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Deep brain stimulation (DBS) of the nucleus accumbens (NA) is explored as a treatment

for refractory psychiatric disorders, such as obsessive-compulsive disorder (OCD),

depressive disorder (MDD), and substance use disorder (SUD). A common feature of

some of these disorders is pathological impulsivity. Here, the effects of NAcore DBS

on impulsive choice and impulsive action, two distinct forms of impulsive behavior,

were investigated in translational animal tasks, the delayed reward task (DRT) and

five-choice serial reaction time task (5-CSRTT), respectively. In both tasks, the effects

of NAcore DBS were negatively correlated with baseline impulsive behavior, with more

pronounced effects in the 5-CSRTT. To further examine the effects of DBS on trait

impulsive action, rats were screened for high (HI) and low (LI) impulsive responding in

the 5-CSRTT. NAcore DBS decreased impulsive, premature responding in HI rats under

conventional conditions. However, upon challenged conditions to increase impulsive

responding, NAcore DBS did not alter impulsivity. These results strongly suggest a

baseline-dependent effect of DBS on impulsivity, which is in line with clinical observations.

Keywords: impulsivity, 5-choice serial reaction time task, delayed reward task, impulsive action, impulsive choice,

deep brain stimulation, nucleus accumbens

INTRODUCTION

Deep brain stimulation (DBS) is currently utilized as clinical intervention for obsessive-compulsive
disorder (OCD) (Hamani et al., 2014; Van Westen et al., 2015), and explored for substance
use disorder (SUD) (Luigjes et al., 2012; Pierce and Vassoler, 2013), major depressive disorder
(Schlaepfer et al., 2014) and anorexia nervosa (Oudijn et al., 2013). DBS is a neurosurgical
procedure in which implanted electrodes deliver electrical pulses to specific brain targets. Despite
the clinical application of DBS, its underlying mechanisms of action are still poorly understood
(Florence et al., 2016).

In SUD and OCD, the nucleus accumbens (NA) is often target region of DBS and known to
play an important role in motivation and impulsive behavior (Cardinal et al., 2002; Cardinal, 2006;
Meredith et al., 2008; Pattij and Vanderschuren, 2008). Moreover, whereas both SUD and OCD
are characterized by compulsive behavior, impulsivity appears to be differentially effected in these
disorders (Figee et al., 2016). For instance, whereas translational preclinical studies as well as clinical
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studies have shown beneficial effects of NA DBS on compulsivity
(Van Kuyck et al., 2008; Denys et al., 2010; Figee et al., 2013;
Kohl et al., 2014), the effects of DBS on impulsivity are less well
documented and explored (Sesia et al., 2008, 2010).

It is widely recognized that impulsivity is a multi-faceted
phenomenon (Evenden, 1999; Dalley et al., 2011). Impulsive
action is described as diminished inhibitory control over
inappropriate responses, whereas impulsive choice oftentimes
is operationalized as the preference for small immediate
reinforcement over large delayed reinforcement. These different
forms of impulsivity have partly distinct underlying neural
correlates, including differential NA involvement (Pattij and
Vanderschuren, 2008; Basar et al., 2010; Winstanley, 2011).
Moreover, it is well-established that within the NA there is
functional compartmentalization (Groenewegen et al., 1999).
In this respect, lesions of the NAcore region primarily affect
impulsive choice (Cardinal et al., 2001; Pothuizen et al., 2005;
Bezzina et al., 2007) and not impulsive action (Christakou et al.,
2004; Pothuizen et al., 2005; Murphy et al., 2008), whereas
pharmacological modulation of the NAcore has been reported
to alter impulsive action (Pattij et al., 2007; Murphy et al., 2008;
Economidou et al., 2012).

Interestingly, decrements in impulsive action by NAcore DBS
and, opposingly, increments in impulsive action by NAshell DBS
in a simple reaction time task have been reported recently (Sesia
et al., 2008), yet later work failed to replicate this (Sesia et al.,
2010). Moreover, two clinical case reports in OCD demonstrated
that, in addition to ameliorating OCD symptoms, NA DBS also
increased impulsivity and impulsive aggression (Malone et al.,
2009; Luigjes et al., 2011). Collectively, these observations suggest
direct DBS effects on impulsivity. A better understanding of
the effects of DBS on different forms of impulsivity is highly
relevant to improve the treatment potential of DBS and to better
understand its mechanisms of action.

To address this, we studied the effects of NA DBS in two
translational rat models measuring different forms of impulsivity,
namely the five-choice serial reaction time task (5-CSRTT)
to measure impulsive action (Robbins, 2002) and the delayed
reward task (DRT) to assess impulsive choice (Cardinal, 2006).
Outbred rats were used not representing a model of disorder, in
order to further unravel the direct effects of NADBS on impulsive
behavior. In particular, DBS was applied to the core region of
the NA since previous studies provided strong evidence for this
specific subregion in impulsivity (Cardinal et al., 2001; Pothuizen
et al., 2005; Basar et al., 2010; Dalley et al., 2011; Feja et al., 2014).
Since we found baseline-dependent effects of NAcore DBS on
impulsive action, in further experiments a large cohort of rats was
trained in the 5-CSRTT to examine the effects of NAcore DBS in
high and low trait impulsive individuals.

MATERIALS AND METHODS

Animals
Male Wistar rats (N = 96 in total) weighing approximately
300 grams at start of experiments were obtained from Harlan
CPB (Horst, The Netherlands) and were housed in pairs until
implantation of DBS electrodes. Animals were kept under a

reversed light/dark cycle (lights on 7 p.m. until 7 a.m.) at
controlled room temperature (21 ± 2◦C) and relative humidity
of 60 ± 15%. Experiments were conducted during the dark
phase of the light–dark cycle. Animals were tested once daily
from Monday to Friday. During training and testing phases, rats
were food-restricted to 90% of their free-feeding bodyweight.
Water was available ad libitum during the entire experiment.
All experiments were approved by the Animal Care Committee
of the VU University and VU University Medical Center,
Amsterdam.

Behavioral Tasks
Apparatus
Both behavioral tasks were conducted in sixteen identical operant
chambers (Med Associates Inc., St. Albans, USA) in sound-
attenuating ventilated cubicles. One wall contained an array of 5
nose poke holes which could be illuminated and had an infrared
beam for nose poke detection. On the opposite wall, a food
magazine was situated, where the reward (45mg precision pellets,
BioServ, Frenchtown, USA) could be delivered. A white house
light was situated on the same wall as the food magazine.

Delayed Reward Task
The DRT as employed in our laboratory has been described
previously (Van Gaalen et al., 2006b). Briefly, after trial initiation
through a nose poke into the central nose poke unit, the animals
had free choice between responding into the left adjacent or right
adjacent nose poke unit which were both illuminated. Poking
into one unit resulted in the immediate delivery of a small
reinforcer (1 food pellet), whereas poking into the other unit
resulted in the delivery of a large delayed reinforcer (4 food
pellets). Delays for the large reinforcer progressively increased
within a session per block of 12 trials. The behavioral measure
to assess task performance, i.e., the percentage preference for
the large reinforcer as a function of delay, was calculated as the
number of choices for the large reinforcer/(number of choices for
large + small reinforcer)∗100. Furthermore, hyperbolic curves
for the percentage preference for the large reward were fitted
on the individual data by the equation V = A/(1+ kD); where
V is the preference for the large reward after a delay of D in
seconds, A is the preference for the large reward at D = 0 s and
k describes the steepness of the discounting curve (Mazur, 2006).
Based on the estimated hyperbolic curve, the indifference point,
the delay for which the rats switched their preference over to the
immediate, small reward (i.e., the delay on which the preference
for large reward <50%) was calculated.

Five-Choice Serial Reaction Time Task
A description of the 5-CSRTT behavioral procedure in our
laboratory has been described previously (Van Gaalen et al.,
2006b; Wiskerke et al., 2011). Rats were trained to respond to
a visual stimulus presented in one of the five nose poke units.
Each session terminated after 100 trials or 30 min, whichever
occurred first. Correct responses, during 1 s stimulus duration
or a 2-s limited hold period, were rewarded with delivery of one
food pellet. Two measures of inhibitory control were calculated,
the number of premature responses and the total number
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of perseverative responses after a correct trial, a presumable
measure for compulsivity. Premature responses during the 5 s
intertrial interval (ITI) were punished by a 5-s time-out period,
during which the house light was switched off. The ITI was fixed
at 5 s during training, whereas during testing either a fixed ITI
of 5 s or variable ITI of 5, 7, and 9 s was used. Perseverative
responding after correct responses were recorded, but were
without programmed consequences. Stable baseline performance
was defined as >80% accuracy and <20% omissions.

Surgery
Following stable baseline performance, rats were surgically
equipped with DBS electrodes. For this purpose, prior to surgery,
rats were subcutaneously injected with 5 mg/kg Ketofen 1% and
8.33 mg/kg Baytril 2.5%. DBS electrodes combined with a guide
cannula (Plastics One, Germany) were bilaterally implanted in
the NAcore region (coordinates: 2.3 mm rostral to bregma, 7.4
mm ventral to dura, 2.7 mm lateral to midline under an angle
of 8◦ relative to the midline sagittal plane) under isoflurane
inhalation anesthesia (±2%). DBS electrodes were anchored to
the skull with stainless steel screws and dental acrylic cement.
Experiments started following 1 week of recovery.

Deep Brain Stimulation
Deep brain stimulation was performed with a digital stimulator
(model DS8000, World Precision Instruments, Israel) and
stimulus isolator (model DLS100) connected to a 4 channel
commutator (Plastics One). During habituation and stimulation
sessions, the electrode implants were attached to stimulation
cables, which were connected to the commutator. Stimulation
intensities varied across experiments between 35, 75, and 100µA
(130 Hz, biphasic square pulses, 60µs pulse width, 200µs
zero time), which are estimated to primarily activate nerve
fibers within 0.5 to 1 mm radius (Ranck, 1975; McIntyre and
Grill, 2001). These stimulation parameters are comparable to
previously reported DBS rat studies (Darbaky et al., 2003; Baunez
et al., 2007; Sesia et al., 2008, 2010; Tan et al., 2010; Van Der
Plasse et al., 2012). Sham stimulation was applied by attaching
the rats to DBS cables without stimulation. Stimulation always
started 5 min before session onset. DBS tests were conducted
on Wednesdays and Fridays with baseline training sessions on
other weekdays, during which rats were attached to DBS cables to
maintain habituation to the procedure. Each rat was stimulated
once a week with sham stimulation on the other test day and
received every stimulation intensity once per test condition, to
avoid potential carry-over effects of stimulation.

Experimental Design
Experiment 1: DRT
To examine the effects of NAcore DBS on impulsive choice,
sixteen rats were bilaterally stimulated during the entire DRT
test session with 0/35/75/100µA DBS in a within-subjects Latin-
square design (Table 1).

Experiment 2: 5-CSRTT
A separate group of 16 rats was tested during 5-CSRTT sessions
with a fixed ITI of 5 s to study effects of NAcore DBS on impulsive
action. Rats were bilaterally stimulated with 0/35/75/100µADBS
during the entire session in a within-subjects Latin-square design
(Table 1).

Experiment 3: Trait High and Low Impulsive Rats in

the 5-CSRTT
Based on the more profound baseline-dependent effect in the 5-
CSRTT compared to the DRT, effects of NAcore DBS on high and
low impulsive action were examined in a large cohort of 64 rats.
Upon stable baseline task performance rats were divided over
four quartiles based on the number of premature responses. The
upper and lower quartiles were assigned as high impulsive (HI)
and low impulsive (LI) rats, respectively. Rats belonging to the
middle quartiles were assigned to two moderate impulsive (MI)
groups, matched for their behavioral performance (Figure 1).

FIGURE 1 | Average of the number of premature responses on three

baseline days before DBS electrodes implantation under fixed ITI

conditions for all four impulsivity groups. HI, high impulsive (n = 16); LI,

low impulsive group (n = 16) (Experiment 3A), (n = 16); MI, moderate

impulsive group (Experiment 3B) (n = 16). *p < 0.001 compared to HI, #p ≤

0.001 compared to LI.

TABLE 1 | Experimental design.

n Task DBS (µA) Drug challenge Test design

Experiment 1 16 DRT 0, 35, 75, 100 – Latin-square

Experiment 2 16 5-CSRTT, fixed ITI 0, 35, 75, 100 – Latin-square

Experiment 3A 16 HI, 16 LI 5-CSRTT, fixed ITI 0, 75 – Randomized within-subjects

5-CSRTT, variable ITI 0, 35, 75, 100 – Latin-square

Experiment 3B 16 MI 5-CSRTT, fixed ITI 0, 75 Saline/amphetamine Latin-square
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Experiment 3A: Trait High and Low Impulsive Rats in

the 5-CSRTT with Fixed ITI and Variable ITI
First, to examine the effects of NAcore DBS on impulsive
action in HI and LI rats, subjects were tested in the 5-
CSRTT under a standard fixed 5 s ITI. Based on the significant
baseline-dependent effects on premature responses with 75µA
in experiment 2, rats were bilaterally stimulated with 0 or 75µA
using a randomized within-subjects design. Subsequently, to
increase stimulus unpredictability, HI and LI rats were also tested
under variable ITI conditions. As such, ITI duration (5, 7, or 9
s) was pseudorandomly selected and all durations were equally
presented during a session. Rats were bilaterally stimulated
with 0/35/75/100µA using a Latin-square within-subjects design
(Table 1).

Experiment 3B: Acute Amphetamine Challenges in

Moderate Impulsive Rats
To examine whether effects of NAcore DBS on impulsive action
are dependent on state impulsivity, one group of MI rats was
tested in the 5-CSRTT following an amphetamine dose known to
robustly increase impulsive action (VanGaalen et al., 2006a; Pattij
et al., 2007; Wiskerke et al., 2011). For this, rats were tested under
standard baseline conditions in the 5-CSRTT 1-s. They were
injected with saline or amphetamine [(+)-Amphetamine sulfate
(O.P.G. Utrecht, The Netherlands) dissolved in sterile saline, 0.5
mg/kg, i.p.] 20min prior to testing and bilaterally stimulated with
0 and 75µA in a Latin-square within-subjects design (Table 1).

Electrode Placement Verification
After the last test day, rats were deeply anesthetized with Euthasol
(AST Farma, The Netherlands; i.p.) and perfused transcardially
with 100ml 0.9%NaCl, followed by 500ml 4% paraformaldehyde
in 0.1 M PBS. Brains were removed, post-fixed in the same
fixative for 24 h and cryoprotected in 30% sucrose. Coronal
40µm sections were cut on a sliding microtome and stained with
cresyl violet for electrode placement verification.

Statistical Analyses
Data are presented as means ± s.e.m. and were analyzed using
IBM SPSS Statistics 20.0 (IBM, New York, USA). Dependent
variables in the DRT (experiment 1) were percentage choice
for the large reward, omitted trial starts, omitted choice trials,
omitted forced trials, ITI responses, latencies and indifference
point. In the 5-CSRTT (experiments 2 and 3), dependent
variables were premature responses, perseverative responses after
correct choice, accurate choice, omissions, correct response
latency and feeder latency. In both experiments, repeated
measures ANOVAs were performed with DBS intensity as
within-subjects factor. Moreover, in experiment 3A, repeated
measures ANOVA with impulsivity group as between-subjects
variable and DBS intensity and ITI duration for variable ITI
experiments as within-subjects variables. In experiment 3B, data
were analyzed using repeated measures ANOVA with DBS
intensity and treatment (saline vs. amphetamine), or ITI duration
(5, 7, and 9 s) as within-subjects variables.

Normal distribution of data was tested with the Shapiro-
Wilk test. In case variables were not normally distributed,

data were transformed using a Log10 transformation. In
all repeated measures ANOVAs, degrees of freedom were
corrected with Huyn-Feldt corrections in case Mauchly’s test
was significant and sphericity assumptions were violated. In
case of statistical significant main effects, further post-hoc
tests were performed with Bonferonni corrections for multiple
comparisons. Correlations were performed using a two-tailed
Pearson’s correlation. Statistical significance was set at p < 0.05
for all analyses.

RESULTS

Histology and Exclusion of Rats
As depicted in Figure 2, most DBS electrodes were positioned in
the NAcore at the level of 2.20 and 1.70 mm rostral to bregma.
In experiment 1, one rat was excluded from analyses, because
histological inspection revealed a large infection around the
electrode tip, resulting in n= 15 subjects. In experiment 2, one rat
was excluded from analyses due to technical problems during test
days and three rats died unexpectedly during the experimental
phase, resulting in n = 12 subjects for this experiment. In
experiment 3A, two rats (both from LI group) were excluded
due to high numbers of omissions during training days (on
average 53.9 ± 1.6 omissions per day). Five rats (three HI
and two LI) were excluded, because their post-surgery level of
premature responses had changed compared to pre-surgery levels
to such extend that they did not meet the requirements for trait
impulsivity anymore. Three HI rats were excluded due to early
electrode loss. Therefore, in total, 12 LI rats and 11 HI rats were
included in the analyses of the fixed ITI experiments and 12 LI
rats and 10 HI rats were included in the variable ITI experiments.
In experiment 3B, three rats had misplaced DBS electrodes and
were therefore excluded from all analyses, resulting in n = 13
subjects.

Experiment 1: DRT
In the DRT, the preference for the large reward decreased
significantly with increasing delays [Delay: F(4, 56) = 109.33,
ε = 0.47, p < 0.001]. This was not altered by NAcore DBS [DBS:
F(3, 42) = 1.39, N.S.; DBS∗Delay: F(12, 168) = 0.31, ε = 0.44, N.S.;
Figure 3A]. In addition, the indifference point was not altered
by NAcore DBS [F(3, 42) = 1.95, N.S.]. Nonetheless, further
in-depth analyses revealed a significant negative correlation
between indifference point and the magnitude of effect of 75µA
NAcore DBS (r = −0.57, p = 0.028) (Figure 3B), indicating
baseline-dependent effects of DBS on impulsive choice. The
other stimulation intensities did not show significant correlations
between indifference points and effect size of DBS (35µA
vs. 0µA r = −0.09, N.S.; 100µA vs. 0µA r = 0.02, N.S.). Other
task parameters, such as omitted starts of a trial [F(3, 42) = 0.01,
N.S.], omitted choice trials [F(3, 42) = 0.58, N.S.], omitted forced
trials [F(3, 42) = 1.18, ε = 0.63, N.S.], ITI responses [F(3, 42) =
0.70, ε = 0.58, N.S.], latency to start a trial [F(3, 42) = 0.97, N.S.],
latency to collect a small reward [F(3, 42) = 1.30, N.S.] and latency
to collect a large reward [F(3, 42) = 1.28, N.S.] were not affected
by NAcore DBS (Table 2).
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FIGURE 2 | (A) Verification of DBS electrodes placement in the NAcore at the level of 2.70, 2.20, 1.70, and 0.70 mm rostral to bregma. Rats with placements of DBS

electrodes at 2.70 mm rostral to bregma were excluded from analysis. Gray circle depicts estimated maximal stimulation area around an electrode tip (Ranck, 1975;

McIntyre and Grill, 2001). (B) Representative electrode placement in the NAcore. Drawings are adapted from Paxinos and Watson (1998).

FIGURE 3 | (A) Effects of different DBS stimulation intensities (0, 35, 75, and 100µA) on the percentage preference for the large reward in the DRT. (B) Correlation

between the baseline indifference point under baseline condition (0µA) and the effect of DBS at 75µA.

Experiment 2: 5-CSRTT
NAcore DBS had no significant effects on overall performance in
the 5-CSRTT. The main measure of impulsive action, premature
responses, was unaffected by the different DBS intensities [F(3, 33)
= 0.99, N.S.; Figure 4A]. To explore whether the effects of
DBS were baseline-dependent, correlation analyses on baseline
premature responses and DBS effect size were performed. These
analyses revealed a significant negative correlation for 35µA
(r =−0.67, p= 0.017), 75µA (r=−0.66, p= 0.021; Figure 4C),
but not for 100µA (100µA r = −0.28, N.S.). Similar to

premature responding, overall perseverative responding after
correct choice was not altered by NAcore DBS [F(3, 33) = 1.01,
N.S.; Figure 4B], yet correlation analyses revealed a significant
negative correlation between baseline perseverative responses
and the effect size of 75µA (r = −0.90, p < 0.001; Figure 4D)
and 100µA (r = −0.77, p = 0.004), but not 35µA (r = 0.16,
N.S.). Further correlational analyses between baseline premature
responding and baseline perseverative responding after correct
choice revealed no significant relation between these parameters
(r = 0.036, N.S.), suggesting that the baseline-dependent effect
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of NAcore DBS on perseverative responding is independent of
baseline impulsivity. Other task parameters in the 5-CSRTT, such
as accurate choice [F(3, 33) = 1.27, N.S.], number of omitted
trials [F(3, 33) = 0.991, ε = 0.46, N.S.], latency to respond
correctly [F(3, 33) = 1.01, ε = 0.38, N.S.] and latency to collect
a reward [F(3, 33) = 1.09, ε = 0.56, N.S.] were not changed by
NAcore DBS (Table 3).

TABLE 2 | Effects of DBS on auxiliary measures in the DRT (Experiment 1).

DBS

0µA 35µA 75µA 100µA

ITI pokes (#) 227.0 ± 66.9 243.7 ± 72.7 189.9 ± 43.5 215.7 ± 46.2

Omission start (#) 5.3 ± 1.0 5.2 ± 1.0 5.2 ± 1.1 5.3 ± 1.1

Omission choice (#) 4.5 ± 0.9 4.5 ± 0.8 5.5 ± 1.1 4.5 ± 0.9

Omission forced

trials (#)

3.3 ± 0.3 2.4 ± 0.4 3.9 ± 0.7 3.7 ± 0.8

latency small

reward (s)

0.83 ± 0.05 0.86 ± 0.04 0.92 ± 0.07 0.90 ± 0.05

latency large

reward (s)

0.91 ± 0.06 0.94 ± 0.08 1.06 ± 0.09 0.92 ± 0.08

latency start trial (s) 2.32 ± 0.15 2.13 ± 0.12 2.37 ± 0.18 2.23 ± 0.15

Experiment 3A: Trait High and Low
Impulsive Rats in the 5-CSRTT with Fixed
ITI and Variable ITI
Fixed ITI
DBS in the 5-CSRTT under fixed ITI conditions decreased
premature responding in HI rats (Figure 5A), as revealed
by repeated measures ANOVA [DBS: F(1, 21) = 0.330, N.S.;
impulsivity: F(1, 21) = 12.359, p = 0.002; DBS∗impulsivity:
F(1, 21) = 11.790, p= 0.002]. Post-hoc testing showed a significant
difference between HI and LI rats under baseline conditions

TABLE 3 | Effects of DBS on measures of attention and motivation in the

5-CSRTT under fixed ITI conditions (Experiment 2).

DBS

0µA 35µA 75µA 100µA

Accuracy (%) 89.3 ± 1.5 90.2 ± 2.3 90.7 ± 1.4 87.9 ± 2.0

Omissions (#) 11.3 ± 1.4 17.7 ± 5.2 13.1 ± 2.2 15.4 ± 2.1

Correct response

latency (s)

0.62 ± 0.02 0.72 ± 0.09 0.63 ± 0.02 0.65 ± 0.02

Feeder latency (s) 3.62 ± 0.54 2.55 ± 0.27 2.80 ± 0.21 3.19 ± 0.62

FIGURE 4 | (A) Effects of different DBS stimulation intensities (0, 35, 75, and 100µA) on the number of premature responses in the 5-CSRTT. (B) Effects of different

DBS stimulation intensities (0, 35, 75, and 100µA) on the number of perseverative responses after a correct choice. (C) Negative correlation between baseline

premature responding (0µA) and the effect of 75µA DBS. (D) Negative correlation between baseline perseverative responding after a correct choice (0µA) and the

effect of 75µA DBS.
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FIGURE 5 | Effects of DBS in LI (n = 12) and HI (n = 11) rats in the 5-CSRTT under fixed ITI condition on (A) the number of premature responses and (B) the

number of perseverative responses after a correct choice. *p = 0.001 and #p = 0.017 compared to HI under baseline conditions (0µA).

[0µA: HI vs. LI t = 4.469 (11.591), p = 0.001], which was
diminished by DBS [75µA: HI vs. LI, t = 1.044 (21), N.S.]. This
was caused by a significant decrease in premature responses in
the HI group only, and failed to reach significance in the LI group
[HI: 0 vs. 75µA, t = 2.854 (10), p = 0.017; LI: 0 vs. 75µA,
t =−2.017 (11), p= 0.069].

Perseverative responding after correct choice was affected
by DBS in both HI and LI rats [F(1, 21) = 5.220, p = 0.033],
independent of impulsivity levels [impulsivity: F(1, 21) = 0.928,
N.S.; DBS∗impulsivity: F(1, 21) = 0.905, N.S.; Figure 5B].
Accurate choice, a measure of visuospatial attention, was
significantly higher in LI rats [impulsivity: F(1, 21) = 8.734,
p = 0.008], but this parameter was not affected by DBS
[DBS: F(1, 21) = 2.145, NS; DBS∗impulsivity: F(1, 21) = 2.511,
N.S.; Table 4]. DBS differentially affected correct response
latencies in HI and LI rats [DBS: F(1, 21) = 0.017, NS;
impulsivity: F(1, 21) = 1.885, N.S.; DBS∗impulsivity: F(1, 21) =

4.760, p = 0.041]. Under baseline conditions, response latencies
in LI rats were slower compared to HI rats [0µA: HI vs. LI,
t = −2.227 (15.85), p = 0.041]. DBS increased latencies in HI
rats only [HI: 0 vs. 75µA, t = −2.390 (10), p = 0.038; LI: 0 vs.
75µA, t = 1.211 (11), N.S.], resulting in comparable response
latencies between HI and LI rats [75µA: HI vs. LI t = −0.378
(21), N.S.; Table 4]. There were no significant group differences
or DBS effects on the number of omissions [DBS: F(1, 21) =

1.903, NS; impulsivity: F(1, 21) = 2.820, N.S.; DBS∗impulsivity:
F(1, 21) = 1.199, N.S.] and feeder latencies [DBS F(1, 21) =

0.136, NS; impulsivity: F(1, 21) = 2.757, N.S.; DBS∗impulsivity:
F(1, 21) = 0.917, N.S.; Table 4].

Variable ITI
Subjecting rats to variable ITI conditions on test days revealed
a significant difference between HI and LI rats on total number
of premature responses across all ITI durations [impulsivity:
F(1, 20) = 8.933, p= 0.007]. This measure was not altered by DBS
[DBS: F(3, 60) = 1.367, N.S.; DBS∗impulsivity: F(3, 60) = 0.662,
N.S.]. Analyses per ITI duration revealed significantly increased
premature responding with increased ITI length, independent
of baseline impulsivity [ITI: F(2, 40) = 493.132, ε = 0.77, p <

0.001; ITI∗impulsivity: F(2, 40) = 0.789, N.S.], but these analyses

TABLE 4 | Effects of DBS on HI and LI rats on measurements of attention

and motivation in the 5-CSRTT with fixed ITI duration (Experiment 3A).

DBS Accuracy (%) Omissions Correct response

latency (s)

Feeder

latency (s)

HI 0µA 81.5 ± 2.6 8.9 ± 1.3 0.6 ± 0.01 2.3 ± 0.1

75µA 85.7 ± 2.1 7.7 ± 1.5 0.6 ± 0.02* 2.2 ± 0.1

LI 0µA 90.0 ± 1.2 10.4 ± 1.0 0.7 ± 0.03* 2.5 ± 0.3

75µA 89.8 ± 1.1 10.2 ± 1.0 0.6 ± 0.02 2.8 ± 0.3

*p < 0.05 compared to HI 0µA.

revealed no effect of NAcore DBS too [DBS: F(3, 60) = 1.164, N.S.;
DBS∗impulsivity: F(3, 60) = 0.916, N.S.; DBS∗impulsivity∗ITI:
F(6, 120) = 0.761, N.S.; Figures 6A,B].

The total number of perseverative responses after correct
choice, summed over all ITI durations, did not differ between
HI and LI rats [F(1, 20) = 1.472, N.S.] and was not affected
by DBS [DBS: F(3, 60) = 2.311, p = 0.085; DBS∗impulsivity:
F(3, 60) = 0.272, N.S.]. However, analyses per ITI duration showed
that perseverative responses were attenuated by increasing ITI
length [ITI F(2, 40) = 15.676, p < 0.001]. In general, LI showed
a higher number of perseverative responses [group F(1, 20) =

4.769, p = 0.041]. In contrast to fixed ITI conditions, analyses
per ITI duration revealed a significant effect of DBS treatment on
perseverative responding dependent on impulsivity group [DBS
F(3, 60) = 4.586, p = 0.006; DBS∗impulsivity F(3, 60) = 3.536,
p = 0.020]. Post-hoc analyses revealed a significant decrease in
HI rats stimulated with 35µA compared to 0µA (p = 0.001)
and a borderline significant decrease at 75µA (p = 0.059). DBS
did not significantly change perseverative responding in LI rats
(Figures 6C,D).

Accurate choice was significantly reduced with increasing ITI
length [ITI: F(2, 40) = 48.967, p < 0.001], to the same extent in
HI and LI rats [impulsivity: F(1, 20) = 3.083, N.S.; ITI∗impulsivity:
F(2, 40) = 1.945, N.S.]. Additionally, this measure was not affected
by DBS [DBS: F(3, 60) = 2.188, N.S.; DBS∗impulsivity: F(3, 60) =
0.895, N.S; DBS∗ITI∗impulsivity: F(6, 120) = 1.425, N.S.; Table 4].
Also the number of omissions was decreased by increasing
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FIGURE 6 | Effects of DBS on high impulsive (HI, n = 10) and low impulsive (LI, n = 12) rats in the 5-CSRTT with variable ITI conditions expressed as

(A,B) the number of premature responses and (C,D) the number of perseverative responses, per ITI duration.

ITI durations [ITI: F(2, 40) = 56.523, ε = 0.740, p < 0.001].
There were no differences between HI and LI rats [impulsivity
F(1, 20) = 2.379, N.S.; ITI∗impulsivity F(2, 40) = 0.478, ε = 0.740,
N.S.] and DBS increased the number of omissions to the same
extent in HI and LI rats [DBS: F(3, 60) = 5.843, ε = 0.720,
p = 0.005; DBS∗impulsivity: F(3, 60) = 0.216, ε = 0.720, N.S.;
DBS∗ITI∗impulsivity: F(6, 120) = 0.739, ε = 0.995, N.S.]. Post-
hoc analyses revealed a significant increase in omission errors
induced by 75µA DBS compared to 0µA (p = 0.022) (Table 5).
Correct response latencies were significantly decreased with
increasing ITI length [ITI: F(2, 40) = 4.670, p = 0.015]. There
was no significant difference between LI and HI rats [impulsivity:
F(1, 20) = 3.940, N.S.], yet latencies were differentially affected
in HI and LI rats depending on ITI length [ITI∗impulsivity
group: F(2, 40) = 5.833, p = 0.006]. In addition, DBS treatment
significantly altered correct response latencies differentially in LI
and HI rats [DBS: F(3, 60) = 3.126, p = 0.032; DBS∗impulsivity:
F(3, 60) = 2.248, N.S.; DBS∗ITI: F(6, 120) = 6.529, p < 0.001;
DBS∗ITI∗impulsivity: F(6, 120) = 2.482, p = 0.027; Table 4].
Further analyses revealed that 35µA increased correct response
latencies at ITI 9s compared to ITI 5 s in the HI rats, whereas
in LI rats at these conditions correct response latencies were

reduced (p < 0.001). Likewise, in HI rats 75µA increased correct
response latencies at ITI 9s compared to ITI 5 s and not in LI rats
(p = 0.053). Feeder latencies were higher in LI rats compared to
HI rats [impulsivity: F(1, 20) = 17.845, p< 0.001], but variable ITI
duration or DBS treatment did not alter this parameter [ITI: F(2,
40)= 2.920, ε= 0.881, N.S.; DBS: F(3, 60) = 1.711, ε= 0.835, N.S.;
DBS∗group: F(3, 60) = 0.463, ε = 0.813, N.S.; Table 5].

Experiment 3B: Acute Amphetamine
Challenges in Moderate Impulsive Rats
Systemic 0.5 mg/kg amphetamine challenges significantly
increased premature responding in MI rats [F(1, 12) = 36.955,
p < 0.001; Figure 7A]. The number of perseverative responses
after correct choice was not altered by amphetamine [F(1, 12)
= 0.279, N.S.; Figure 7B]. DBS did not significantly change
these parameters [Premature responses: DBS: F(1, 12) = 0.008,
N.S., Amph∗DBS: F(1, 12) = 0.108, N.S.; Perseverative responses:
DBS: F(1, 12) = 0.008, N.S., Amph∗DBS: F(1, 12) = 0.293, N.S.].
Amphetamine administration significantly decreased accuracy
[F(1, 12) = 25.159, p < 0.001] and the latency for a correct
response [F(1, 12) = 5.091, p= 0.043]. Other behavioral measures
in the task were neither altered by the amphetamine challenge
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TABLE 5 | Effects of DBS in HI and LI rats on behavioral performance in

the 5-CSRTT under variable ITI conditions (Experiment 3A).

ITI 5 ITI 7 ITI 9

Accurate

choice (%)

HI 0µA 86.3 ± 1.9 82.3 ± 2.2 77.8 ± 1.2

35µA 86.4 ± 2.0 83.0 ± 1.8 71.3 ± 3.6

75µA 92.9 ± 1.9 82.9 ± 2.4 81.3 ± 3.3

100µA 88.6 ± 2.6 80.4 ± 1.2 80.9 ± 4.3

LI 0µA 92.3 ± 1.1 84.8 ± 2.1 81.0 ± 2.2

35µA 88.6 ± 1.9 84.5 ± 1.7 80.9 ± 3.8

75µA 88.2 ± 1.4 86.8 ± 2.0 83.2 ± 2.3

100µA 88.9 ± 1.8 84.5 ± 1.8 84.4 ± 1.8

Omissions (no. per

session)

HI 0µA 5.1 ± 0.7 2.9 ± 0.7 1.5 ± 0.2

35µA 5.8 ± 0.8 2.9 ± 0.9 1.3 ± 0.4

75µA 8.1 ± 1.2 4.5 ± 1.1 3.6 ± 1.1

100µA 6.9 ± 1.6 1.6 ± 0.5 1.3 ± 0.3

LI 0µA 5.4 ± 0.6 3.5 ± 0.3 2.6 ± 0.3

35µA 6.4 ± 1.1 3.3 ± 0.7 2.4 ± 0.5

75µA 8.6 ± 0.9 4.8 ± 0.9 4.3 ± 0.6

100µA 6.9 ± 1.0 4.0 ± 0.7 2.9 ± 0.6

Correct response

latency (s)

HI 0µA 0.6 ± 0.02 0.7 ± 0.01 0.7 ± 0.03

35µA 0.6 ± 0.03 0.6 ± 0.03 0.7 ± 0.02

75µA 0.6 ± 0.02 0.6 ± 0.02 0.7 ± 0.05

100µA 0.6 ± 0.03 0.6 ± 0.02 0.5 ± 0.02

LI 0µA 0.7 ± 0.02 0.6 ± 0.02 0.7 ± 0.02

35µA 0.7 ± 0.02 0.6 ± 0.03 0.6 ± 0.03

75µA 0.7 ± 0.02 0.6 ± 0.02 0.7 ± 0.02

100µA 0.7 ± 0.02 0.7 ± 0.02 0.6 ± 0.02

Feeder latency (s) HI 0µA 1.9 ± 0.1 2.2 ± 0.2 1.7 ± 0.04

35µA 1.6 ± 0.5 1.7 ± 0.6 2.1 ± 0.3

75µA 1.9 ± 0.1 1.8 ± 0.1 2.2 ± 0.2

100µA 1.8 ± 0.1 2.1 ± 0.3 2.3 ± 0.3

LI 0µA 2.2 ± 0.2 2.5 ± 0.3 2.7 ± 0.3

35µA 2.3 ± 0.2 2.0 ± 0.1 3.0 ± 0.6

75µA 3.2 ± 0.4 3.0 ± 0.7 2.4 ± 0.3

100µA 2.8 ± 0.5 2.4 ± 0.3 4.2 ± 0.9

[Omissions: F(1, 12) = 0.178, N.S.; Feeder latency: F(1, 12) = 2.836,
N.S.]. None of the auxiliary parameters were affected by DBS
[DBS: F(1, 12) < 2.339, N.S.; Amph∗DBS: F(1, 12) < 3.162, N.S.;
Table 6].

DISCUSSION

In the present study, we found no effect of NAcore DBS on
measures of impulsive choice when analyzed on a group level.
However, correlational analyses revealed a negative, baseline-
dependent DBS effect, suggesting that NAcore DBS increases
impulsive choice in low impulsive rats, whereas DBS attenuates
impulsive choice in high impulsive rats. Similarly, NAcore DBS
also exerted baseline-dependent effects on impulsive action in the
5-CSRTT. These findings fit with clinical observations in OCD

and SUD patients in which effects of DBS strongly depend on
baseline behavior (Heldmann et al., 2012; Figee et al., 2013), and
the current data suggest appropriate face validity and clinical
relevance.

Based on the profound baseline-dependent effects found in
the 5-CSRTT compared to the DRT, we selected HI and LI rats
from a cohort of 64 rats to further explore the effects of NAcore
DBS on impulsive action. When HI and LI rats were tested
under fixed ITI 5s conditions, NAcore DBS decreased premature
responding specifically in HI rats, corroborating the effects found
in experiment 2. However, perseverative responses after correct
choice were increased by NAcore DBS in both HI and LI rats,
contrasting the baseline-dependent effects on this parameter.

To date, DBS on impulsive action in rodents has only been
tested in a simple reaction time paradigm, which involved
pushing a magazine panel until a tone was presented at variable
intervals (Sesia et al., 2008, 2010). Initially, NAcore DBS was
found to decrease impulsive action (Sesia et al., 2008), however
it was reported later that NAcore DBS had no effect on impulsive
action, yet decreased perseverative responding. The contrasting
results were presumably related to electrode position, since
electrodes were located more ventrally in the latter study (Sesia
et al., 2010). In our study, the ventral position of the electrodes
was most comparable to the study in which they reported null
effects on premature responding, yet decreased perseverative
responding, similar to our results under variable ITI conditions
(Sesia et al., 2010). This observation fits with recent clinical
DBS observations that subtle changes in electrode position might
influence different pathways and as such therapeutic outcomes,
suggesting that electrode placement is very critical in reaching
optimal treatment effects with DBS (Lujan et al., 2012).

Previous lesion studies have clearly highlighted the
importance of the NAcore in measures of impulsive behavior
in the DRT (Cardinal et al., 2001; Pothuizen et al., 2005) and
the 5-CSRTT (Christakou et al., 2004; Feja et al., 2014). In this
regard, the current behavioral findings contrast these results
from lesion studies. In a similar vein, subthalamic nucleus (STN)
DBS effects are different from STN lesions regarding impulsive
action in the 5-CSRTT (Baunez and Robbins, 1997; Baunez et al.,
2007). Together, this confirms that DBS exerts more complex
effects rather than local inhibition or excitation of neuronal
populations per se. As such, this is in line with accumulating
evidence from human and animal work showing that NA DBS
exhibits its effects by altering frontostriatal connectivity via
antidromic activity (McCracken and Grace, 2007, 2009; Van Dijk
et al., 2011; Do-Monte et al., 2013; Figee et al., 2013; Sesia et al.,
2014).

Interestingly, NAcore DBS was found to affect premature and
perseverative responses in the 5-CSRTT in a distinct manner.
Premature responding in the 5-CSRTT is thought to reflect
deficits in inhibitory control of highly prepotent responses when
anticipating reward (Evenden, 1999), whereas perseveration
after correct choice is thought to reflect compulsivity by
action continuation despite reward presentation (Robbins, 2002;
Robbins et al., 2012). Strikingly, it has been shown in OCD
patients that increase of voltage was found to result in decreased
compulsivity, yet at the same time increased impulsivity (Luigjes
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FIGURE 7 | Effects of DBS in MI rats in the 5-CSRTT after vehicle (Sal) or an acute challenge with 0.5 mg/kg amphetamine (Amph) on (A) the number of

premature responses and (B) the number of perseverative responses after correct choice.

TABLE 6 | Effects of DBS, amphetamine and their combination on

measurements of attention and motivation in the 5-CSRTT in MI rats

(Experiment 3B).

Saline Amphetamine (0.5mg/kg)

Accurate choice (%) 0µA 91.1 ± 1.5 84.6 ± 2.0

75µA 92.4 ± 0.8 83.0 ± 1.9

Omissions (#) 0µA 16.8 ± 3.3 14.4 ± 3.2

75µA 16.3 ± 3.2 17.3 ± 3.5

Correct response latency (s) 0µA 0.6 ± 0.01 0.6 ± 0.01

75µA 0.7 ± 0.02 0.6 ± 0.02

Feeder latency (s) 0µA 1.7 ± 0.2 1.9 ± 0.3

75µA 1.8 ± 0.2 2.9 ± 0.7

et al., 2011). These differential effects of NAcore DBS on both
behaviors and the lack of correlation between perseverative and
premature responding suggest that there is a (partly) distinct
underlying neural circuitry, whichmight be differentially affected
by DBS. Indeed, frontostriatal brain regions mostly appear to be
involved in either impulsive behavior or compulsive behavior.
For instance, the NAcore is suggested to modulate inhibitory
control dependent on the reward outcome or success on previous
trials (Christakou et al., 2004), which fits with observations
that NA neurons code reward expectancy (Apicella et al.,
1991; Schultz et al., 1992; Bowman et al., 1996) and respond
differentially to cues that predict reward or no reward (Bowman
et al., 1996; Donnelly et al., 2014). In addition, we recently
found that optogenetic inhibition of the medial prefrontal cortex
(mPFC) selectively increased premature responding and not
perseverative responding in the 5-CSRTT (Luchicchi et al., 2016).
Pharmacological studies also suggest that within these regions
there are distinct neurochemical processes that are involved in
either premature responding or action perseveration (Carli et al.,
2006). Thus, the current distinct effects of DBS on premature and
perseverative respondingmight result from differential activation
of the frontostriatal circuitry, in line with the current hypotheses
on the mechanism of action of DBS (McIntyre and Hahn, 2010).

Task challenges in the 5-CSRTT such as variable ITI durations
result in reduced temporal predictability of the cue, thereby
increasing the demand on inhibiting inappropriate responding.
Effects under variable ITI conditions are therefore more likely
to reflect state impulsivity rather than trait impulsivity. Here,
in contrast to fixed ITI conditions, NAcore DBS did not alter
premature responding under variable ITI conditions in HI and
LI rats. These findings are consistent with previous data in a
simple reaction time paradigm (Sesia et al., 2010). This suggests
that NAcore DBS specifically affects pre-existing trait impulsivity
and not state impulsivity. Notably, variable ITI duration was
found to reveal specific effects of NAcore DBS on perseverative
responding in HI animals that were not observed under standard
fixed ITI task conditions. As expected, in the current study
an acute amphetamine challenge reliably increased premature
responses in the 5-CSRTT (Cole and Robbins, 1989; Van Gaalen
et al., 2006a; Pattij et al., 2007; Baarendse and Vanderschuren,
2012). The fact that NAcore DBS was ineffective in reducing
amphetamine-induced impulsivity supports the notion that
NAcore DBS specifically targets trait and not state impulsive
behavior.

Several lines of evidence suggest that high and low impulsive
rats differ neurochemically, for example regarding prefrontal and
striatal dopamine functioning (Dalley et al., 2007; Diergaarde
et al., 2008; Besson et al., 2010, 2013; Loos et al., 2010;
Ohno et al., 2012; Jupp et al., 2013; Moreno et al., 2013).
These data are paralleled by clinical evidence, showing that
impulsive individuals have decreased dopamine release (Oswald
et al., 2007; Buckholtz et al., 2010) and decreased availability
of dopamine D2/3 receptors in the striatum (Lee et al., 2009;
Ghahremani et al., 2012). Therefore, it is conceivable that
the observed baseline-dependent effects of NAcore DBS on
impulsive behavior in the current study emerge from underlying
neurobiological differences in frontostriatal circuits. Indeed,
this notion fits with recent clinical work in OCD patients,
demonstrating that DBS reduces OCD symptomatology by
restoring NA-PFC network activity, the latter which strongly
related to OCD symptom severity (Figee et al., 2013). Similarly,
in healthy volunteers non-invasive transcranial direct current
stimulation of the dorsolateral PFC was found to modulate
impulsivity in a baseline-dependent manner (Shen et al.,
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2016). Our data align well with these recent observations in
humans.

From a clinical perspective, maladaptive trait impulsivity
is strongly related to compulsive drug seeking in SUD and
compulsive behavior in OCD (Arzeno Ferrao et al., 2006; Penades
et al., 2007; Perry and Carroll, 2008; Winstanley et al., 2010;
Pattij and De Vries, 2013; Figee et al., 2016). Moreover, it has
been shown that individual differences in baseline impulsivity
result in differential treatment response (Schmaal et al., 2012;
Joos et al., 2013). Our current data suggest that high trait
impulsivity can be reversed by DBS, which could ultimately
explain the beneficial effects of DBS on impulsivity-related
disorders such as SUD and OCD. As yet, there is only limited
clinical evidence that has directly addressed the effects of DBS
on impulsivity. To the best of our knowledge, there is only a
single clinical case report describing direct effects of DBS on
measures of impulsivity in SUD. In this report, NA DBS for
severe alcohol dependence was found to alter activity in brain
networks of inhibitory control, leading to improved inhibitory
control in a gambling task (Heldmann et al., 2012). This
observation indeed suggests that improvement of impulsivity
contributes to the clinical efficacy of DBS in SUD. Vice versa,
an important consideration of our current data is that NA
DBS treatment for disorders that are not accompanied by
maladaptive impulsivity could have unintended side-effects and
increase impulsive behavior. Another consideration regarding
our animal work relates to the neuroanatomical position of the
DBS electrodes in the NA in humans and rats. In general, in
humans themost effective stimulation site in the NA is the border
of the lateral accumbens and the capsula interna (Valencia-
Alfonso et al., 2012; Figee et al., 2013). Although, histochemically
the lateral part of the accumbens displays similarities to the
NAcore of the rat (Voorn et al., 1996), it is not known

whether this region is a functional homolog of the rodent
NAcore.

Future research on the neurobiological mechanism
underlying the baseline-dependent effects of NA DBS in rats and
if possible humans, on measures of impulsivity is warranted.
In addition, it would be of interest to extend the effects of
NAcore DBS in rats to other forms of impulsive behavior, such as
response inhibition, another important measure of impulsivity
related to SUD and OCD (Grant and Chamberlain, 2014;
Jupp and Dalley, 2014; Van Velzen et al., 2014). Particularly,
since multiple studies have revealed that different forms of
impulsive behavior emerge from (partly) distinct underlying
neurobiological pathways (Pattij and Vanderschuren, 2008;
Dalley et al., 2011; Bari and Robbins, 2013).

Taken together, we found evidence that NAcore DBS exerts
baseline-dependent effects on impulsive action and impulsive
choice. As such, the current findings extend our understanding
of mechanisms of DBS and the way how DBS may exert clinical
effects in psychiatric disorders with maladaptive impulsivity
including SUD and OCD.
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