen processing are related to 
open-angle glaucoma8–10. Conversely, investigators have also reported that estrogen use may decrease the risk 
of developing glaucoma11, prevent retinal ganglion cell (RGC) death12,13, reduce intraocular pressure (IOP14–17); 
preserve visual acuity12 and serve as a viable option for treating glaucoma14,18.

However, despite these impressive results, there is no global consensus on the role of estrogens in glaucoma. 
Indeed, there is controversy. There is no robust evidence indicating an overall sexual predilection for OAG18,19. 
Tamoxifen, an estrogen receptor blocker that is widely used to treat breast cancer, does not appear to be associated 
with increased risk of glaucoma20. Abramov and colleagues found no difference in IOP among postmenopausal 
women with a history of hormone replacement therapy versus women who did not use postmenopausal hor-
mones21. No significant correlation between IOP level and serum estradiol was found among 62 postmenopausal 
women, 30 of which were using hormone replacement therapy22. Furthermore another study from India did not 
find relations between female reproductive factors and open-angle glaucoma23.

These discrepant findings may be attributed, at least in part, to variations in experimental design, including 
differences in the age, sex, and endocrine status of subjects, as well as in the dosage and time course of estrogen 
therapy, and even in the methods of analysis. Nevertheless, it is extremely important to determine whether estro-
gen deficiency promotes, and estrogen treatment suppresses, IOP elevation, RGC death and optic neuropathy. 
The reason is that estrogen dynamics may contribute significantly to the development of primary open-angle 
glaucoma in women2 and possibly men9. Furthermore, there is an ever-increasing use of aromatase inhibitors for 
the treatment of breast and ovarian cancer in postmenopausal women. These inhibitors prevent the biosynthesis 
of estrogens and could possibly enhance the risk and/or severity of glaucoma24.

1Schepens Eye Research Institute, Massachusetts Eye and Ear, and Department of Ophthalmology, Harvard Medical 
School, Boston, MA, USA. 2Zhongnan Hospital, Wuhan University, Wuhan, China. 3Affiliated Hospital of Shenzhen 
University, Shenzhen, China. 4Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard 
Medical School, Boston, MA, USA. Correspondence and requests for materials should be addressed to Y.L. (email: 
yang_liu@meei.harvard.edu)

Received: 20 October 2017

Accepted: 31 January 2018

Published: xx xx xxxx

OPEN

mailto:yang_liu@meei.harvard.edu


www.nature.com/scientificreports/

2SCIENtIfIC REPOrtS |  (2018) 8:3280  | DOI:10.1038/s41598-018-21475-x

We used C57BL/6 J - aromatase knockout (ArKO) mice to begin to clarify whether estrogen deprivation is 
associated with glaucomatous features. The ArKO mice were generated by the targeted disruption of exon IX in 
the cyp19 gene and lack aromatase activity25. Aromatase is a cytochrome P450 enzyme that catalyzes the forma-
tion of estrogens from androgens26–28, and contributes to a number of sex-specific differences throughout the 
body29–33. In the absence of aromatase, the synthesis of estrogens is completely eliminated34–36. Accordingly, we 
examined whether female ArKO mice exhibit heightened IOP and RGC loss, as compared to their wildtype (WT) 
controls. For comparison, we also evaluated male ArKO mice. (Figure 1).

Results
IOP levels in female and male ArKO mice.  To determine whether aromatase absence influences IOP, we 
measured IOP levels in both eyes of 12- and 24-week old female and male WT and ArKO mice (n = 8/group). 
Our results demonstrate that IOP levels in both 12- (WT = 13.5 ± 0.3; ArKO = 14.5 ± 0.4, p < 0.05) and 24- 
(WT = 12.3 ± 0.4; ArKO = 14.9 ± 0.4, p < 0.001) week old female ArKO mice were significantly higher than those 
of age- and sex-matched WT controls (Fig. 1). The mean increases in IOP ranged from 7.9% (1.1 mmHg) in the 
12-week-, to 19.7% (2.6 mmHg) in the 24-week-old mice, respectively.

In contrast, aromatase deficiency did not lead to increases in the IOP of 12- (WT = 13.8 ± 0.5; 
ArKO = 13.5 ± 0.4) or 24- (WT = 14.4 ± 0.3; ArKO = 13.5 ± 0.4) week old male ArKO mice, as compared to WT 
controls. Rather, the lack of aromatase was associated with a significant decrease in the IOP of 24-week old male 
mice (p < 0.05; Fig. 1).

Our findings related to the influence of aromatase were the same if we limited IOP comparisons to the same 
(e.g. right vs. right) or to the opposite (e.g. right vs. left) eyes of sex- and age-matched WT vs ArKO mice (data 
not shown). There were no significant differences in IOP levels between the left and right eyes of WT mice, or 
between left and right eyes of ArKO mice. In addition, there was no significant difference between the IOP of 12- 
vs. 24-week old female or male ArKO mice.

Our IOP data are based upon the analyses of one mean IOP per mouse (i.e. average of 12 IOP values/mouse, 
originating from 3 values/eye/day, two eyes/mouse, on 2 consecutive days).

RGC counts in female and male ArKO mice.  To examine the effect of complete aromatase absence on RGC 
counts, we analyzed RGC numbers in retinas of 12- and 24-week old female and male WT and ArKO mice 
(n = 8/group). As shown in Fig. 2, RGC numbers in the ArKO female mice were significantly reduced, as com-
pared to age- and sex-matched WT controls (12 week old, WT = 1,249 ± 25; ArKO = 1,136 ± 29, p = 0.012; 24 
week old, WT = 1,213 ± 33; ArKO = 1,129 ± 34, p = 0.049, one tail). Similarly, there was a significant decrease 
in RGC counts in the 12-week old male ArKO mice, relative to their age- and sex-matched WT controls 
(WT = 1,351 ± 24; ArKO = 1,288 ± 16, p = 0.047). No significant difference existed between the RGC numbers 

Figure 1.  Influence of complete aromatase absence on the IOP in 12- and 24-week old mice. Columns represent 
the mean ± SE. Abbreviations: 12w-12 week; 24w-24 week; WT-wild type; KO-knockout; F-female; M-male. 
Significantly less (p < 0.05; *p < 0.001**) or greater (<0.05)† than WT control.
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in 24-week-old male WT and male ArKO mice (WT = 1,214 ± 24; ArKO = 1,208 ± 43). Furthermore, there was 
no significant difference between the RGC counts of 12- vs. 24-week old female ArKO mice or 12- vs. 24-week 
old male ArKO mice (Fig. 2).

Discussion
Glaucoma is the second leading cause of blindness in the world and is a slowly progressing neurodegenerative 
disease37,38. It is characterized by a gradual loss of RGCs, which leads to a loss of vision37,39,40. The most common 
form of glaucoma, occurring in 70 to 90% of patients, is primary open angle glaucoma (POAG)41–43.

In one epidemiological study, women had a significantly lower incidence of POAG, as compared to men, 
until the age of 80 years44. This sex-related difference has been linked to the extent of lifetime estrogen exposure. 
Indeed, there is an association between increased estrogen exposure and a reduced POAG risk37. Conversely, 
studies have shown that a decreased exposure (i.e. early loss of estrogens), due to late menarche, oral contra-
ceptive use, early menopause, and a shorter duration between menarche to menopause, is associated with an 
increased risk of POAG5–7,37,45. Given this background, we assessed glaucoma features in female ArKO mice.

Our present study demonstrates that aromatase absence is associated with a significant increase in the IOP 
levels of 12- and 24-week old female ArKO mice. The extent of this IOP difference (i.e. 1.1 to 2.6 mmHg) is com-
parable to that (i.e. 0.5 to 0.6 mmHg) found between postmenopausal women taking, versus not taking, estrogen 
replacement therapy as part of a post-hoc analysis of a randomized clinical trial17. In addition, the aromatase 
deficiency in ArKO mice is associated with a significant decrease in RGC counts. Our findings support the myriad 
of human data linking estrogen deprivation to the development of glaucoma among women.

In contrast to the responses of ArKO females, aromatase deficiency did not lead to an increased IOP in male 
mice. There was, though, a significant decrease in RGC counts in the 12-, but not 24-, week-old male ArKO 
mice, as compared to their age- and sex-matched WT controls. This sexually dimorphic response to complete 
aromatase absence is not surprising. We have previously found that almost all genes regulated by aromatase in 
non-retinal ocular tissues (i.e. meibomian and lacrimal glands) are sex-specific, and thus different, in male and 
female mice46,47. Similar sex-related differences have also been found in the liver, bone, hematopoietic microenvi-
ronment, adipose tissue and brain30,48–55. These variations between male and female responses may reflect the loss 
of estrogens, reduced serum adiponectin56, alterations in neural activity57,58, as well as the heightened serum levels 
of testosterone, androstenedione, prolactin, follicle-stimulating hormone, luteinizing hormone (LH), insulin-like 
growth factor 1 (IGF-1) and leptin in ArKO mice25,50,55,56,59–61, some hormone-independent processes62,63, and 
the influence of Y-linked genes or X inactivation in the ArKO strain64–67. The fact that aromatase deficiency does 
impact the male eye is consistent with studies demonstrating that aromatase and estrogen actions are very impor-
tant in other male tissues52–55,68–70.

Figure 2.  Impact of complete aromatase absence on the RGC count in 12- and 24-week old mice. Columns 
represent the mean ± SE. Abbreviations: 12w-12 week; 24w-24 week; WT-wild type; KO-knockout; F-female; 
M-male. Significantly less (p < 0.05)* or (p < 0.05, one-tail)** than WT control.
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There are several specific ways in which estrogen may directly affect vulnerability to glaucoma. One mecha-
nism may involve estrogen binding to saturable, high affinity, and steroid-specific estrogen receptors (ERs) in ret-
inal tissues, especially in RGCs. ERs, which are members of the nuclear receptor superfamily of ligand-inducible 
transcription factors, mediate most of the actions of estrogens throughout the body71. Estrogens have two nuclear 
ERs, termed α and β, which are highly homologous in their DNA and ligand binding domains, are often differen-
tially distributed, and which direct different, and sometimes opposite, functions of estrogens71–80. After estrogen 
binds to the ER, the activated hormone-receptor complex typically associates with estrogen responsive elements 
in the regulatory region of specific target genes and, in combination with appropriate co-activators and enhanc-
ers, modulates gene transcription, protein synthesis and tissue function73. Consistent with this mechanism, we 
and others have identified ER mRNA and protein in the retina, as well as ERα and ERβ in RGCs81–83. By acting 
through these nuclear receptors, estrogens might then influence, for example, vascular resistance and the perfu-
sion of the optic nerve, RGCs, and their supporting structures1,84,85.

A second mechanism to explain estrogen effects on the eye may also involve plasma membrane ERs. These 
pathways, which typically signal within seconds to minutes, involve estrogen interaction with stereospecific mem-
brane ERs and lead to rapid changes in membrane fluidity, the activity of neurotransmitter receptors and/or the 
control of transcription factors86–92. We have identified membrane ERs in other ocular tissues93. It is also possible 
that estrogen influence could be modified by the activity of retinal steroidogenic enzymes.

A third mechanism by which estrogens impact glaucoma may be operative in humans, but not mice, and 
involve the intracrine synthesis of estrogens. Unlike lower mammals (e.g., mice), in which the ovaries and testes 
are the primary origin of active sex steroids94,95, most biologically active sex steroids in women do not originate 
from the ovary and do not circulate in the blood. The vast majority of estrogens (i.e. 75% before, and 100% 
after, menopause), and almost all androgens, are synthesized in peripheral tissues from dehydroepiandrosterone 
(DHEA)3,94–99. Indeed, humans and primates are unique in possessing adrenal glands that secrete large amounts 
of DHEA, which is then converted into androgens and estrogens by steroidogenic enzymes in peripheral sites. 
This hormonal process, termed intracrinology, allows target tissues to adjust the formation and metabolism of 
sex steroids to local requirements95,97. After intracrine synthesis and local action, sex steroids are metabolized and 
released into the circulation. The critical steroidogenic enzymes involved in estrogen synthesis and metabolism 
all exist and are active in the retina3,100–102.

A number of other processes may also be involved in altering the IOP and RGC counts in female ArKO mice. 
First, the increased serum leptin concentrations in ArKO mice50 may counteract the glaucomatous effect of estro-
gen deficiency, given that leptin is thought to be a neuroprotective agent103. Such leptin action might contribute to 
the lack of progressive IOP and RGC changes in female ArKO mice from 12 to 24 weeks of age. Second, changes 
in adiponectin56, IGF-155 and LH61 levels may affect glaucoma progress104, RGC survival105 and retinal dynam-
ics106, respectively. The obesity107,50 and glucose intolerance108 in these ArKO mice may lead to the development 
of diabetes109, increased IOP110,111 and glaucoma112. Third, the decreased blood pressure in female ArKO mice113 
may promote glaucomatous changes114.

There are limitations in our study. We did not assess the retinal functional consequences in the ArKO mice. 
We did not extend phenotype observations beyond 24 weeks. Furthermore, we did not explore the mechanism 
for IOP increase or RGC dropout in female mice, nor the compensatory mechanisms that might have produced 
minimal or no glaucomatous features in male ArKO mice.

Overall, our results demonstrate that aromatase absence produces a glaucoma phenotype that is more signif-
icant in female mice. Our study is a reverse engineering approach to model one aspect of POAG and to support 
the epidemiological literature suggesting that relative estrogen deficiency increases the risk of POAG, which is 
a multifactorial disease. Therefore, it is not surprising that the IOP increases and RGC losses were modest and 
relatively sex-specific. We are not modeling nonspecific end organ optic nerve damage, but rather a complex dis-
ease (POAG) by precisely altering one of the many exposures involved in disease pathogenesis. In this regard our 
findings are very important, because the modest effects on IOP and the RGCs are consistent with epidemiological 
data showing modest reductions in IOP and in glaucoma risk related to estrogen exposure1,72.

Methods
Mice.  We obtained breeding pairs of C57BL/6 J - aromatase knockout (ArKO) heterozygous mice from Dr. 
Nabil J. Alkayed (Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR), who, in 
turn, had procured them from Dr. Orhan Oz (University of Texas Southwestern Medical Center, Dallas, TX). 
Animals were shipped to Charles River Breeding Laboratories (Wilmington, MA) for initial quarantine, health 
monitoring and serology, and then forwarded to the Animal Facilities of the Schepens Eye Research Institute 
(SERI). Mice were housed and bred in constant temperature rooms with fixed light/dark intervals of 12 hours 
duration. All mice were fed the PicoLab Rodent Diet 20 (#5053; LabDiet, St Louis, MO).

We generated hundreds of WT, ArKO and heterozygous mice for these studies. Twenty one-day-old offspring 
were genotyped according to modifications of a published protocol25. In brief, genomic DNA was isolated from 
ear punches by using a GenEluteTM Mammalian Genomic DNA Miniprep Kit (Sigma-Aldrich). The DNA was 
amplified by PCR with a Hybaid OMN-E thermocycler (Thermo Electron Corp) by using exon 9 gene primers 
(forward: GTGACAGAGACATAAAGATCG; reverse: GTAAATTCATTGGGCTTAGGG) and neo gene primers 
(forward: ATCAGGATGATCTGGACGAAGA; reverse: CCACAGTCGATGAATCCAGAA). The PCR condi-
tions were 1 cycle (3 minutes at 94 °C), 31 cycles (40 second at 94 °C, 30 second at 55 °C, 45 second at 72 °C) and 1 
cycle (5 minutes at 72 °C) and amplicons were evaluated on 2.5% agarose gels. Band sizes were 220 bp from WT 
mice, 170 bp from ArKO mice, and both fragments from heterozygotes. After mice were sacrificed, we repeated 
the genotyping to confirm the genetic background.
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All experiments with these mice were approved by the SERI Institutional Animal Care and Use Committee 
(IACUC) and adhere to the Association for Research in Vision and Ophthalmology Statement for the Use of 
Animals in Ophthalmic and Vision Research.

IOP measurements.  Measurements of IOP were performed on conscious mice. We developed procedures 
to measure IOP (n = 6 consecutive measurements per IOP value, 3 values/eye/day, 2 consecutive days) at the cen-
tral cornea of awake mice with a TonoLab tonometer (Icare, Tampere, Finland). We secured mice in DecapiCone 
bags, which calms the animals and also prevents head movement. Measurements of the IOP were performed in 
a masked fashion between 10 and 11 AM. We did not use anesthesia, because such exposure is known to signifi-
cantly alter IOP115.

We tested our procedures on 5 mice for three consecutive days to determine whether adaptation to the appa-
ratus and examination process was required. Our results showed that an adaptation period is not necessary. IOP 
measurements in the right and left eyes remained consistent in a given mouse, and typically varied little from day 
to day. The mean IOP variation in right and left eyes of the WT and ArKO mice from the first to second days of 
IOP measurements is shown in Table 1.

RGC counting.  At the termination of experiments, mice were sacrificed by CO2 inhalation, tissue was 
obtained to confirm genotype, and the vasculature was irrigated with phosphate-buffered saline (PBS). Eyes were 
removed, fixed in 4% paraformaldehyde for 2 hours, and then processed for the preparation of retinal flat mounts 
(cut into 4 quadrants116,117). Retinal samples were permeated with 0.5% Triton X-100 for 15 minutes at −80 °C, 
exposed to mouse anti-mouse Brn3a antibody (Millipore; diluted 1:200 in blocking buffer [2% bovine serum 

Figure 3.  Immunohistochemical identification of mouse RGCs. Retinal samples were mounted and RGCs 
imaged with a confocal microscope. Cells were counted manually in 3 random areas along the centerline of each 
quadrant (total = 3 counts/quadrant, 12 counts/retina). RGCs were clearly visible by using a primary anti-Brn3a 
antibody and a secondary anti-IgG antibody.

Age 
(weeks) Genotype Sex

Right eye 
(mmHg)

Left eye 
(mmHg)

12 WT F −0.1 −0.3

12 KO F −0.3 −0.7

12 WT M +0.8 +0.6

12 KO M −0.8 −1.5

24 WT F −0.7 +0.3

24 KO F +1.0 +0.5

24 WT M −1.3 −1.7

24 KO M +0.6 +1.1

Table 1.  Variation in mean IOP levels in right and left eyes of mice from days 1 to 2 of IOP measurements. IOP 
levels (n = 6 consecutive measurements per IOP value, 3 values/eye/day, 2 consecutive days) were recorded at 
the central cornea of awake mice. The difference between the mean IOP values on Days 1 and 2 in the right and 
left eyes of female and male WT and ArKO mice (n = 8/mice group) at 12 and 24 weeks of age are shown. The 
“−” symbol stands for “negative” (i.e. the group mean IOP value decreased from Day 1 to 2 by that amount). 
The “+” symbol stands for “positive” (i.e. the group mean IOP value increased from Day 1 to 2 by that amount).
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albumin and 2% Triton]) overnight at 4 °C, then incubated with donkey anti-mouse IgG antibody (Millipore; 
diluted 1:200 in blocking buffer) for 2 hours at room temperature. The use of the mouse anti-mouse Brn3a anti-
body for the identification of RGCs in mouse retinal sections has previously been described118,119. Samples were 
then mounted and RGCs were imaged with a confocal microscope (Leica TCS SP5 CLSM, zoom = 800 fold). 
RGCs were counted manually in 3 random areas along the centerline of each quadrant (total = 3 counts/quadrant, 
12 counts/retina). More specifically, we used the optic nerve head as the origin with 3 standard regions distributed 
at 1-mm intervals along the central line of each quadrant. The area of each region at 800x magnification equaled 
0.037 mm2. This analytical approach permitted us to account for retinal eccentricity. Overall, we optimized the 
techniques for the identification of mouse RGCs (Fig. 3).

Statistical analyses.  Normality of the data was confirmed by using the Shapiro-Wilk and Kolmogorov-Smirnov 
tests. Unless otherwise noted, IOP and RGC comparisons were performed with two-tailed Student’s t-tests. A 
P < 0.05 was considered significant. Data are provided as the mean and standard error. All statistical analyses were 
performed with SPSS (IBM, Armonk, New York) and/or Prism 7 (GraphPad Software, Inc., La Jolla, CA).

Data availability statement.  All data generated or analyzed during this study are included in this pub-
lished article.
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