
ORIGINAL ARTICLE

Exploring Behaviors of Caterpillar-Like Soft Robots
with a Central Pattern Generator-Based Controller
and Reinforcement Learning

Matthew Ishige,1 Takuya Umedachi,1 Tadahiro Taniguchi,2 and Yoshihiro Kawahara1

Abstract

Due to their flexibility, soft-bodied robots can potentially achieve rich and various behaviors within a single body.
However, to date, no methodology has effectively harnessed these robots to achieve such diverse desired function-
alities. Controllers that accomplish only a limited range of behaviors in such robots have been handcrafted. Moreover,
the behaviors of these robots should be determined through body–environment interactions because an appropriate
behavior may not always be manifested even if the body dynamics are given. Therefore, we have proposed SenseCPG-
PGPE, a method for automatically designing behaviors for caterpillar-like soft-bodied robots. This method optimizes
mechanosensory feedback to a central pattern generator (CPG)-based controller, which controls actuators in a robot,
using policy gradients with parameter-based exploration (PGPE). In this article, we deeply investigated this method.
We found that PGPE can optimize a CPG-based controller for soft-bodied robots that exhibit viscoelasticity and large
deformation, whereas other popular policy gradient methods, such as trust region policy optimization and proximal
policy optimization, cannot. Scalability of the method was confirmed using simulation as well. Although SenseCPG-
PGPE uses a CPG-based controller, it can achieve nonsteady motion such as climbing a step in a simulated robot. The
approach also resulted in distinctive behaviors depending on different body–environment conditions. These results
demonstrate that the proposed method enables soft robots to explore a variety of behaviors automatically.

Keywords: caterpillar-like soft-bodied robots, gait controller, mechanosensory feedback, central pattern gen-
erator, policy gradients with parameter-based exploration

Introduction

B ioinspired soft-bodied robots
1 should be controlled

in a bioinspired manner. Conventional control schemes
are not applicable to soft-bodied robots because these robots
have considerably more degrees of freedom due to their
significant flexibility. Moreover, designing behaviors them-
selves is challenging because body–environment interactions
involve complicated dynamics (e.g., surface friction switch-
ing). As Corucci et al.2 demonstrate, both body morphology
and environmental factor affect the optimal behavior of soft-
bodied robots. Instead, a central pattern generator (CPG)-
based controller, which is a bioinspired control method based
on parts of the neural system in animals,3 is a promising

candidate to harness and direct the complexity of these ro-
bots. This control method does not face the above-mentioned
issues because it does not demand the precise design of a
movement trajectory.4–8 It also invokes automatic behavior
switching according to the body and environment dynam-
ics.9,10 Owaki and Ishiguro10 realized automatic switching of
gait patterns among walking, trotting, and galloping in a
quadruped robot with a sensor feedback integrated CPG-
based controller. A CPG-based controller with sensor feed-
back was applied to a caterpillar-like soft-bodied robot as
well.11

However, how to integrate and tune sensor feedback in a
CPG-based controller, especially for soft-bodied robots, re-
mains an open issue.10–13 Because soft-bodied robots have

1Graduate School of Information Science and Technology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
2Department of Information Science and Engineering, Ritsumeikan University, Kusatsu, Shiga, Japan.

� Matthew Ishige et al. 2019; Published by Mary Ann Liebert, Inc. This Open Access article is distributed under the terms of the
Creative Commons License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

SOFT ROBOTICS
Volume 6, Number 5, 2019
Mary Ann Liebert, Inc.
DOI: 10.1089/soro.2018.0126

579



large degrees of freedom, each actuator should be controlled
using data from many sensors throughout the body, so that
they coordinate to achieve the desired behavior of the robot as
a whole. This requirement leads to parameter tuning among
an enormous number of sensor–actuator combinations. Fur-
thermore, the number of sensors and actuators available will
increase as the implementation of more sensors and actuators
becomes possible with the advancement of digital fabrication
and automation technologies. Tuning parameters in such a
situation is a difficult task for robot designers. Even if a
controller could be handcrafted, it would only be able to
explore a limited space of behaviors and is not scalable across
various robots and environments.

To tune a large number of sensor feedback parameters for a
soft-bodied robot systematically and efficiently, we14 pro-
posed the utilization of policy gradients with parameter-based
exploration (PGPE),15 which is an episode-based reinforce-
ment learning method. Previous work16–18 has specifically
applied reinforcement learning to tune sensor feedback for
CPG-based controllers. Matsubara et al.17 tuned sensor feed-
back for a CPG-based controller of a rigid-bodied biped robot
using an actor–critic algorithm. They managed to converge
training within relatively fewer iterations by resourcefully
reducing policy exploration space with auxiliary heuristics on
walking behavior. However, as this study aimed to explore
behavior automatically, we excluded such heuristics on be-
haviors. Furthermore, we previously found that an actor–critic
algorithm does not function in a system where uncontrollable
and unobservable degrees of freedom exist, as in soft-bodied
robots.14 Therefore, PGPE is considered a suitable candidate
for optimizing a CPG-based controller in a soft-bodied robot.
By automatically tuning feedback to a CPG-based controller,
distinctive behaviors are acquired under different body and
environment conditions. Even parameters for nonsteady mo-
tions, such as climbing a step, can be tuned effortlessly.

In this study we investigate the effectiveness of SenseCPG-
PGPE, a method we previously proposed14 to design behav-
iors of caterpillar-like soft-bodied robots. We show several
important properties of this method. First, it can scale to de-
sign controllers for robots with high numbers of sensors and
actuators. This is necessary for manipulating increasingly
complex soft-bodied robots which will become available as
technologies advance. Second, it has the ability to achieve
nonsteady motion even though it uses a CPG-based controller.
Hence, we can use the method to accomplish not only peri-
odical steady motion but also more complex behaviors in soft-
bodied robots. Finally, we show that the method creates dif-
ferent controllers that generate distinctive behaviors, such as
crawling and inching in a caterpillar-like robot, under dif-
ferent body and environmental dynamics. This result implies
that we can fully exploit the flexibility of soft-bodied robots to
achieve diverse behaviors using the proposed method. Al-
though we have focused on caterpillar-like morphology, the
ultimate goal of this research is to construct a general
framework for manipulating soft-bodied robots. The intro-
duction of PGPE enables controllers to acquire knowledge
about morphology and environment a posteriori, creating
adaptive behaviors in a complex real world. We believe that
this advances soft robotics by allowing flexible soft-bodied
robots to operate by skillfully navigating their environment.
We consider caterpillars to be a good starting point for this
goal because they can exhibit a wide variety of behaviors

despite their morphological simplicity. We reproduced be-
haviors of such caterpillars in a computer by likewise apply-
ing a simple method, that is, optimizing sensor feedback to the
CPG-based controller using PGPE.

The remainder of this article is organized as follows.
Controller Building Framework section discloses details of
SenseCPG-PGPE. Mechanical System section describes the
simulation model used to validate the ability of the frame-
work. Experiments section presents numerical simulations
and their results. Finally, Discussion section presents analysis
and discussion on the method.

Controller Building Framework

This section shares the structure of SenseCPG-PGPE.
First, we introduce the CPG-based controller and explain
how it is used to control a soft-bodied robot. Then we de-
scribe in detail the oscillators used in the CPG-based con-
troller and the optimization method. Finally, we describe the
overall mechanism.

CPG-based controller for caterpillar-like soft robots

As shown in Figure 1, a CPG-based controller controls a
caterpillar-like soft-bodied robot in the proposed method. The
CPG-based controller is modeled by means of phase oscilla-
tors, where each oscillator drives an associated actuator. The
displacement of each actuator is directly related to the corre-
sponding oscillator phase (see Mechanical System section). In
many CPG-based controllers, oscillators are directly coupled,
and the coupling coefficients are tuned manually. Instead, we
do not explicitly build these connections, and let the oscillators
communicate only through mechanosensory feedback.

Active rotator for mechanosensor integration

A CPG-based controller receives feedback from mechan-
osensors to interact with the environment. To feed mechan-
osensor values to a phase oscillator, we adopted an active
rotator19 instead of the usual phase oscillator. An active ro-
tator is expressed as

_/¼x�X sin (/� a),

where _/ is the phase of the oscillator, x is a nominal angular
velocity, and X is a non-negative value. This is a normal
phase oscillator when X = 0, whereas _/ is attracted to a
constant phase aþ arcsin w

X
when X is positive. Reflex can be

embedded by replacing X with a sensor value. Owaki and
Ishiguro10 succeeded in generating gait pattern transition by
replacing X with the force on the soles. In this study, the
rotator is extended to utilize all mechanosensors over the
body. The rule for the i-th oscillator is

_/i¼xþ fcos , i(F) cos /iþ fsin , i(F) sin /i, (1)

where F = (F1, ., FM) is a vector of mechanosensor values,
and fcos,i(F) and fsin,i(F) are arbitrary linear functions that
receive the mechanosensor values F to calculate the scalar
values.

fcos , i(F)¼ maxfminffmax, (WcosFþ bcos)ig, � fmaxg, (2)

580 ISHIGE ET AL.



fsin , i(F)¼ maxfminffmax, (WsinFþ bsin)ig, � fmaxg, (3)

The weight matrices Wcos and Wsin have N · M elements,
where M is the number of mechanosensors and N is the
number of oscillators. The bias vectors bcos and bsin have N
elements. The i-th element of WF + b is represented by
(WF + b)i. The functions fcos,i(F) and fsin,i(F) are clipped
within [-fmax, fmax] to prevent obtaining very large feedback
that would result in unrealistically fast rotation of phase os-
cillators. Let the maximum angular velocity possible in
Equation (1) be xmax. The relationship between fmax and
xmax is written as follows:

xmax¼xþ
ffiffiffi
2
p

fmax:

The constant fmax should be chosen so that a robot can
follow the oscillation at xmax. In the following numerical
experiments, fmax = 1 is chosen as a default value.

Various reflections can be realized by Equation (1) if the
parameters are appropriately determined because the equa-
tion is equivalent to

_/i¼xþAi(F) sin (/i�Bi(F)):

This indicates that it is possible to design an oscillator that
converges to an arbitrary phase with an arbitrary magnitude
when it receives certain mechanosensor values.

PGPE for controller optimization

To automatically tune feedback to the CPG-based con-
troller, parameters Wcos, Wsin, bcos, and bsin in Equations (2)
and (3) are optimized using PGPE.15 In this study, we briefly
explain the optimization procedure using PGPE. At the be-
ginning, a vector of parameters to be optimized l = (l1, .,
ll)

T is initialized to 0. The total amount of tunable parameters
is represented by l. In each epoch, K perturbation vectors are
sampled from the multidimensional Gaussian distribution

e[1], � � � , e[K]~N (0, diag(r2
1, � � � , r2

l )):

A perturbation vector e[k] has the same element number as
that of l. Standard deviations r = (r1, /, rl)

T determine the
size of the perturbation. Then, 2K sets of parameters are
generated using the perturbation vectors.

hþ [k]¼ lþ e[k], h� [k]¼ l� e[k] (1 � k � K):

Each of the 2K parameter sets is evaluated independently
by actually running a robot for one episode per parameter set.
Thus, 2K episodes are carried out during an epoch, and 2K
reward values are yielded. For numerical experiments con-
ducted in this article, a reward is the displacement of the
middle segment point mass along the x-axis during an epi-
sode, unless otherwise specified; for example, in the case of a
five-segment caterpillar, this is the point mass of the third
segment from the tail. The rewards are bundled into two
vectors: r+ = (r+[1], ., r+[K])T and r- = (r-[1], ., r-[K])T. A
reward for a parameter set h+[k] is r+[k] and that of h-[k] is r-[k].

Now that rewards for sampled parameter sets are obtained,
we use these values to update l and r. Since PGPE is a policy
gradient-based method, l and r are updated so that the fol-
lowing reward expectation is maximized:

J(l, r)¼
Z
Y

Z
h

p(hjh)p(hjl, r)r(h)dhdh: (4)

The sequence of state-action pairs produced by a robot dur-
ing an episode is denoted by history h. The expression p(h j l, r)
represents the probability of a parameter set h being sampled
from Gaussian distributionN (l, r), and p(h j h) represents the
probability of history h being generated by a robot with a pa-
rameter set h. The reward assigned to a history h is given by r(h).
Differentiating J in [Equation (4)] with regard to li yields

=li
J(l, r)

¼
Z
Y

Z
h

p(hjh)p(hjl, r)=li
log p(hjl, r)r(h)dhdh

~
1

2K
+
K

k¼ 1

=li
log p(hþ kjl, r)rþ k

�
þ=li

log p(h� kjl, r)r� k
�

: (5)

FIG. 1. Overview of SenseCPG-PGPE. Displacement distance or angle of each actuator in a control objective (depicted
here as a caterpillar-like robot) obeys the phase of an active rotator in the CPG-based controller. The feedback controller
receives the mechanosensor values obtained across the body and calculates feedback to the CPG-based controller according
to the equation. After running this cycle for several steps, the PGPE algorithm updates the parameters in the feedback
controller based on performance. CPG, central pattern generator; PGPE, policy gradients with parameter-based exploration.

EXPLORING CATERPILLAR-LIKE SOFT ROBOT BEHAVIORS 581



Because h�k
i ¼ li � �k

i and h�k
i ~N (li, ri), the following

equation holds:

=li
log p(h�kjl, r)¼ h�k

i � li

r2
i

¼ � �k
i

r2
i

: (6)

Substituting Equation (6) into Equation (5) yields

=li
J(l, r)~

1

2Kr2
i

+
K

k¼ 1

�k
i (rþ k� r� k)

Given step size ai¼ a2Kr2
i for each li, where a is a con-

stant, the following update rule is obtained:

li)liþ a +
K

k¼ 1

�k
i (rþ k� r� k): (7)

The same applies to r. From the equation

=ri
log p(h�kjl, r)¼ (�k

i )
2� r2

i

r3
i

,

the update rule of r is derived:

ri)riþ a +
K

k¼ 1

(�k
i )

2�r2
i

ri

(rþ k þ r� k): (8)

In summary, the following operations are conducted to
update l and r:

T ¼ e[1], � � � , e[K]
� �

, rT ¼ rþ � r�

rnorm¼
1

2rmax� rþ [1]� r� [1]
, � � �

� �T

l)lþ aT(rT � rnorm)

: (9)

S¼ (�j
i)

2� r2
i

ri

" #
, rS¼

rþ þ r�

2
� b 1

r)rþ a

rmax� b
S rS

, (10)

where rmax is the maximum reward obtained so far, �j
i is the i-th

value of e[j], and 1 is a vector of ones. The operator 1 denotes
element-wise multiplication. The baseline b, which is a mov-
ing average of rewards, is defined as b¼ (1� c)bþ c~r, where c
is a smoothing factor and ~r is the average of 2K rewards. In the
following numerical experiments, c = 0.01 is used as a default.
Although Equations (9) and (10) are based on Equations (7)
and (8), there are some alterations made for training stability.
For more detail, please see the article that originally reported
PGPE.15

SenseCPG-PGPE. SenseCPG-PGPE is a method to au-
tomatically explore behaviors of caterpillar-like soft-bodied
robots. It consists of the components mentioned above and is
illustrated in Figure 1. The CPG-based controller controls the
actuators, and mechanosensor values are obtained through
body–environment interactions. The feedback controller

takes the mechanosensor values as input and calculates
feedback to the CPG-based controller according to Equation
(1). This operation cycle is repeated to run a robot. After
running for several iterations, the PGPE-based optimizer
evaluates the performance of the current feedback controller
and updates the parameters in Equations (2) and (3). The
reward function should be defined by both the mechanical
system and the target functionality. The behavior of a robot is
explored and optimized through this automated process.

Mechanical System

The proposed method was validated using a simulated
caterpillar-like robot. This section explains the simulation
model of the caterpillar-like robot. All the variables used in
the simulation model and their default values are listed in
Table 1.

Caterpillar-like robot model

The robot is modeled as a system of point masses, springs,
and dampers, as depicted in Figure 2a. Calculation by the
simulator is based on Verlet’s algorithm.20 One segment of a
caterpillar corresponds to one point mass in the simulation.
Gravity is applied to each segment which is -msegg along the
z-axis, where mseg is the mass of each segment and g is the
gravitational acceleration. Two adjacent segments are con-
nected using the Kelvin–Voigt model21 of a spring and a
damper modeling viscoelasticity. The nominal length of the
spring is 2 · rseg. The value rseg is a virtual radius of a seg-
ment. Although a segment is modeled by a point mass, we
introduced this radius for convenience.

A torsion spring is embedded in every segment except for
the head and tail segments. As depicted in Figure 2b, a torsion
spring generates torque around it and applies force on adja-
cent segments. The torque corresponds to the difference be-
tween the target and actual angles.

TTS, i¼ � kTS(hTS
seg, i� hTS

tar, i)� cTS

dhTS
seg, i

dt
:

The force strength applied on an adjacent segment is

FTS, i¼
TTS, i

2rseg

:

The target angles of torsion springs are set to hTS
tar, i¼ 0, so

the segments align in parallel by default. For simplicity, the
length between two adjacent segments is regarded as fixed to
2rseg when calculating force.

Apart from the normal torsion springs mentioned above, a
controllable torsion spring called a real-time tunable torsion
spring (RTTS) is embedded in every segment except for the
head and tail. An RTTS models muscle and its target angle
hRTTS

tar, i are controlled by an oscillator phase /seg,i. Note that a
target angle is positive when bending (i.e., under a straight
line) and is negative when warping (i.e., above a straight
line). A target angle is controlled as follows:

hRTTS
tar, i ¼

Ymax�Ymin

2
(1� cos /seg, i)þYmin, (11)

582 ISHIGE ET AL.



where Ymax is the maximum angle of bending, and Ymin is
the maximum angle of warping, which is negative. Damping
force is not included in the RTTS.

Each segment has a gripper. Once a gripper holds the
substrate, the gripping point xgrip,i is fixed and does not move.
During gripping, the force along the x-axis,

Fgrip, i¼ � kgrip(xseg, i� xgrip, i)� cgrip

dxseg, i

dt
,

acts on a segment. The coefficient kgrip is set to a large value
to model a hard spring. The force along the z-axis on a seg-
ment is cancelled during gripping. In the following numerical

Gripping force
or friction

Spring
TS

Mass

RTTS

i = 0 i = 1 i = 2 i = 3 i = 4

daeHliaT

Damper x

z

Point mass

Gripper

Segment

a

b c

FIG. 2. (a) The simulation
model of a caterpillar-like ro-
bot consisting of point masses,
linear springs, and dampers
arranged in parallel (Kelvin–
Voigt model), and two types
of torsion springs: material
TS and RTTS. (b) Model of
TS and RTTS implemented
on each segment. Torque TTS,i

is generated according to
the discrepancy between the
nominal angle htar,i and the
actual angle hseg,i, and rota-
tional force is applied to seg-
ments i - 1, i, i + 1 so that hseg,i

gets closer to htar,i. (c) Grip-
ping mechanism. Gripping
point xgrip,i is fixed when a
gripper holds the ground.
Spring force acts on a seg-
ment to maintain its position.
RTTS, real-time tunable tor-
sion spring; TS, torsion spring.

Table 1. Variables in Simulation

Name Explanation Default

/seg,i Phase that controls the i-th RTTS —
/grip,i Phase that controls the i-th gripper —
x Nominal angular velocity 3:14 rad s� 1

hTS
seg, i

Current angle of the i-th TS —

hTS
tar, i

Target angle of the i-th TS 0 rad

hRTTS
seg, i

Current angle of the i-th RTTS —

hRTTS
tar, i

Target angle of the i-th RTTS —

hgrip Gripping threshold 0.0
Ymax Maximum bending angle of RTTS 1.047 rad
Ymin Maximum warping angle of RTTS -1.047 rad
kTS Spring constant of TS 0:007 kgm2 s� 2 rad� 1

cTS Damping coefficient of TS 0:007 kgm2 s� 1 rad� 1

kRTTS Spring constant of RTTS 0:07 kgm2s� 2 rad� 1

kgrip Spring constant of grippers 1000:0 kgs� 2

cgrip Damping coefficient of grippers 10:0 kgs� 1

kseg Spring constant of intersegment springs 300:0 kgs� 2

cseg Intersegment damping coefficient 10:0 kgs� 1

xseg,i Segment position i —
xgrip,i Gripping point position i —
gviscosity Viscoelastic friction coefficient 1:0 kgs� 2

gstatic Static friction coefficient 0.1
gdynamic Dynamic friction coefficient 0.1
rseg Radius of a segment 0:035 m
mseg Mass of a segment 0:003 kg
g Gravitational acceleration 9:8 kgms� 2

RTTS, real-time tunable torsion spring; TS, torsion spring.

EXPLORING CATERPILLAR-LIKE SOFT ROBOT BEHAVIORS 583



experiments, a gripper is controlled by an oscillator because
the caterpillar robot is given a task to climb a step and walk on
the ceiling. Thus, we judged it to be appropriate to control a
gripper independently and assigned a dedicated oscillator. It
holds the substrate if sin /grip,i £ hgrip and a segment is on the
substrate.

A frictional force acts on a segment while it is on the
substrate but not gripping it. The force consists of viscos-
ity friction gviscosity _xi and either static friction min{Fseg,i,
gstaticFN} or dynamic friction gdynamicFN, where Fseg,i is the
resultant force applied on the i-th segment (friction not in-
cluded) and FN is the normal force from the substrate.

Mechanosensor values

For mechanosensors, the torque generated by RTTSs and
the x and z components of tensions between grippers and
segments were used. These values were chosen because we
considered them easy to obtain using off the shelf sensors.
The torque generated by an RTTS can be directly estimated
from the discrepancy between the target angle and current
angle of the actuator. The x and z components of tension
between a gripper and a segment can be measured by ob-
serving the deformation of the gripper along the x-axis and
the distance between a segment and the ground, respectively,
using a photo reflector, as was done by Umedachi et al.11

Although there are additional state values, such as tension
generated by a spring between two segments that models
material elasticity, these values were not used because
methods to measure such values were unavailable. However,
from the perspective of biology, real caterpillars most likely
sense such values. Thus, in future work, we will investigate
methods to sense such values and explore their effect on soft
robot behaviors.

In summary, the state input F for a five-segment caterpil-
lar, which was used in most experiments, has the following
13 dimensions:

F¼ Ts1, Ts2, Ts3, Fgx0, � � � , Fgx4, Fgz0, � � � , Fgz4

	 
T
, (12)

where Tsi represents torque generated by an actuator on the
i-th segment, and Fgxj and Fgzj are x and z components of
tension between the j-th segment and a corresponding grip-
per, respectively.

Experiments

Several numerical experiments were conducted to study
the effectiveness of the proposed method. The proposed
method was compared to two baseline alternatives to con-
sider the importance of mechanosensory feedback.

1. LocalSenseCPG-PGPE: In this approach, an oscillator
only monitors mechanosensors that are close to the
actuator it controls. An RTTS on the i-th segment is
controlled using the magnitude of torque generated by
itself and tension on the grippers on the i-th and ad-
jacent segments. A gripper on the i-th segment is
controlled using the magnitude of torque generated by
an RTTS on the i-th segment and the tension applied to
itself. The parameters are optimized using PGPE.15

2. Kuramoto-PGPE: Oscillators are ruled by Kuramoto’s
model,22,23 which is shown in Equation (13). The

number of oscillators is N. An oscillator is influenced
by all other oscillators, and the magnitude of influence
is jij. jij and the target phase difference qij are opti-
mized using PGPE. No mechanosensors are used in
this method.

_/i¼xþ +
N

j¼ 0

jij sin (/i�/j�qij): (13)

Comparison of training methods

This section compares the training performance of the
proposed method to other baseline approaches. The follow-
ing three other reinforcement learning methods were used as
baselines: deep deterministic policy gradient (DDPG),24 trust
region policy optimization (TRPO),25 and proximal policy
optimization (PPO).26 These are popular reinforcement
learning methods for a continuous action space. The pro-
posed method is simultaneously compared to its alternatives,
namely, LocalSenseCPG-PGPE and Kuramoto-PGPE, which
have different sensor–actuator coordinations.

In the experiment, linear functions that calculate fcos,i and
fsin,i in Equation (1) were optimized using each reinforcement
learning method. A five-segment caterpillar was used. All
controllers were trained for 500 epochs. For DDPG, TRPO,
and PPO, one epoch was locomotion over a 50 s duration. A
caterpillar was placed at x = 0 at the beginning of an epoch,
ran for 50 s, and was then reset and placed at x = 0 again.
Since the state update was conducted every 0.01 s, there were
5000 updates during an epoch. In DDPG, TRPO, and PPO,
reward discount c was set to 0.99, and Adam27 was used for
optimization. The conditions for each method were as follows.

Deep deterministic policy gradient. A simple linear
transform bounded by tanh was used for the policy, that is,
tanh(WF + b), where W and b are a weight matrix and a bias,
respectively. For an action–value function, a perceptron with
one hidden layer was used. A state vector with 13 dimensions
was fed to the input layer of the network. Outputs from the
input layer (7 dimensions) and an action (16 dimensions)
were concatenated and fed to the hidden layer. The activation
function in the network was tanh. The Ornstein–Uhlenbeck
process with mean l = 0.0, noise scale r = 0.4, and growth
rate h = 0.15 was adopted for exploration noise. The capacity
of the experience replay buffer was 1 · 105, and the parameter
update started when 1 · 104 experiences (i.e., pairs of state,
action, and reward) were stored.

Trust region policy optimization and proximal policy
optimization. The policy network structure of DDPG was
used. A perceptron with one hidden layer of 7 units was used
for a value function. Gaussian noise with mean l = 0.0 was
added to action during training for exploration noise. The
variance of the noise was adjusted automatically.

Policy gradients with parameter-based exploration. One
epoch consisted of 20 independent episodes, and one episode
lasted 50 s. The initial standard deviations of Gaussian dis-
tribution used in PGPE were set to r = 2.0. SenseCPG-PGPE,
LocalSenseCPG-PGPE, and Kuramoto-PGPE were trained in
the same scheme using PGPE.

584 ISHIGE ET AL.



Figure 3 shows the averaged learning curves over 10 trials.
PPO, DDPG, and TRPO yielded poor results compared to
PGPE. Among the three methods trained using PGPE,
Kuramoto-PGPE, which does not use any mechanosensory
feedback at all, yielded the poorest performance, which im-
plies that mechanosensory feedback is useful even for mo-
notonous periodical behavior. The average gait frequencies of
SenseCPG-PGPE, LocalSenseCPG, and Kuramoto were 0.521
(–0.082), 0.543 (–0.122), and 0.627 (–0.068) Hz, respectively.

Controlling many segments

Controllers for caterpillars with many segments (40 and 80
segments) were trained in this experiment. There are 118
sensor inputs for a caterpillar with 40 segments, comprising
vertical and horizontal force sensors for 40 grippers and 38
tension sensors on RTTSs along the body. Feedback for 40
grippers and 38 RTTSs must be calculated at every
step. Thus, there are 118 · 78 = 9204 sensor–actuator com-
positions to be considered. In the case of a caterpillar with 80
segments, 238 · 158 = 37,604 compositions must be consid-
ered. Figure 4 is a snapshot of the 80-segment caterpillar. A
controller was trained for 2000 epochs using PGPE.

The obtained controller drove the 40-segment caterpillar
8.13 m in 100 s. The frequency of an oscillator was
*0.485 Hz. Since the length of the caterpillar was 2.8 m, it
proceeded 290% of its body length during the period.
Figure 5a visualizes the time development of the phases in

oscillators for RTTSs, that is, the time development of 1 - cos
/seg,i. The value 1 - cos /seg,i was used because it is directly
related to the target angle of a segment actuator, as in
Equation (11). Dark green (i.e., 1 - cos /seg,i being 2.0) and
white (i.e., 1 - cos /seg,i being 0.0) correspond to the target
angle of an actuator being at its maximum (i.e., bending) and
minimum (i.e., warping), respectively. At the beginning of an
episode, all the oscillators were in phase. The diagonal
alignment of dark green appeared as time elapsed, which
indicates that bending command flowed from the tail to the
head. The figure also shows that bending did not occur one
segment after another. Instead, a group of segments bent at
once, and this group excitation flowed. Figure 5b shows the
time development of the phases in the 80-segment caterpillar.
The same trend was observed here. To see the flow of bending
from the tail to the head, we refer readers to the Supple-
mentary Video S1.

We also compared displacement per body length during a
gait cycle of 5-, 40-, and 80-segment caterpillars. The trained
five-segment caterpillar showed inching behavior with a gait
frequency of 0.446 Hz, and it moved 4.67 m during one epi-

sode (100 s). Thus, its averaged displacement was 4:67
100

· 1
0:446

j 0:105 m during one cycle, which is 0.105 / (5 · 0.07) j
0.300 body length. In contrast, displacement per body length
during a cycle of the 40-segment caterpillar was 0.0599 and
that of the 80-segment caterpillar was 0.00257. The five-
segment caterpillar moved the largest distance per body
length during a cycle because it used a gait pattern called
inching. However, the actuators cannot support the longer
body to realize this gait pattern, so a gait pattern called
crawling emerged in the 40-segment caterpillar. As we will
discuss later, for a given body length, crawling is slower than
inching. This explains why the displacement per body length
during a cycle of the 40-segment caterpillar was smaller
compared with the 5-segment caterpillar. The 80-segment
caterpillar achieved the smallest displacement per body
length during a cycle; this is likely due to training time being
insufficient. We stopped the training of this caterpillar before
convergence because its simulation was too time consuming.
Conducting more extended training with an improved sim-
ulator may help to improve the policy.

Nonsteady motion

The controller was trained to climb a step in a path to
clarify whether the CPG-based controller can learn to per-
form a task that requires nonsteady motion using mechan-
osensors. A step of height 8.0 cm, which is higher than a
segment diameter was placed at x = 35 cm. To judge whether
a segment is being hampered by the step, the simulator
checks the following condition every step:

zseg, i � h(xseg, i)þ rseg� �hampered, (14)

where zseg,i and xseg,i denote the vertical and horizontal po-
sition of a segment, respectively. The height of the path at
position xseg,i is denoted by h(xseg,i). The small constant

FIG. 3. Learning curves of several reinforcement learning
methods and mechanosensory feedback compositions. Each
solid curve is an average of over 10 training trials, and the
dotted lines show standard deviation. Curves are smoothed
over every 20 epochs. DDPG, TRPO, and PPO, which up-
date the policy at every step, yielded poor performance
compared to PGPE. DDPG, deep deterministic policy gra-
dient; PPO, proximal policy optimization; TRPO, trust re-
gion policy optimization.

FIG. 4. Snapshot of a cat-
erpillar with 80 segments.

EXPLORING CATERPILLAR-LIKE SOFT ROBOT BEHAVIORS 585



ehampered was used to distinguish the situation from the normal
landing of a segment, and it was set to 1.0 · 10-3. If the
condition [Inequality (14)] is satisfied, the segment is judged
as being hampered and cannot move forward in the simula-
tion. A sensor that monitors whether the head segment is
hampered was added, and its output was fed to all oscillators;
more specifically, a variable that is equal to 1 if the head
segment is hampered and equal to 0 if not was prepared. This
value was concatenated with other sensor values and fed into
fcos,i and fsin,i in Equation (1). The weights for the value were
optimized by PGPE in the same way as the other weights. A
five-segment caterpillar was used, and the controller was
trained for 400 epochs using PGPE.

Figure 6 shows how the caterpillar managed to climb the
step. When the hamper sensor on the head detected the step, it
raised the front segments and put the head segment on the
step. Then, the segments were transported to the top of the
step one by one. Although a CPG-based controller is mostly
used for periodical steady motion, a reactive motion was

achieved here. Figure 7 shows the climbing performance on
steps of different heights. All controllers here were trained on
the step of 8.0 cm height. SenseCPG-PGPE, LocalSenseCPG-
PGPE, and Kuramoto-PGPE were compared. The averaged
gait frequencies were 0.513 (–0.055), 0.476 (–0.143), and
0.622 (–0.207) Hz, respectively. Until a height of 8.5 cm, the
proposed controller achieved the fastest locomotion. As the
height increases, climbing becomes more difficult, and even
controllers trained with the proposed method could not suc-
cessfully climb the step. A different policy is most likely
required to climb a higher step.

Different body dynamics

Controllers were trained under two different body con-
figurations (A and B). In condition A, the RTTSs and springs
between adjacent segments were weakened, that is, their
spring constants were set to kRTTS = 0.7 and kseg = 20.0, re-
spectively. In condition B, the RTTSs and springs were made

a

b

FIG. 5. Time development of the
phases of oscillators that control RTTSs
in a caterpillar with (a) 40 segments and
(b) 80 segments. Value of 1 -cos(/seg,i)
is visualized using different chroma of
green. The oscillators were in phase at
the beginning, but a diagonal alignment
of dark green emerged.

FIG. 6. Snapshots of climbing a step. The step was located at x = 35 cm and its height was 8.0 cm, which is higher than the
diameter of a segment. The dark green color indicates that a segment is gripping the substrate.

586 ISHIGE ET AL.



stiffer, that is, their spring constants were set to kRTTS = 3.0
and kseg = 300.0, respectively. For the latter condition, an
RTTS can lift the whole body, which weighs 150 g. In ad-
dition, the bending angle was increased to 1.570 in condition
B, whereas both bending and warping angles were set to
1.047 in condition A. As a result, bending was easier for the
caterpillar in condition B. A five-segment caterpillar was
used, and controllers were trained for 200 epochs with PGPE.

In condition A, crawling was observed after optimization,
as shown on the left side of Figure 8a. The gait frequency was
0.437 Hz, and displacement during one episode (100 s) was
0.298 m. A cycle starts by lifting the rear segment, and the
lifting motion propagates toward the front. Crawling is
adopted in relatively large caterpillars such as silkworms, as
is shown on the right side of Figure 8a. In condition B, on the
other hand, a distinctive gait pattern called inching was ob-
served, as is shown in the left side of Figure 8b. The gait
frequency was 0.503 Hz, and displacement during one epi-
sode (100 s) was 7.668 m. In this pattern, the head segment
holds the substrate first, and the tail segment is dragged for-
wards. Then, the tail segment holds the substrate, and the
body extends to move the head segment forward. This gait
pattern is adopted in inchworms, as is shown on the right side
in Figure 8b. Since the RTTSs were strong enough to lift the
middle three segments, inching was possible in condition B.
However, the gait pattern converged to crawling in condition
A, which is likely because the RTTSs did not provide suffi-
cient power.

Different environmental conditions

Controllers were trained under different gravity directions.
In the first condition, gravity acted to keep the body on the

substrate, as in normal locomotion on the ground. In the
second condition, gravity acted to pull the body away from
the substrate, as in locomotion on the ceiling. A penalty was
imposed when the body left the substrate, that is, when none
of the segments was on the substrate, to make the controller
learn a policy that keeps the body on the substrate. Hence, the
following reward was adopted:

Episodic reward¼
locomotion distance (didn’t fall)

� 10 · 1� Ton substrate

Tepisode

� �
(fell)

(
,

where Ton substrate is the duration before falling off and Tepisode

is an episode duration. Initial phases of oscillators for grip-
pers were set to 3

2
p instead of the default value 0 to prevent

the body from falling off the ceiling at the beginning of an
episode. This phase adjustment made the caterpillar start an
episode in the gripping state. The default gripping duration
was extended to accelerate learning, that is, the gripping
threshold hgrip was changed from 0 to sin p

4
. A five-segment

caterpillar with the following configurations were used: kseg =
300.0, cseg = 10.0, and kRTTS = 5.0. Controllers were trained for
200 epochs with PGPE in both conditions.

Figure 9a shows locomotion acquired on the ground,
which is inching. The gait frequency was 0.714 Hz, and
displacement during one episode (100 s) was 5.32 m. On the
ceiling, however, a distinct gait pattern was observed, as
shown in Figure 9b. The gait frequency was 0.508 Hz, and
displacement during one episode (100 s) was 0.352 m. The
end and middle segments held the substrate in turns.

Discussion

Partially observable Markov decision process
during training

Although the system followed a partially observable
Markov decision process (POMDP), PGPE, which assumes a
Markov decision process, was able to learn the appropriate
policy because the complexity of motion was reduced by
entrainment of the oscillators. Each segment in the simulated
caterpillar-like robot has two degrees of freedom, namely,
bending of the body and elasticity along the direction of the
body’s axis. The latter is neither controllable nor observable.
Usually, this causes perceptual aliasing, and countermeasures
such as estimation of the real state from action history are
required. However, the motion of the body converged to a
stationary cycle after entrainment of oscillators, as depicted
in Figure 10. Figure 10 shows the time development of the
body states, that is, the bending angle of each segment and the
distance between every two adjacent segments. The dimen-
sion of a body state vector, which was seven originally, was
reduced to three using principal component analysis. The
body state vectors were then plotted. The line gradually
changes from red to blue over time, starting from the green
star marker. Convergence of the orbit to a limit cycle was
observed. This result implies that entrainment reduces the
complexity of the motion. This is why PGPE can learn a
policy well even under the POMDP.

DDPG, TRPO, and PPO failed because they could not
process the temporal changes in the system dynamics. As
Figure 10 shows, it takes some time for the entrainment to
take place and to converge to a steady state. The three

FIG. 7. Comparison of locomotion distance in 100 s,
during which time the robot must climb one step of a dif-
ferent height. A step was placed at x = 35 cm. The controllers
were trained to navigate a step of height 8 cm. The hori-
zontal dashed line shows the position of a step. Each bar
presents the average of 10 separately trained controllers.
The error bars are large due to some training trials failing,
even with the proposed SenseCPG-PGPE. The robot using
Kuramoto-PGPE barely managed to climb a step, whereas
the robot using the proposed method was able to climb an
average highest step of 8.5 cm.

EXPLORING CATERPILLAR-LIKE SOFT ROBOT BEHAVIORS 587



reinforcement learning methods could not find a good policy
because they conduct step-based policy updates, so they try to
train a single policy under different dynamics. PGPE, on the
other hand, updates the policy based on the performance
throughout an episode. Therefore, it learns the policy that
maximizes performance after entrainment, resulting in stable
locomotion.

Phase difference modulation

Mechanosensory feedback is useful even for locomotion
on flat terrain. Figure 3 shows that the performances of
SenseCPG-PGPE and LocalSenseCPG-PGPE were better
compared with Kuramoto-PGPE, although some trials of
SenseCPG-PGPE showed poor performance due to signifi-
cant variance in training. The result is unintuitive because it
is locomotion on flat terrain, and as long as parameters are
optimized, performance seems to converge to the same le-
vel, regardless of sensor information incorporation. As re-
ported in Comparison of Training Methods section, the

frequency of Kuramoto-PGPE is higher compared with
SenseCPG-PGPE and LocalSenseCPG-PGPE. Thus, oper-
ation frequency does not explain the lower locomotion
speed of Kuramoto-PGPE.

One possible reason is that SenseCPG-PGPE and
LocalSenseCPG-PGPE can modulate phase differences but
Kuramoto-PGPE cannot. Figure 15 shows phase differences
of oscillators for segment actuators during the step climbing
experiment in Nonsteady Motion section. During the period
of locomotion on the step (after s0 line), fine modulation of
phase differences can be observed in SenseCPG-PGPE,
whereas phase differences are constant in Kuramoto-PGPE.
This fine modulation of phase differences according to body
state seems to be important for faster locomotion. If this is the
case, it implies that using sensor information to estimate
current body state is beneficial even for monotonous peri-
odical behaviors. Furthermore, if direct connections among
oscillators are dominant, modulation is unlikely to occur.
Therefore, an orchestration of oscillators through physical
communication may be useful.

FIG. 8. Snapshots of different gait patterns obtained for different body configurations. The dark green color indicates that
a segment is gripping the substrate. (a) Crawling acquired under condition A (left), where the actuator was relatively weak.
A direct wave was observed, as in the crawling of silkworms (right). (b) Inching acquired under condition B, where the
actuator was *4.3 times stronger than in condition A. The segments were able to bend from -1.407 to 1.570, and the
springs between the segments were made stiffer. The rear and the front ends move in turn, resulting in limping behavior, as
seen in inchworms (right).

588 ISHIGE ET AL.



Benefit of global mechanosensory feedback

Global mechanosensory feedback is more important for
achieving complex behaviors. As Figure 3 shows, the benefit
of SenseCPG-PGPE is not clear in locomotion on flat terrain,
although global mechanosensory feedback was obtained in
SenceCPG-PGPE as is shown in Figure 11. Worth noting is
that the best controller of SenseCPG-PGPE achieved better
performance than the best of LocalSenseCPG-PGPE. Thus,
global mechanosensory feedback may be just as useful as
local mechanosensory feedback in flat terrain locomotion.
Locomotion on flat terrain might be a simple enough task
such that local mechanosensory feedback alone was enough
to achieve good performance.

In contrast, the benefit of global mechanosensory feedback is
obvious when climbing a step, as shown in Figure 7. Figure 12
visualizes weight parameters of the best three SenseCPG-
PGPE controllers. Strong attention to nonadjacent sensors was
observed. The result makes sense because climbing a step re-

quires the cooperation of distant body parts (e.g., pulling by the
head and pushing by the tail must occur at corresponding
times). Therefore, incorporating global sensory feedback is
beneficial to achieve complex and tactical behaviors.

Weights on different dynamics and environments

Training on different body dynamics leads to different
feedback mechanisms, which generate different behaviors.
Figure 13 shows weights of some controllers that lead to
crawling and inching. Weights for crawling are stronger than
those for inching. This result is intuitive. To generate inching
behavior, a strong synchronization of bending actuators is
required. Hence, feedback to controller oscillators most
likely needs to be more intense, and larger weights were
acquired for this purpose. In contrast, such synchronization
does not occur in crawling, so smaller weights were obtained.
In general, however, the weight patterns seem to be different
from each other, even among controllers that generated the
same behavior. This implies that the solution space of feed-
back weights which lead to a certain behavior diverges,
possibly because there was redundancy in sensor informa-
tion. Thus, the correlation between a weight pattern and a
resultant behavior is not clear. This is why we should utilize
machine learning techniques to explore behaviors.

The different environments also lead to different feedback
weight patterns. Figure 14 visualizes feedback weights obtained
for locomotion on the ground and on the ceiling. Note that the
original weights for the ceiling were ten times greater than those
shown in Figure 14b. However, running the caterpillar simu-
lation on the ceiling with controller parameters being multiplied
by 0.1 did not cause performance degradation. Thus, the orig-
inal values were multiplied by 0.1 for comparison of weights
between environments. The unnecessarily large weights were
likely due to the training process or reward function. Compared
to weights in Figure 14a, weights in Figure 14b are very sparse
and strong attention is limited to one or two sensors for each

FIG. 9. Snapshots of gait patterns acquired for different
gravity settings: locomotion on the ground (left column) and
locomotion on the ceiling (right column). The brown area is
the substrate. Segments in dark green are gripping the
substrate in each frame. (a) Inching acquired for locomotion
on the ground. (b) Gait pattern for locomotion on the ceiling.

FIG. 10. Time development of a body state. Seven values
(four distances of adjacent segments and three bending an-
gles) were standardized and reduced to three dimensions
using principal component analysis. The dimension-reduced
states were plotted, starting at the green star marker. The
color of the line transitions from red to blue as time pro-
ceeds. By the time the color of the line becomes blue, the
trajectory converged to a stationary orbit; in other words, a
limit cycle was formed.

EXPLORING CATERPILLAR-LIKE SOFT ROBOT BEHAVIORS 589



oscillator. For example, /seg,3 of Trial 0 in Figure 14b only pays
strong attention to Fgx0. Such a feedback pattern appeared to
prevent the body from falling off the ceiling. The resulting
weight patterns may imply that each body part should pay more
attention to a specific gripper so that it does not disturb the
lifeline gripper, which would prevent falling.

Behavior switching according to mechanosensory
feedback

The robot using SenseCPG-PGPE achieved longer loco-
motion distances than those using Kuramoto-PGPE in the
experiment of climbing a step because the former switched

a

b

FIG. 11. Magnitudes of feedback weights obtained for locomotion on flat terrain using (a) SenseCPG-PGPE and (b)
LocalSenseCPG-PGPE. Feedback weights to oscillators for segment actuators are shown. The symbols of sensors corre-
spond with Equation (12). For simplicity, two weights {Wcos}ij and {Wsin}ij (i and j are oscillator id and sensor id,

respectively) are bundled into
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fWcosg2

ijþfWsing2
ij

q
. Weights for inactive sensors (i.e., sensors that returned zero during

stable locomotion) are shown as zero. The original values of the weights are published online (Supplementary Data). In
LocalSenseCPG-PGPE, only weights surrounded by the red frames were active.

FIG. 12. Magnitudes of
feedback weights (i.e.,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fWcosg2

ijþfWsing2
ij

q
) in three

best SenseCPG-PGPE con-
trollers obtained in Non-
steady Motion section. H
represents the sensor on the
head to detect an obstacle in
front. Other symbols of sen-
sors correspond with Equa-
tion (12). The white numbers
in the heat maps show the
actual magnitudes of weights
that exceed the range of the
color bar. The actual values
of the weights are published
online (Supplementary Data).
Caterpillars in the three trials
showed similar climbing be-
haviors, but details differed
(e.g., timing of placing each
segment on the step).

590 ISHIGE ET AL.



behaviors between plane locomotion stage and step climbing
stage. Figure 15 shows phase differences of oscillators for
RTTSs during an episode. The green line under the h mark
shows when the head segment of a caterpillar controlled by
SenseCPG-PGPE first touched the side of the step. The other
lines under s4, s3, s2, s1, and s0 show when segment 4 (the

head), segment 3, segment 2, segment 1, and segment 0 (the
tail) gripped the upper side of the step first, respectively. The
red lines in Figure 15 denote phase differences realized by
Kuramoto-PGPE. The relationship between the phases re-
mained constant for all situations. In locomotion realized by
SenseCPG-PGPE, on the other hand, the relationship

a

b

FIG. 13. Magnitudes of
feedback weights (i.e.,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fWcosg2

ijþfWsing2
ij

q
) in the

best three controllers for (a)
crawling and (b) inching ob-
tained in Different Body
Dynamics section. The sym-
bols of sensors correspond
with Equation (12). Weights
for inactive sensors (i.e.,
sensors that returned zero
during stable locomotion) are
shown as zero. The white
numbers in the heat maps
show the actual magnitudes
of weights that exceed the
range of the color bar. The
original values of the weights
are published online (Sup-
plementary Data).

EXPLORING CATERPILLAR-LIKE SOFT ROBOT BEHAVIORS 591



changed dynamically during climbing and returned to being
constant afterward. Because SenseCPG-PGPE was able to
switch behaviors for locomotion on a plane and for climbing
a step and to separately optimize for each stage, it achieved
better performance, whereas Kuramoto-PGPE had to use the
same behavior for both stages.

Typically, a CPG-based controller is used to realize peri-
odical behaviors. However, the proposed method achieved
reactive behavior, that is, lifting of the head when the head
touches the side of a step. Therefore, the method supports the
application of CPG-based controllers in broader scenarios,
including ones where nonperiodical motion is required.

a

b

FIG. 14. Magnitudes of
feedback weights (i.e.,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fWcosg2

ijþfWsing2
ij

q
) in the

best three controllers for lo-
comotion (a) on the ground
and (b) on the ceiling obtained
in Different Environmental
Conditions section. The sym-
bols of sensors correspond
with Equation (12). The white
numbers in the heat maps
show the actual magnitudes of
weights that exceed the range
of the color bar. Note that the
weight values in (b) are 0.1
time smaller than the original
values acquired. The original
values of the weights are
published online (Supplemen-
tary Data). In controllers for
locomotion on the ceiling,
each oscillator tends to pay
keen attention to sensors on a
specific gripper.

592 ISHIGE ET AL.



Conclusion

In this article, we investigated SenseCPG-PGPE, which is
a method for automatically exploring behaviors of a
caterpillar-like soft-bodied robot. In this approach, a CPG-
based controller consisting of generalized active rotators
controls a robot, and the PGPE algorithm optimizes me-
chanosensory feedback to the CPG-based controller. We
showed that this enables the robot to explore various be-
haviors automatically through body–environment interac-
tions. We also compared several reinforcement learning
methods, such as DDPG, TRPO, PPO, and PGPE, and
demonstrated that only PGPE, which updates parameters
episodically, was able to yield desired behaviors in a
caterpillar-like soft-bodied robot. Moreover, the framework
automatically designs a feedback controller for a robot with a
large number of sensors and actuators. This scalability is
important as it becomes possible to implement larger num-
bers of sensors and actuators in more complex robots. Al-
though SenseCPG-PGPE adopts the CPG-based controller as
a key component, it can design a controller that achieves not
only steady-state motion, such as straight locomotion, but
also nonsteady motion, such as climbing a step, by utilizing
mechanosensor information. While we have only applied the
proposed method to a caterpillar-like soft-bodied robot, the
control target is not limited to such morphology. These
methods are also applicable to various soft-bodied robots,
such as multilegged soft-bodied robots, because the approach
does not make any assumptions about the shape of the robot.

Future work

There are numerous directions in which to continue de-
veloping the proposed framework. First, validation in 3D

simulation for generating more diverse and complex behaviors,
such as swinging motions, should be conducted. Application to
more complex robot shapes, such as quadrupeds and octopi,
should also be explored. Testing of the method on a real robot
is a crucial next step, although this may require a reduction in
learning cost. The embodiment of the nonlinearity of the phase
oscillators to the body morphology28 may lead to learning cost
reduction. Moreover, episode-based reinforcement learning
methods other than PGPE should be examined, and conditions
required for convergence should be clarified. Furthermore, we
believe that the proposed method can contribute to the field of
robotics-inspired biology29 in two ways. First, we can use our
method to investigate the influences of body softness on the
behaviors of soft animals. This process will provide a deeper
understanding of soft animal behaviors and reveal the affor-
dances and advantages of having a soft body. Second, it may
help us to understand the mechanism of multitimescale adap-
tation of animals, that is, adapting to new situations in various
timescales such as adaptation using evolution, learning, and
mechanosensory reflexes. We are planning to explore the
possibility of introducing a multitimescale-RNN to replace the
oscillators, which have a fixed time constant, with more flex-
ible ones to learn multitimescale dynamics, as Yamashita and
Tani30 demonstrated. By triggering the learning process of
RNNs with different time constants, multitimescale adaptation
may be achieved. If so, this would contribute to an under-
standing of the adaptation ability of animals.

Acknowledgment

This work was supported by JST ERATO Grant Number
JPMJER1501, JSPS KAKENHI Grant-in-Aid for Scientific
Research on Innovative Areas ‘‘Science of Soft Robot’’
Grant Number 18H05467, and JSPS KAKENHI Grant-in-
Aid for Scientific Research on Innovative Areas Grant
Number 16H06569.

Supplementary Data

Values of obtained weights: actual values of weights vi-
sualized in Discussion section are available at Supplementary
Data.

Author Disclosure Statement

No competing financial interests exist.

Supplementary Material

Supplementary Video S1

References

1. Kim S, Laschi C, Trimmer B. Soft robotics: a bioinspired
evolution in robotics. Trends Biotechnol 2013;31:287–294.

2. Corucci F, Cheney N, Giorgio-Serchi F, et al. Evolving soft
locomotion in aquatic and terrestrial environments: effects
of material properties and environmental transitions. Soft
Robot 2018;5:475–495.

3. Grillner S, Ekeberg Ö, El Manira A, et al. Intrinsic function
of a neuronal network—a vertebrate central pattern gener-
ator. Brain Res Rev 1998;26:184–197.

4. Ijspeert AJ. Central pattern generators for locomotion
control in animals and robots: a review. Neural Netw 2008;
21:642–653.

FIG. 15. Time development of phase differences of os-
cillators that control RTTSs during locomotion and climbing
a step. The green line under the h mark shows when the
head segment first touched the side of the step. Other lines
under s4, s3, s2, s1, and s0 show when segment 4 (head),
segment 3, segment 2, segment 1, and segment 0 (tail) grip-
ped the upper side of the step for the first time, respectively.
The red numbers above the green lines correspond to snap-
shot numbers in Figure 6. The red lines are phase differences
realized by Kuramoto-PGPE. They remained stationary over
time. The blue lines are phase differences by SensorCPG-
PGPE. Phase relations changed as the robot received different
sensor inputs.

EXPLORING CATERPILLAR-LIKE SOFT ROBOT BEHAVIORS 593



5. Ijspeert AJ, Crespi A, Ryczko D, et al. From swimming to
walking with a salamander robot driven by a spinal cord
model. Science 2007;315:1416–1420.

6. Liu C, Chen Q, Wang D. CPG-inspired workspace trajec-
tory generation and adaptive locomotion control for quad-
ruped robots. IEEE Trans Syst Man Cybern B Cybern
2011;41:867–880.

7. Crespi A, Badertscher A, Guignard A, et al. Amphibot i: an
amphibious snake-like robot. Robot Autonom Syst 2005;
50:163–175.

8. Crespi A, Lachat D, Pasquier A, et al. Controlling swim-
ming and crawling in a fish robot using a central pattern
generator. Autonom Robots 2008;25:3–13.

9. Kimura H, Akiyama S, Sakurama K. Realization of dy-
namic walking and running of the quadruped using neural
oscillator. Autonom Robots 1999;7:247–258.

10. Owaki D, Ishiguro A. A quadruped robot exhibiting spon-
taneous gait transitions from walking to trotting to gallop-
ing. Sci Rep 2017;7:277.

11. Umedachi T, Kano T, Ishiguro A, et al. Gait control in a
soft robot by sensing interactions with the environment
using self-deformation. R Soc Open Sci 2016;3:12.

12. Righetti L, Ijspeert AJ. Pattern generators with sensory
feedback for the control of quadruped locomotion. Pro-
ceedings of the 2008 IEEE International Conference on
Robotics and Automation (ICRA), Pasadena, CA: IEEE,
2008, pp. 819–824.

13. Nakada K, Asai T, Amemiya Y. Design of an artificial
central pattern generator with feedback controller. Intell
Autom Soft Comput 2004;10:185–192.

14. Ishige M, Takuya U, Taniguchi T, et al. Learning
oscillator-based gait controller for string-form soft robots
using parameter-exploring policy gradients. In Proceedings
of the 2018 IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS), Madrid, Spain: IEEE,
2018, pp. 6445–6452.

15. Sehnke F, Osendorfer C, Rückstieß T, et al. Parameter-
exploring policy gradients. Neural Netw 2010;23:551–559.

16. Nakamura Y, Mori T, Sato M, et al. Reinforcement
learning for a biped robot based on a CPG-actor-critic
method. Neural Netw 2007;20:723–735.

17. Matsubara T, Morimoto J, Nakanishi J, et al. Learning cpg-
based biped locomotion with a policy gradient method.
Robot Autonom Syst 2006;54:911–920.

18. Gay S, Santos-Victor J, Ijspeert AJ. Learning robot gait
stability using neural networks as sensory feedback func-
tion for central pattern generators. In Proceedings of the

2013 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Tokyo, Japan: IEEE, 2013,
pp. 194–201.

19. Shinomoto S, Kuramoto Y. Phase transitions in active ro-
tator systems. Progr Theor Phys 1986;75:1105–1110.

20. Verlet L. Computer ‘‘experiments’’ on classical fluids. I.
Thermodynamical properties of Lennard-Jones molecules.
Phys Rev 1967;159:98.

21. Meyers MA, Chawla KK. Mechanical Behavior of Mate-
rials. Cambridge, United Kingdom: Cambridge University
Press, 2008.

22. Kuramoto Y. Self-entrainment of a population of coupled
non-linear oscillators. In International Symposium on
Mathematical Problems in Theoretical Physics, Araki H.
(Ed.) Kyoto, Japan: Springer, 1975, pp. 420–422.

23. Acebrón JA, Bonilla LL,Vicente CJP, et al. The kuramoto
model: a simple paradigm for synchronization phenomena.
Rev Modern Phys 2005;77:137.

24. Lillicrap TP, Hunt JJ, Pritzel A, et al. Continuous Control
with Deep Reinforcement Learning. 2015. arXiv:1509.02971.

25. Schulman J, Levine S, Abbeel P, et al. Trust region policy
optimization. In Proceedings of the 32nd International
Conference on Machine Learning (ICML), Lille, France:
2015, pp. 1889–1897.

26. Schulman J, Wolski F, Dhariwal P. et al. Proximal policy
optimization algorithms. 2017. arXiv:1707.06347

27. Kingma DP, Ba J, Adam: a method for stochastic optimi-
zation. 2014. arXiv:1412.6980

28. Hauser H, Ijspeert AJ, Füchslin RM, et al. The role of
feedback in morphological computation with compliant
bodies. Biol Cybern 2012;106:595–613.

29. Gravish N, Lauder GV. Robotics-inspired biology. J Exp
Biol 2018;221:jeb138438.

30. Yamashita Y, Tani J. Emergence of functional hierarchy in
a multiple timescale neural network model: a humanoid
robot experiment. PLoS Comput Biol 2008;4:e1000220.

Address correspondence to:
Matthew Ishige

Graduate School of Information Science and Technology
The University of Tokyo

7-3-1 Hongo
Bunkyo-ku

Tokyo 113-8656
Japan

E-mail: mishige@akg.t.u-tokyo.ac.jp

594 ISHIGE ET AL.


