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The conundrums of choosing candidate genes, via differential expression between treated and mock spec-
imens, are tackled by Ghandikota et al. in this issue of Patterns in their efforts to tease out genetic patterns
that are characteristic of coronavirus disease 2019 (COVID-19) outcomes.
Coronavirus disease 2019 (COVID-19),

caused by severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2)

infection, is a heterogeneous disease ex-

hibiting a broad spectrum of symptoms,

ranging from mild (e.g., olfactory disfunc-

tion, dry cough, head or body aches, sore

throat, COVID toes) to critical (e.g., cyto-

kine storm, renal failure, cardiovascular

damage, respiratory failure, lethal blood

clotting, neurological disorders).1 Inten-

sive care units dedicated to COVID-19

cases are being confounded by divergent

emergency crises, demanding a breadth

of specialists and specialized equip-

ment.1 Although someCOVID-19-positive

individuals exhibit multiple symptoms,

others only show one, and many are

completely asymptomatic. Analyses of

transcriptomics data hold potential to

reveal patterns of gene expression asso-

ciated with specific outcomes, thereby

providing valuable foundational informa-

tion for breakthrough advances, including

diagnostic tools to facilitate precision

treatment, seeds for generating hypothe-

ses that decipher underlying biological

mechanisms, and potential drug targets,

some of which could already have effec-

tive medications that can be repurposed.

However, gene expression data are noisy,

and analyses are formidable. Moreover,

due to the novelty of the virus, COVID-19

data are sparse. In this issue of Patterns,

Ghandikota et al. launch into these chal-

lenges and present a multi-layered

network modeling strategy to identify

several biological processes that could

help shed light on this enigmatic disease.2

Ghandikota et al. skillfully handle spar-

sity of COVID-19 data in two ways. First,

they leverage pre-COVID data in their

network analyses. This approach has

been used by others, e.g., yielding the

promising bradykinin storm hypothesis
This is an open access ar
for COVID-19,3 and this current work uti-

lizes rich data from three SARS-CoV-1

infection (SARS) models, the STRING

protein-protein interactions database,

the Molecular Signatures Database

(MSigDB), NCBI’s Phenotype-Genotype

Integrator (PheGenI), and NHGRI-EBI’s

genome-wide association studies (GWAS)

catalog.Second, they integrate threesepa-

rate SARS-CoV-2 infection (COVID-19) da-

tasets for their analysis, drawing from a

mouse model and human and African

green monkey cell lines. They overcome

the diversity of these organisms by utilizing

‘‘consensus’’ genes as described below.

Like many transcriptomic analyses, the

study begins by determining differentially

expressed genes (DEGs) with significant

deviations in expression levels between

the treated and mock specimens. The

use of DEGs yields both obvious and

subtle dilemmas. Due to the large num-

ber of statistical tests, some are likely

to show significance by chance, and cor-

rections are requisite. Balancing false

positives and false negatives when

choosing a multiple-testing correction

method is challenging, because Bonfer-

roni corrections tend to wipe out many

significant results, and false discovery

rate (FDR) tends to produce too many

erroneous significant DEGs.4 Because

transcriptomic analyses are generally

exploratory, FDR is commonly em-

ployed, as is done by Ghandikota et al.

This approach yields 8,286 DEGs,

from which they choose consensus

genes that exhibit differential expression

in at least two of the three datasets.

This maneuver strives toward balancing

the false positive/false negative quan-

dary and produces a list of 1,467

consensus DEGs.

A more insidious issue with using DEGs

is that some genes tend to be differentially
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expressed regardless of the phenotype

being tested.5 By using over 600 Affyme-

trix Human Genome U155 Plus 2.0 data-

sets for a wide range of phenotypes,

Crow et al. ranked ~19,000 genes in a

DEG ‘‘priors’’ list, ordered by likelihood

to appear as DEGs in arbitrary transcrip-

tional analyses. They observed 229 genes

that appear in more than 10% of the DEG

lists produced in the previous analyses,

and one gene, CXCL8 (aka IL8), included

in nearly one-fifth of the studies. The

data used by Ghandikota et al. were

generated with Illumina NextSeq 500,

and the impact of platform on rankings

in the DEG priors list is currently unclear.

To test whether their compendium of

consensus genes is specific for COVID-

19, Ghandikota et al. computed differen-

tial expression for 1,000 permutation trials

in which the phenotype labels were

randomly reassigned. These trials pro-

duced orders of magnitude fewer DEGs,

as well as consensus DEGs, than did the

unpermuted data, thereby increasing

confidence in the COVID-19 specificity

of the results.

Looking beyond the work presented by

Ghandikota et al., a pressing challenge for

future analyses involving DEGs is to cap-

ture genes that do not signal differential

expression when examined in isolation

but exhibit significance when examined

as a group containing additional genes

(Figure 1). A single gene can yield multiple

protein species due to genetic polymor-

phisms and via regulatory mechanisms

such as alternative splicing and post-

translational modifications. Furthermore,

more than 500 proteins are currently

known to moonlight and perform diverse

tasks while using a single specific amino

acid sequence.6 These gene multi-task-

ing operations deepen the intricacies of

differential assessments. The toy
s 2, May 14, 2021 ª 2021 The Author(s). 1
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Figure 1. Combinatorial differential expression example
(A) Toy example of a disease pathway including genes A, B, and C, each of which show low marginal
effects between treated and mock specimens due to genetic activities in alternate processes.
(B) Venn diagrams for high expression of genes A, B, and C. In this toy example, none of the mock
specimens have simultaneous high expression for the three genes, whereas most of the treated exhibit
this synchronized expression.
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example in Figure 1 portrays an epistatic

interaction in which all three genes are

required for the disease pathway. It

should be noted that a similar situation

could arise for additive interactions in

which multiple contributing genes must

be considered in unison to observe a

signal. In general, a collection of genes in-

teracting in a disease-associated process

could exhibit strong differences between

treated andmock specimenswhen tested

as a whole, yet each involved gene could

show low marginal effects.

Given the accumulations of muta-

tions that SARS-CoV-2 has sustained
2 Patterns 2, May 14, 2021
to date, the arms race between virus

and vaccines is likely to extend into

the foreseeable future.7 The prevalence

of so-called long COVID8 and the

emergence of evidence of long-term

neurological and psychiatric outcomes9

further emphasize the criticality of

diagnosing and treating the heteroge-

neous sequalae presented. Continued

generation of COVID-19 omics data-

sets and focused development of

tactical strategies to extricate knowl-

edge from these data are invaluable

for treating individuals afflicted by this

baffling disease.
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