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Abstract: This review comprehensively describes the recent advances in the synthesis and pharma-
cological evaluation of steroid polyamines squalamine, trodusquemine, ceragenins, claramine, and
their diverse analogs and derivatives, with a special focus on their complete synthesis from cholic
acids, as well as an antibacterial and antiviral, neuroprotective, antiangiogenic, antitumor, antiobesity
and weight-loss activity, antiatherogenic, regenerative, and anxiolytic properties. Trodusquemine
is the most-studied small-molecule allosteric PTP1B inhibitor. The discovery of squalamine as the
first representative of a previously unknown class of natural antibiotics of animal origin stimulated
extensive research of terpenoids (especially triterpenoids) comprising polyamine fragments. During
the last decade, this new class of biologically active semisynthetic natural product derivatives demon-
strated the possibility to form supramolecular networks, which opens up many possibilities for the
use of such structures for drug delivery systems in serum or other body fluids.

Keywords: squalamine; trodusquemine; ceragenine; claramine; triterpenoids; antibiotic; angiogenesis;
obesity; diabetes

1. Introduction

Biogenic polymethylene polyamines are found in all living cells in significant quan-
tities and are involved in many important biological processes [1,2]. The biosynthetic
pathways to these polyamines in animals, plants, and microorganisms are well known and
originate from amino acids. In addition to the simplest form as free aliphatic bases, they
are often found as structural units of numerous alkaloids of plant and animal origin, which
are usually referred to as secondary metabolites [3,4].

The study of metabolites of marine organisms in the second half of the last century
became a separate major area of bioorganic and medicinal chemistry, influencing the
development of synthetic organic chemistry. In a long line of marine metabolites, striking
in the diversity and complexity of their structures, polyamine compounds occupy the
main place. In contrast to the plant metabolites, which are mainly derived from putrescine,
spermidine, and spermine, the metabolites of marine organisms are much more diverse
structurally [5].

The history of steroid polyamines began in the early 1990s with the isolation by
Moore et al. of the first representative compound squalamine 1 from the stomach of
the shark S. acanthias (Figure 1) [6]. The name “squalamine” originated from the Latin
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“Squalus”, the genus name for the shark. The team leader, Prof. Zasloff, has long been
intrigued in shark endurance and immunity to infections: when a shark is operated on, you
do not have to worry about aseptic conditions, despite the fact that the immune system of
sharks, especially a sea dog, is poorly developed. Squalamine was also isolated from other
organs of the shark (spleen, intestines, ovaries) [7–9], its maximum content was noted in
the liver and gallbladder. In addition, it was identified in the blood cells of the sea lamprey
P. marinus [10]. Squalamine was later found to directly protect sharks from infections via
broad-spectrum antibiotic activity [4–7,11–13]. In 1998, Sills et al. showed that squalamine
effectively inhibits angiogenesis and tumor growth in several animal models [14]. Recently,
squalamine proved effective as neuroprotective agent in animal model of Parkinson’s
disease [15].

The chemical structure of squalamine 1 as 3β-N-1-(N-[3-(4-aminobutyl)]- 1,3-diaminop-
ropane)-7α,24ζ-dihydroxy-5α-cholestan-24-sulfate was determined by methods of mass
and NMR spectroscopy [6].

Later, seven other amino sterols 2–8 (Figure 1) with antibacterial activity, structurally
similar to squalamine, were isolated from the liver of the shark S. acanthias [3]. They
contain a cholestan skeleton conjugated to spermidine or spermine at the C3 position,
while the side chain can be sulfated. One of them, trodusquemine (MSI-1436) 2, also
has a broad spectrum of antimicrobial activity, even slightly surpassing squalamine [6,7].
Petromysonamine disulfate 9 was isolated from sea lamprey pheromone P. marines [16,17].
The authors of [16] suggest that squalamine 1 can be a biosynthetic precursor of PADS [18].
Subsequently, the 24S-epimer was synthesized from aldehyde-derived 24-methanal-7α-
(methoxymethyl)cholestan-3-one [16].

As a result of these studies, squalamine became the first representative of a pre-
viously unknown class of natural antibiotics of animal origin, and its discovery stimu-
lated extensive research on the complete synthesis, creation of various libraries of steroid
polyamines, and the study of their properties. The interest shown in the chemistry and
pharmacology of squalamine, trodusquemine, and their analogs is supported by thou-
sands of patent applications that have been filed to date. Aminosterols have proven to be
promising chemotherapeutic agents for the treatment of infectious and neoplastic diseases.
Subsequently, the known biological activity of this class of compounds was significantly
expanded and continues to be supplemented annually. Besides a promising antimicrobial
activity [4] squalamine 1, trodusquemine 2, and their analogues 3–9 have been proposed
for ameliorating blood pressure [19], treatment of Alzheimer’s disease [20], Parkinson’s
disease [21], constipation [22], erectile dysfunction [23], cardiac conduction defects [24],
cognitive impairment [25], autism spectrum disorder [26], multiple system atrophy [27],
depression [28], schizophrenia [29] and viral infections [30].

Despite the fact that many works have been devoted to the chemistry and pharma-
cology of steroid polyamines, including reviews [11,12,31–42], until now the scientific
literature has not summarized information on complete syntheses, various modifications
and biological activity of steroid polyamines. The goal of this review is to systematize the
information available in the literature (up to 2021 with impact up to the most recent years)
on the chemistry and biological activity of steroid polyamines, including their influence on
the synthesis, properties, and perspectives of terpenoids with polyamine fragments.
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Figure 1. The structures of squalamine 1, trodusquemine 2 and steroid polyamines 3–9. 
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Figure 1. The structures of squalamine 1, trodusquemine 2 and steroid polyamines 3–9.

2. Syntheses of Squalamine from Cholic Acids

Due to the need for significant amounts of squalamine for biological tests, schemes for
its synthesis from available steroids (3β-acetoxy-5-cholic acid, 3-keto-23,24-bisnorchol-4-en-
22-ol, methyl-3-keto-5α-chenodeoxycholonate) were implemented [8,9,43]. The maximum
overall yield (69%) was achieved in a 7-step synthesis by the reaction of reductive amination
of 24R-sulfate of 3-ketocholesterol with azide and further catalytic hydrogenolysis [44]. The
syntheses of squalamine are discussed below.

2.1. Synthesis Based on 3β-Acetoxy-5-Cholic Acid

The first synthesis of squalamine 1 was carried out by Moriarty et al. in 1994 based on
3β-acetoxy-5-cholic acid 10 (Scheme 1) [8,45]. Starting with the protection of the carboxyl
group (compound 11), and then as a result of successive reactions (reduction, deprotection,
and oxidation), the keto derivative 12 was obtained, which was converted to 3β-amino-7α-
hydroxy-cholestan 13 [46–48]. The reaction of compound 13 with tosyl-N-(3-cyanopropyl)-
N-propyl iodide 14 led to 3β-N-diaminopropyl-butyronitrile-7α-hydroxy-cholestan 15.
After reduction of the cyano group, deprotection, and sulfation of the 24β-hydroxyl group,
squalamine 1 was obtained [49,50]. The synthesis included 17 steps with a total yield
of 0.3%.
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25 ◦C, 1 h; 3. Ca(BH4)2, THF, 25 ◦C, 5 h; 4. TBDMsCl, imidazol, CH2Cl2, 16 ◦C, 16 h; 5. Cr(CO)6,
t-BuOOH, CH3CN, 50 ◦C, 12 h; 6. Li, NH3, Et2O,−78 ◦C, 10 min; (b) 1. K-selectride, THF,−50 ◦C, 5 h;
2. NaCN, MeOH, 60 ◦C, 8 h; 3. (t-BuO)3Al, hexane, toluene, 110 ◦C, 20 h; (c) 1. C6H5CH2ONH2 HCl,
Py, 115 ◦C, 16 h; 2. LiAlH4, Et2O, 35 ◦C, 16 h; (d) K2CO3, CH3CN, 50 ◦C, 20 h; (e) 1. C6H5CH2OCOCl,
NaOH, THF, 0–25 ◦C, 4 h; 2. Na, NH3, THF, −78 ◦C, 18 h; 3. LiAlH4, Et2O, 35 ◦C, 6 h; 3. HCl, EtOH,
25 ◦C, 3 h; 4. SO3-Py, Py, 75 ◦C, 2 h.

2.2. Synthesis of 24R- and 24S-Squalamine’s from Stigmasterol

A year later, the same group presented a 19-step synthesis of 24R- and 24S-squalamine’s
from stigmasterol 16 with a total yield of 19% (Scheme 2) [37]. Stigmasterol 16 in several
stages (selective Boc-protection, ozonolysis) was converted into aldehyde 17, while its
reduction, chlorination of the hydroxy derivative, treatment with sodium phenylsulfone
led to phenylsulfone 18. Its interactions with enantiomeric epoxides 19a and 19b afforded
24R- and 24S-hydroxycholesterols 20a and 20b in quantitative yields. Further acetylation,
oxidation of the corresponding diacetates, reduction of the obtained enones with Li/NH3,
potassium tri-tert-butylborohydride and repeated acylation produced tris-acetates 21a and
21b, while their selective deacylation at position C3 and oxidation with Jones’s reagent led
to 3-ketocholonates. At the last step, reductive amination with Boc-spermidine/NaBH3CN
and sulfation resulted in 24R-1 and 24S-22 squalamines.

2.3. Synthesis from 7α-(Benzyloxy)-3-Dioxolan-Cholestan-24R-Ol

Zhang et al. in 1998 has carried out a five-step synthesis of squalamine 1 with a total
yield of 60% from the readily obtained 7α-(benzyloxy)-3-dioxolan-cholestan-24R-ol 23.
24R-Sulfate 24 was synthesized, then the protective groups were removed, as a result of
reductive amination of ketone 25 with diaminopropylbutyronitrile 26 in the presence of
NaBH4/CH(OCH3)3, followed by catalytic hydrogenolysis, squalamine 1 was synthesized
(Scheme 3) [51].

2.4. Synthesis from Cholic Acid Sulfate

A year later, Weis et al. put attention to the preparation of the spermidine fragment.
The product of the alkylation of 1,3-diaminopropane 27 with chlorobutanol through the
protection of amino- to 28 and alcohol groups to 29 was converted into azide 30, which,
as a result of the reductive amination of 24R-sulfate of 3-ketocholesterol 31 and catalytic
hydrogenolysis, was converted into squalamine 1 with a yield of 69% (Scheme 4) [44].
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2. Et3N, MsCl, CH2Cl2, 16 h; (c) 1. NaN3, DMF, 48 h; 2. HCl, dioxane, 16 h; (d) 1. 31, NaOMe, MeOH,
24 h, −78 ◦C, NaBH4; 2. H2, Ni-Raney.

2.5. Synthesis from 3-Keto-23,24-Bisnorchol-4-En-22-Ol

In 2000, the same group published a 10-step synthesis of squalamine from 3-keto-
23,24-bisnorchol-4-en-22-ol 32 with a total yield of 9% and a purity of 91% (Scheme 5) [9].
Biotransformation of compound 32 in the presence of bacteria D. gossipina formed 7α-
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hydroxy derivative 33. The following steps of preparation of the steroid skeleton included
the reduction of the C5(C6) double bond (compound 34), protection of the C3 ketone
(compound 35), oxidation to aldehyde 36, alkylation of C22 aldehyde with the Wadsworth–
Emmons reagent to derivative 37, followed by oxidation with a mixture (R)-methyl ester
of oxoazaborolidene (MeCBS) with a borane-tetrahydrofuran complex and reduction of
24-ketone to the hydroxy derivative 38. The ethylene ketal protection was removed by
the action of p-toluenesulfonic acid, and the intermediate 39 was obtained by sulfation
of the 24β-hydroxyl group with complex SO3-Py in dry pyridine. Reductive amination
of 24R-sulfate 39 with spermidine and reduction of the resulting Schiff base with sodium
cyanoborohydride led to the target squalamine 1 [52].
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2.6. Synthesis from Methyl 3-Keto-5α-Chenodeoxycholonate

In 2001 Zhou et al. described the selective synthesis of squalamine 1 from methyl
3-keto-7α-chenodeoxycholonate 40 in 11 steps (Scheme 6) [53–55]. As in the cases described
above, the key steps were aimed at preparing the steroid backbone. The stepwise protection
of the 3-keto and 7α-hydroxy groups, chain lengthening of the aldehyde at position C23 by
the Wittig reaction led to the desmosterol derivative 41. Its hydroxylation to compound 42,
then dehydration of 24β-acetate 43 and catalytic hydrogenolysis of the isopropenyl group
to form compound 44 with following removal of protective groups made 3-keto-24R-
hydroxy derivative 45, which was introduced into a reductive amination reaction with
protected spermidine in the presence of sodium borohydride to give mixtures of 3α- (10%)
and 3β-anomers (66%) of squalamine, separated by flash chromatography [50,54,56–60].
The squalamine yield was 19% after removal of the di-tert-butyl protecting group in the
compound 46 [61].

2.7. Synthesis from Desmosterol

In 2003, Okumura et al. synthesized squalamine 1 from desmosterol (Scheme 7) [62].
Pure desmosterol 47 is not a sufficiently available starting compound due to its high
cost and low synthesis yields [59]. However, it was found that about 10–25% of desmos-
terol is contained in the cholesterol precipitate, which is isolated from lanolin alcohol
obtained by saponification of animal fat. As in the case of compound 42 (Scheme 6),
regioselective protection of diol 48 was carried out in the side chain, its dehydration to
compound 49, and catalytic hydrogenolysis to 24R-benzoate 50. Ketone 51 obtained by
allyl oxidation was hydrogenated over Adams’ catalyst to give a mixture of 7β-hydroxy
and 7-oxo derivatives 52 and 53 [51,63,64]. Stereoselective reduction of ketone 54 with
potassium tri-tert-butylborohydride led to the dihydroxy derivative 55, its regioselective
oxidation with Ag2CO3 on zeolite was converted into the 3-keto derivative 56 with subse-
quent replacement of the 24R-benzoyl group by the sulfate group through the formation of
24-hydroxy derivative 57. The potassium salt of 3-oxo-7α-hydroxy-24R-sulfate-cholanic
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acid 58 was subjected to reductive amination with spermidine in the presence of NaBH3CN
to form squalamine 1 in a total yield of 7.4% [62].
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2.8. Synthesis from Methylhyodeoxycholonate

In 2006, Shen et al. proposed a selective 15-step synthesis of squalamine 1 based on
methylhyodeoxycholonate 59 with a total yield of 5.6% (Scheme 8) [65]. The main stages
in the preparation of the steroid skeleton included protection of the hydroxy group in
the C6 position with tosyl chloride to compound 60, selective hydrolysis, acylation to
acetate 61, and oxidation to ketone 62. Subsequent hydrogenation and reduction led to
methyl 3β-acetoxy-5αH-7α-chenodeoxycholonate 63, which was converted to 24-aldehyde
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66 through the steps of protecting compound 64 and extending the C24 side chain to form
dihydroxy derivative 66. Further reductive amination with spermidine in the presence of
sodium cyanoborohydride, sulfation, and deprotection led to squalamine 1.
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Scheme 8. Reagents and conditions: (a) TsCl, Py; (b) 1. KOAc, H2O, DMF; 2. Ac2O-Py; (c) PDC,
TBHP, benzene; (d) 1. Pd/C, H2; 2. L-selectride, THF; (e) MOMCl, i-Pr2NEt, CH2Cl2; (f) LiAlH4, THF;
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Thus, the presented syntheses of squalamine included mainly the preparation the
steroid backbone by the modifying of cholic acid scaffolds, obtaining a spermidine fragment,
unblocking various protective groups, and sulfating the C24 position. In the following
sections, we will consider the syntheses of squalamine analogs.

3. Syntheses of Squalamine Analogs
3.1. Synthesis of 3α-Episqualamine

The 3-episqualamine 74, being an 3α-analog of squalamine, was not found in nature,
but was synthesized by the reductive amination reaction of Boc-protected spermidine 68,
which was obtained from nitrile 67 and 7α-benzyloxy-24ζ-t-butyldimethylsilyloxycholestan-
3-one 69 (Scheme 9) [66]. As a result of the reaction, a mixture of isomers 70 was obtained;
after removal of the protective group a mixture of 3α- 71 and 3β- 72 isomers in equal
proportions was formed and separated chromatographically. Sulfation to compound 73,
and subsequent deprotection resulted in 3α-episqualamine 74 in 67% overall yield.
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3.2. Synthesis of Squalamine Analogs from Cholic Acids

Methyl 3α,6α-dihydroxycholate 75 was prepared in several steps (oxidation to 3,6-
diketone 76, selective dioxolane protection of the C3 position of compound 77, reduction
of the C6 ketone, and deprotection to methyl 3-oxo-6β-hydroxy-5α-cholan-24-oat 78) [67].
Reductive amination of ketone 78 with ethylenediamine or spermidine made it possible
to obtain conjugates 79a, 80a and 79b, 80b in 78–82% yields (Scheme 10). In the case
of reductive amination with N,N′-dipropylaminopiperazine, a single 3β-isomer 81 was
formed [66].
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The reaction of methyl 3-oxo-cholate 82 with sulfur ylide (trimethylsulfoxonium
iodide/NaH) led to 3β-oxirane 83, the nucleophilic opening of which with N-(Boc)-1,2-
diaminoethane followed by a deprotection led to the compound 84 (Scheme 11) [68].
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3.3. Synthesis of Steroid Methylenepolyamines from Cholic, Deoxycholic, Chenodeoxycholic,
Ursodeoxycholic and Lithocholic Acids

On the basis of cholic, deoxycholic, lithocholic, chenodeoxycholic, and ursodeoxy-
cholic acids by the reaction with methylamine, isopropylamine, diethylamine, diisopropy-
lamine or cyclohexylamine in the presence of HOBT or DCC or BOP or methylchloroformate
and subsequent oxidation with aluminum tri-tert-butoxide or aluminum triisopropoxide
or Ag2CO3 in benzene or toluene or cyclohexane or trifluorotoluene, compounds of type
85 were received, then their reductive amination with amines in the presence of titanium
isopropylate produced a series of steroids 86 (Scheme 12) [69]. The biological activity data
are presented in Section 6.
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dioxane,−20 ◦C to 20 ◦C; 2. aluminum tri-tert-butoxide/aluminum triisopropoxide/Ag2CO3, benzene,
toluene, cyclohexane, trifluorotoluene; (b) 1. RNH2, Ti(OiPr)4, MeOH, 20 ◦C, 12 h; 2. NaBH4, MeOH,
−78 ◦C, 2 h.

3.4. Synthesis from 22-Hydroxy-23,24-Dinorchol-4-En-3-One and Its Analogs

The synthesis of a squalamine analog with a shorter side chain was described in [70].
Starting from 22-hydroxy-23,24-dinorchol-4-en-22-ol 32 by successive transformations, in-
cluding isomerization of the double bond at position C5 (compound 87), allylic oxidation
to C7 ketone 88, and its stereoselective reduction to 7α-hydroxy-derivative 89, removal
of the protective group to form ketone 90, the action of lithium aluminum hydride on
3-benzyloxime 91 3β-amine 92 was obtained (Scheme 13). The reductive amination of
3β-aminosterol 92 with tert-butyl N-(4-aminobutyl)-N-3-(oxopropyl) dicarbonate 93 fol-
lowed by deprotection and regioselective sulfation formed a conjugate with spermidine in
the form of trichlorohydrate 94 [71].
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DMAP, CH2Cl2; (b) 1. RuCl3, TBHP, cyclohexane; 2. H2, 5% Pt/C, EtOAc; (c) K-selectride, THF;
(d) 1N HCl, THF; (e) BnONH2 HCl, Py, EtOH; (f) LiAlH4, Et2O; (g) 1. NaBH(OAc)3, CH2Cl2; 2. 10%
HCl, MeOH; 3. SO3-Py, MeOH.
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Steroid ketones 95 and 96 reacted with Boc-substituted spermidine and spermine to
form 3α- and 3β-aminobisnorsteroids 97–100 and 101–104, respectively. When they were
treated with thionyl chloride, the protecting groups were removed and the hydrochlorides
of steroid conjugates 105–112 were synthesized (Scheme 14) [72]. The data concerning their
biological activity are presented in Section 6.
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3.5. Synthesis of Steroid Methylenepolyamines from Cholestan, 4-Cholestene, 5-Cholesten-3-One,
6-Ketocholestanol and 3,7-Diketocholestene

The synthesis of more than 30 steroid polyamines with antibacterial activity was
described in [73–76]. Reductive amination of 3-ketones of cholestane 113, 5-cholestene 114,
4-cholestene 115, 6-ketocholestanol 116 and 3,7-diketocholestene 117 with various amines
(aliphatic, cyclic, and piperazines) in the presence of Ti(OiPr)4 and NaBH4 in 41–98% yield
led to derivatives of type 118–120 and 121 (Scheme 15). The data concerning their biological
activity are presented in Section 6 [73,76].
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3.6. Synthesis from 3-Keto-7-Hydroxycholestane

The reaction of reductive amination of 3-keto-7-hydroxycholestane 123 with amines in
the presence of titanium isopropylate produced compounds of type 124 (Scheme 16) [69].
The data concerning their biological activity are presented in Section 6 [69].
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Scheme 16. Reagents and conditions: (a) 1. RNH2, Ti(OiPr)4, MeOH, 20 ◦C, 12 h; 2. NaBH4, MeOH,
−78 ◦C, 2 h.

3.7. Synthesis of Squalamine Analogs from Cholesterol and Progesterone

The following approaches were used to obtain squalamine analogs containing a
polyamine chain at the C7 position. By means of known methods, 3β-hydroxy-7-ketone
126 was obtained from cholesterol 125, the reductive amination of which with diamino-
propane, due to steric factors, led to a single 7α-epimer 127 (Scheme 17). Its alkylation with
4-bromobutyronitrile and reduction produced 7α-spermidine-cholesterol 128 [37]. 7α-(1,4-
Diaminobutane)-cholest-5-en-3β-ol 130 and 7β-derivatives 131 were synthesized by the
reductive amination of ketones 129 or 126 with various amines [73,77]. The data concerning
their biological activity are presented in Section 6 [78–80].
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Scheme 17. Reagents and conditions: (a) 1. Dihydropyran, TsOH, CH2Cl2, 1.5 h; 2. CrO3-Py, CH2Cl2;
(b) 1. NH2(CH2)3NHBoc or NH2(CH2)4NHBoc, NaBH3CN, AcOH pH 5–6; 2. CF3COOH, CH2Cl2;
(c) 1. Br(CH2)3CN, DMF, 60 ◦C; 2. LiAlH4, NiCl2 6H2O, THF; (d) 1. Amine, Ti(OiPr)4, MeOH, 20 ◦C,
5–6 h; 2. NaBH4, −78 ◦C, 2 h.
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Extension of the polyamine chain at the 7-amino group of compound 133 obtained from
3-acetylcholesterol using cyanoethylation and alkylation with bromobutyronitrile followed
by reduction afforded 7α- and 7β-spermidine conjugates 134a and 134b (Scheme 18).
The gradual chain extension was performed from 6α-amino derivative of cholesterol 135,
obtained in several stages from 3-acetyl-cholesterol 132 (Scheme 18) [37]. As a result of
the reactions of its cyanoethylation, a reduction of LiAlH4, 6α-spermidinecholesterol 136,
was obtained.
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7β-ОН 140b (95%) and 7α-ОН 140a (5%) derivatives was carried out in several stages, 
which included allylic oxidation to ketone, adding dioxolan and tert-butylsilyl protection 
and the action of lithium in liquid ammonia (Scheme 20). Fluorination and subsequent 
removal of the protective groups led to 7α-141a and 7β-fluoro-23,24-bisnorcholanates 
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3,20-Diamino- and polyaminosteroid analogs of squalamine type 138 were synthe-
sized by the reaction of reductive amination of progesterone 137 with various amines in
18–82% yields (Scheme 19). The data concerning their biological activity are presented in
Section 6 [77,81,82].
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3.8. Synthesis of Spermidino-7-Fluoro-3-Aminosteroids

Starting from commercially available 23,24-bisnorchol-4-ene 139, the synthesis of
7β-OH 140b (95%) and 7α-OH 140a (5%) derivatives was carried out in several stages,
which included allylic oxidation to ketone, adding dioxolan and tert-butylsilyl protection
and the action of lithium in liquid ammonia (Scheme 20). Fluorination and subsequent
removal of the protective groups led to 7α-141a and 7β-fluoro-23,24-bisnorcholanates 141b
in ratio 4:3 with 83% yield [83]. Subsequent reductive amination with Boc-spermidine,
sulfation, and removal of Boc-protection led to the target 7-fluoro derivatives 142a, b.
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Interaction of 3α,12α-dihydroxycholanic 145, 3α,7α,12α-trihydroxycholanic 146,
3α-hydroxycholanic 147, ursocholanic 148, 3α,6α-dihydroxycholanic 149, 3α,7α-dihydroxy-
cholanic 150, and 23,24-bisnor-5-cholenic 151 acids with spermidine, triethylenetetramine
or putrescine in the presence of DCC, followed by a deprotection afforded amides 151–167
(Scheme 22) [9,85,86]. The data concerning their biological activity are presented in
Section 6 [50,56].
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Stigmasterol succinate 168 was activated by the formation of pentafluorophenyl suc-
cinate 169, after removal of the protective group and interaction with Boc-polyamines,



Int. J. Mol. Sci. 2022, 23, 1075 15 of 54

followed by removal of the Boc-protection, carbamates of type 170 have been synthesized
(Scheme 23). The data concerning their biological activity are presented in Section 6 [87].
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2 days.

Compounds 156, 171–177 were synthesized by conjugation of spermine with cholic
acids 146, 171–173 (Scheme 24). The data concerning their biological activity are presented
in Section 6 [88].
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3.10. Synthesis of Steroid Carbamates

A representative example of natural polyamine steroidal carbamates is bufotoxin
178, isolated from the venom of the toad Bufo Vulgaris, which disrupts the work of the
heart muscle (Figure 2) [86]. Synthetic steroidal lipopolyamines 179–181 are more efficient
than natural polyamines spermine and spermidine. Similar compounds can be used in
fluorescence correlation spectroscopy as a means of studying supramolecular formations in
gene delivery systems, and in non-viral gene therapy [89].

Synthetic approaches to the preparation of steroidal polyamine carbamates included
the introduction of polyamine moieties at the C3 position or to the side chain. For exam-
ple, the interaction of 3-cholesteryl chloroformate 182 with polyamines (spermine, 1,11-
diamino-4,8-diazaundecane, 1,10-diamino-4,7-diazadecane, 1,9-diamino-3,7-diazanonane,
tetraethylenepentamine, pentaethylenehexamine) led to 3-cholesterylpolyamine carba-
mates of type 183, which can be considered as a model for the formation of lipoplex
(complexes of cationic, neutral lipids and DNA molecules, used as a system for cell trans-
fection), which are key steps in gene therapy (Scheme 25) [90].
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Carbamates 184 were useful in inhibiting the growth of bacteria in food due to the
manifestation of weak basic properties in the gastrointestinal tract [35]. Carbamates 185,
derivatives of cholic acid with Boc-spermidine or Boc-spermine (Figure 3) were tested
against Gram-positive and Gram-negative bacteria [35,91,92].
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3.11. Synthesis of Aminopropoxysteroids

3,7,12-tris-Aminopropoxysteroids with various side-chain substituents, named as cera-
genins, were synthesized to mimic cationic peptide antibiotics such as polymyxin B [33,93].
Ceragenins have a broad spectrum of antibacterial activity. Ceragenin 186a (Figure 4) is
active against H. pylori and against cariogenic and periodontopathic bacteria with MICs
0.275–8.9 and 1–16 µg/mL, respectively [93–95], was recommended for the treatment of
chronic infections and inflammation in patients with cystic fibrosis [95–97], including for
local application [98]. A technology was proposed that combines the antibacterial effect and
medical imaging of ceragenin 186a with magnetic nanoparticles [41,99,100]. More details
on its activity are presented in Section 6 [38,101–103]. The introduction of an aminopropoxy
group into the cholic acid scaffold included alkylation with allylbromide followed by a
reduction of the azido group [50]. Ceragenins 186b with various substituents in the side
chain possessing antibacterial activity have been also synthesized [50,104].
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3.12. Synthesis of Squalamine Phosphate

Zasloff et al. has synthesized aminosterol phosphate compositions and discovered
their biological activity as anti-inflammatory, anti-viral, antimicrobial, and antifungal
agents. The aminosterol phosphate compositions permit administration without associated
tissue damage and achieve a sustained-release effect. Squalamine phosphate 187 (Figure 5)
can be prepared simply by adding a soluble phosphate salt (i.e., sodium, potassium,
ammonium) to a solution of squalamine [105].
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3.13. Synthesis of Squalamine Analogues with Multiple Steroid Backbones

Derivatives 189–191 were synthesized on the basis of cholylglycine, containing one,
two, or three steroid scaffolds linked through N-(3-aminopropyl)-1,3-propanediamine as
a spacer in 8.5%, 6%, and 2% yields, respectively (Scheme 26) [106]. The data concerning
their biological activity are presented in Section 6 [106].
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The synthesis of dimeric conjugates 192–195 of cholic and deoxycholic acids (Scheme 27),
which consist of two amphiphilic sterol-spermine units linked to each other by a carbamate
moiety in the form of a head-tail, using DSC has been reported [107]. The data of biological
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activity are presented in Section 6 [108]. Conjugate 195 exhibited the same activity as
squalamine, suggesting its use as a potential antibacterial agent [109].
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The synthesis of phosphoramide conjugates of bile acids with 3′-azido-3′-deoxythymi-
dine was described in [110–112]. The reaction of the polyamine derivative of phospho-
roamide 196 with the acylchlorides of deoxycholic, cholic, and dihydrocholic acids led to
polyaminoazidothymidine conjugates 197 (Scheme 28) [113]. The data of biological activity
are presented in Section 6 [113].
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Shawakfeh et al. has synthesized dimeric derivatives based on diosgenin 198. The
dimers were formed through the amination reaction with 1,3-diaminopropane, 1,4-diamino-
butane, 1,6-diaminohexane, and spermidine and the aldehyde group of steroid 199 obtained
as a result of the F-ring opening of diosgenin acetate in high yields (Scheme 29) [114].
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4 days. (c) 1. 1 eq 4 in DCE, AcOH, 0.5 eq spermidine; 2. AcOH, NaBH(OAc)3, 4 days.

Compounds with two steroid scaffolds 202 and 203 (Figure 6) possess antifungal
activity against five types of fungi and against cancer cells HEp-2 and MCF-7 [36].
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Umbrella dimers 204a,b, 205a–c, and tetramers 206a–c (Figure 7) are more active than
monomeric analogs of squalamine, the presence of hydroxyl groups at C7 and C12 leads
to high activity compared to analogs with a hydroxyl group only at C12. The results
indicate that such conjugates act as antibiotics at the membrane level through the pore and
channel formation. Compound 204a is responsible for the activation of pH bischarging
across liposomal membranes at the level of antibiotic activity, which is comparable to the
monomeric analogs of squalamine. Monomeric and dimeric analogs of squalamine are
present in the bacterial membrane in an inactive form, and only small fractions are in
the form of clusters that activate ion transport. Head-to-tail dimers are more active than
head-to-head dimers [108].
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Dimeric and tetrameric analogs in which two or four subunits were linked by a
side chain to putrescine or spermine “head-to-head” or “tail-to-tail” demonstrated high
antibacterial activity [108], Chen et al. became interested in conducting a detailed study
structures-activity using linked sterol-polyamine conjugates, i.e., covalently linked dimers
and tetramers. They synthesized a number of dimeric and tetrameric analogs, in which
two or four subunits were linked a head-to-head or tail-to-tail to putrescine or spermine
backbone [108].

Studies of antibacterial activity have shown that dimeric conjugates exhibit strong
antibacterial activity against a wide range of gram-positive bacteria, while tetrameric
conjugates exhibit very weak properties. The latter is believed to be a likely consequence of
either an unfavorable steric interaction with peripheral proteins, or the result of a relatively
high water solubility, which may prevent their efficient separation in the plasma membrane,
or both of these factors. Dimeric and tetrameric conjugates of lithocholic acid did not show
antibacterial activity. The lack of activity may be due to the lack of amphiphilicity.

Cholest-5-en-3β-oxyethane-tosylate 207 was synthesized using known approaches
such as tosylation, saponification with ethylene glycol, and repeated tosylation. Further
to a solution of cholest-5-en-3β-oxyethane-tosylate 207 in dry toluene desired amounts of
PEI in dry MeOH was added, the reaction mixture was refluxed to produce lipopolymers
type 208 (Scheme 30) [115]. These compounds have high transfection properties, low
cytotoxicity, and high serum compatibilities. The transfection efficacies and cytotoxicity of
the lipopolymers were found to be dependent on the percentage of cholesterol grafting and
the molecular weight of PEI used for the synthesis of lipopolymers [116].
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4. Synthesis of Trodusquemine and Its Analogs

The synthesis of trodusquemine 2, which is a spermine analog of squalamine 1, is also
based on a reductive amination reaction [34]. Conjugates of 24-amino- and 24-hydroxy 3α-
and 3β-cholestane derivatives with spermine 210a–b, 211a–b were obtained by reductive
amination from 3,3-(ethylenedioxy)-cholestan-24-one 209 (Scheme 31) [34].
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According to a similar approach, conjugates of 24-amino-, 24-hydroxy- and 24-sulfate-
3α- and 3β,7β-hydroxy-5α-cholestane derivatives 2, 213–216 with spermine were synthe-
sized from 3,3-(ethylenedioxy)-7β-hydroxy-5α-cholest-22-ene 212 (Scheme 32) [34]. The
data of the biological activity of this series of compounds is presented in Section 6 [117].
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Scheme 32. Reagents and conditions: (a) H2, Pd/C, MeOH, 90%; (b) NaBH3CN, NH4OAc, MeOH,
72%; (c) HCl, acetone, 68%; (d) NH(CH2)3NH(CH2)4NH(CH2)3NH2, NaBH3CN, 81%; € NaBH4,
MeOH, 87%; (f) BnONH2 HCl, DMAP, Py, 90%; (g) SO3-Py, Py, 84%; (h) NH2(CH2)3NH(CH2)4NH2,
NaBH3CN, LiOH, 76%.

5. Synthesis of Claramine and Its Analogues

Chen et al. and Govers et al. obtained an analog of trodusquemine-claramine 218,
which is a conjugate of 3β-hydroxy-6β-cholestan with spermine. Claramines 219 and 220
were also synthesized by reductive amination reaction (Scheme 33) [118]. The data of
biological testing is presented in Section 6 [119].
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Starting from deoxycholic acid derivative 221 Blanchet et al. has obtained claramine
A1 222 in three stages by reductive amination with spermine with a total yield of 33%
(Scheme 34). The data of activity could be seen in Section 6 [120].

Summarizing the above results, we can conclude that the approach to the synthesis of
analogs of squalamine, trodusquemine, and claramine was based on the introduction of a
polyamine fragment at positions C3, C6, C7, C12, and C24 of the steroid scaffold by the
reactions of reductive amination, cyanoethylation of amines, and acylation (synthesis of
derivatives with two and three steroid fragments, steroid analogs of polymyxin B).
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6. Biological Properties of Squalamine, Trodusquemine and Their Analogues

The diverse biological activity of aminosterols has been subjected to numerous reviews.
Previous works covered the activity, mechanism of action, and prospects of squalamine
and similar aminosterols as a new class of antibiotics capable of overcoming the problem of
resistance [11,33,38,42,80,121], as well as their antifungal and antiviral properties [47,48].
Special attention was paid to their anti-angiogenic activity for the treatment of tumor
diseases [122]. Antibacterial, fungicidal, and immunomodulatory properties of ceragenins
and ceragenin-derived nanoparticles were recently reviewed in [123,124].

6.1. Biological Activity of Squalamine and Trodusquemine
6.1.1. Antibacterial and Antiviral Activity

Squalamine initially became known as a broad-spectrum bactericidal antibiotic effec-
tive against both Gram-positive and Gram-negative bacteria, including E. coli, P. aeruginosa,
S. aureus, S. faecalis, P. vulgaris [38]. Later, squalamine was found in the membrane of
sea lamprey (P. marinus) leukocytes [10], which confirmed its role as an important factor
of humoral immunity [125]. The different electric charge of prokaryotic and eukaryotic
cells allows squalamine to selectively bind to bacterial membranes [126], exhibiting low
minimum inhibitory concentrations (MIC 1–8 µg/mL). At the same time, the minimum
concentration causing hemolysis of erythrocytes exceeds 200 µg/mL, and it is not geno-
toxic [127]. Furthermore, unlike beta-lactam antibiotics, which have a similar spectrum of
antibacterial activity, squalamine is a fungicide (C. albicans, A. fumigatus, A. niger, Fusarium
spp.) and causes osmotic lysis of protozoa (P. caudatum).

It is especially important that squalamine retains activity even against clinically im-
portant multi-resistant strains of E. coli and P. aeruginosa, overexpressing various factors
of resistance, including active excretion of drugs, changes in membrane permeability
caused by the absence of porins, an enzymatic barrier that induces resistance to quinolones,
β-lactam, phenicols, etc. [128]. In particular, it effectively eradicates fungi and multi-
resistant Gram-negative and Gram-positive bacteria isolated from patients with cystic fibro-
sis [78,79] and fungemia [129]. Squalamine and its analog 138 are active against mupirocin-
susceptible and resistant clinical isolates of S. aureus with MIC values of 3.125 µg/mL.
Additionally, repeated exposure of a S. aureus strain to squalamine and 138 did not lead to
the emergence of resistant bacteria, contrarily to mupirocin [82]. Trodusquemine 2 has a
broad spectrum of antimicrobial activity (MIC 1–4 µg/mL for S. aureus, P. aeruginosa, and
C. albicans), slightly outperforming squalamine [7].

In addition, squalamine at a concentration of 0.5–1 µg/mL causes the death of archaea
species, e.g., M. smithii, M. oralis, M. arboriphilicus, M. concilii, and M. beijingense [130,131],
and can be used to disinfect medical instruments instead of aggressive peracetic acid.
At a concentration of 100 µg/mL, squalamine effectively destroys dormant cells of the
causative agent of nosocomial infections A. baumannii, which are resistant to ciprofloxacin
therapy [132]. Squalamine showed significant in vitro activity against Trichophyton and
Microsporum dermatophytes with MICs ranging from 4–16 µg/mL (1–4 µg/mL for griseo-
fulvin) [133].
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Squalamine is a membrane-active compound. The bactericidal activity of squalamine
is attributed to the combination of anionic bile acid with cationic spermidine, which indi-
vidually exhibits significantly lower antibiotic activity [134,135]. The mechanism of action
of squalamine is similar to cationic peptide antibiotics and consists of a selective violation
of the integrity of the bacterial membrane or the formation of semi-stable pores in it due
to electrostatic binding with phospholipids, followed by depolarization [126,136]. The
selectivity of squalamine is explained by its affinity for bacterial lipopolysaccharides and
the ability to penetrate into the lipid bilayer [137]. Disruption of the barrier function of the
bacterial membrane leads to depletion of the intracellular ATP pool (loss of 80% ATP at a
concentration of 20 µg/mL) and cell death [128]. Squalamine has the highest affinity for
phosphatidylglycerol (the main component of bacterial membranes), and somewhat less
for phosphatidylserine and cardiolipin [31]. Using fluorescently labeled dextrans, it was
found that squalamine increases membrane permeability for substances with molecular
weights up to 4 kDa, but less than 10 kDa. Moreover, its activity is completely suppressed
by the presence of 5 mM Ca2+ or Mg2+ ions [128], which indicates a direct interaction of
squalamine with membrane phospholipids. It is not a protonophore [138]. The surface
antigen of E. coli O4 reduces the effectiveness of squalamine, while K54 has a sensitizing ef-
fect. The mechanism remains unclear [139]. Additionally, a recent study demonstrated that
squalamine competitively inhibits the glycosyltransferase activity of penicillin-binding pro-
teins of E. coli, which mediates the cell wall synthesis, although only in high concentrations
(IC50 291 µM) [76].

The specificity of the interaction of squalamine with negatively charged phospholipids
is confirmed by its inability to induce the death of mycobacteria, whose cell wall consists of
arabinogalactan esterified with residues of fatty mycolic acids. Ghodbane et al. designed
squalamine analogs where spermidine was replaced with other alkylamines to increase
lipophilicity of compounds 223, 224 (Figure 8), which rendered them active against several
mycobacteria species (MIC 5–25 µg/mL), but they did not affect the viability of the tubercu-
losis causative agent M. tuberculosis [140]. Squalamine itself, due to its selectivity towards
bacteria, and especially S. aureus (MIC 3.12 µg/mL) and P. aeruginosa (MIC 8 µg/mL) can
be used for decontamination and isolation of mycobacteria from sputum samples [141].

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 25 of 56 
 

 

increase lipophilicity of compounds 223, 224 (Figure 8), which rendered them active 
against several mycobacteria species (MIC 5–25 μg/mL), but they did not affect the via-
bility of the tuberculosis causative agent M. tuberculosis [140]. Squalamine itself, due to its 
selectivity towards bacteria, and especially S. aureus (MIC 3.12 μg/mL) and P. aeruginosa 
(MIC 8 μg/mL) can be used for decontamination and isolation of mycobacteria from 
sputum samples [141]. 

. 

Figure 8. The structures of compounds 223 and 224. 

Further studies have shown that the membrane-permeabilizing effect of squalamine 
potentiates the activity of chloramphenicol, tetracycline, ciprofloxacin, etc. The combined 
use of squalamine in a subinhibitory concentration with antibiotics makes it possible to 
reduce their dose and overcome the resistance of antibiotic-resistant strains of E. aerogenes 
ATCC 13048 and CM-64, P. aeruginosa PA01 and PA124, K. pneumoniae KP63 and KP55, E. 
coli AG100 and AG100a [103]. 

Squalamine displayed great efficacy against A. baumannii dormant cells (i.e., per-
sisters, which are responsible for recurrent infections) at the 100 μg/mL dose (below the 
minimum hemolytic concentration) [132]. 

In a mouse model, topical application of squalamine more effectively removes S. 
aureus from the skin than treatment with antiseptic mupirocin used in surgical practice 
[142]. Squalamine tablets have been developed to disinfect home nebulizers for patients 
with cystic fibrosis [143]. A squalamine concentration of 0.5 g/L 20 min is enough for 
disinfection. Aerosol of 3 mg squalamine showed efficacy exceeding 160 mg of colistin in 
rats with chronic pneumonia caused by P. aeruginosa [144]. Treatment with 1% squala-
mine ointment resulted in clinical improvement in patients with shingles after 3 weeks 
[145]. On the downside, squalamine is inactivated by calcium and magnesium cations (1 
mM of Ca2+ blocks the activity of 2.5 μg/mL squalamine, whereas a normal range of Ca2+ 
in human serum is 2.0–2.5 mM [129]), which likely renders it ineffective against systemic 
infections. 

A broad-spectrum antiviral activity has been described for squalamine (Dengue virus, 
hepatitis B, yellow fever, herpesviruses), indicating that squalamine interaction with cel-
lular membranes prevents the adhesion and fusion of RNA and DNA viruses into cells 
[146,147]. Due to the positively charged spermidine moiety and affinity for anionic phos-
pholipids, squalamine neutralizes the negative charge of the inner membrane of eukaryotic 
cells, displacing proteins electrostatically bound to the membrane, in particular Rac1 
GTPase used by viruses to enter the cell. At the same time, no disruption or permeabiliza-
tion of the cell membrane was observed. Zasloff et al. demonstrated a protective effect of 
parenteral squalamine administration against yellow fever and eastern equine encephalitis 
in Syrian hamsters and cytomegalovirus infection in BALB/c mice [30]. 

6.1.2. Neuroprotective Activity 
Squalamine prevents aggregation of alpha-synuclein (αS) and competes with it for 

binding to phospholipid membranes (KD of squalamine 67 nM versus 380 nM for synucle-
in), which can be used to treat Parkinson’s disease [148]. Recent experiments confirmed 
that squalamine attenuates the toxicity of αS and amyloid-beta (Aβ) by altering their ag-
gregation and displacing them from cell membranes [149]. Similar properties were later 
shown for trodusquemine and αS, amyloid-beta (Aβ), and HypF-N oligomers 

Figure 8. The structures of compounds 223 and 224.

Further studies have shown that the membrane-permeabilizing effect of squalamine
potentiates the activity of chloramphenicol, tetracycline, ciprofloxacin, etc. The combined
use of squalamine in a subinhibitory concentration with antibiotics makes it possible to
reduce their dose and overcome the resistance of antibiotic-resistant strains of E. aerogenes
ATCC 13048 and CM-64, P. aeruginosa PA01 and PA124, K. pneumoniae KP63 and KP55,
E. coli AG100 and AG100a [103].

Squalamine displayed great efficacy against A. baumannii dormant cells (i.e., persisters,
which are responsible for recurrent infections) at the 100 µg/mL dose (below the minimum
hemolytic concentration) [132].

In a mouse model, topical application of squalamine more effectively removes S. aureus
from the skin than treatment with antiseptic mupirocin used in surgical practice [142].
Squalamine tablets have been developed to disinfect home nebulizers for patients with
cystic fibrosis [143]. A squalamine concentration of 0.5 g/L 20 min is enough for disinfection.
Aerosol of 3 mg squalamine showed efficacy exceeding 160 mg of colistin in rats with
chronic pneumonia caused by P. aeruginosa [144]. Treatment with 1% squalamine ointment
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resulted in clinical improvement in patients with shingles after 3 weeks [145]. On the
downside, squalamine is inactivated by calcium and magnesium cations (1 mM of Ca2+

blocks the activity of 2.5 µg/mL squalamine, whereas a normal range of Ca2+ in human
serum is 2.0–2.5 mM [129]), which likely renders it ineffective against systemic infections.

A broad-spectrum antiviral activity has been described for squalamine (Dengue virus,
hepatitis B, yellow fever, herpesviruses), indicating that squalamine interaction with cellular
membranes prevents the adhesion and fusion of RNA and DNA viruses into cells [146,147].
Due to the positively charged spermidine moiety and affinity for anionic phospholipids,
squalamine neutralizes the negative charge of the inner membrane of eukaryotic cells,
displacing proteins electrostatically bound to the membrane, in particular Rac1 GTPase
used by viruses to enter the cell. At the same time, no disruption or permeabilization of the
cell membrane was observed. Zasloff et al. demonstrated a protective effect of parenteral
squalamine administration against yellow fever and eastern equine encephalitis in Syrian
hamsters and cytomegalovirus infection in BALB/c mice [30].

6.1.2. Neuroprotective Activity

Squalamine prevents aggregation of alpha-synuclein (αS) and competes with it for
binding to phospholipid membranes (KD of squalamine 67 nM versus 380 nM for synu-
clein), which can be used to treat Parkinson’s disease [148]. Recent experiments confirmed
that squalamine attenuates the toxicity of αS and amyloid-beta (Aβ) by altering their aggre-
gation and displacing them from cell membranes [149]. Similar properties were later shown
for trodusquemine and αS, amyloid-beta (Aβ), and HypF-N oligomers [118,150–152].
Squalamine effectively restores disordered colonic motility by restoring excitability of
the enteric nervous system in a mouse model [15] and reduced toxicity of αS in a C. elegans
model of Parkinson’s disease [153]. In experiments modeling Alzheimer’s disease in
C. elegans, trodusquemine reduced the toxicity of Aβ aggregates by preventing their bind-
ing to cell membranes [154]. FRET and NMR studies revealed that polyamine tails of
trodusquemine modulate physicochemical properties of the cell membranes themselves,
making them more resistant to neurotoxic aggregates of misfolded proteins [118,155]. In a
mouse model of Alzheimer’s disease, trodusquemine rescued NMDA-mediated neuronal
plasticity [156] and prevented cognitive decline [157]. This highlights the potential of
squalamine and trodusquemine for the treatment of Alzheimer’s and Parkinson’s dis-
eases [158].

6.1.3. Antiangiogenic and Antitumor Activity

In 1998 Sills et al. showed that squalamine effectively inhibits angiogenesis and
tumor growth in several animal models [14]. The authors linked the suppression of tumor
neovascularization with the blocking of mitogen-induced proliferation and migration of
endothelial cells. Squalamine has no significant effect on unstimulated endothelial cells
and does not have a direct cytotoxic effect on tumor cells, nor does it alter the production
of mitogens by tumor cells [159]. One of the components of antiangiogenic action is
inhibition of sodium hydrogen exchanger NHE3 of endothelial cells through the C-terminal
76-amino acid fragment [160]. Moreover, it has been shown that squalamine prevents
only mitogen-stimulated proliferation and migration of endothelial cells [14]. Besides,
squalamine is the first calmodulin chaperone described, causing the translocation of the
latter from the cell periphery to perinuclear endosomes [123], which can prevent signal
transduction from mitogen receptors. Williams et al. showed that squalamine disrupts actin
polymerization and intercellular cadherin-mediated adhesion of endothelial cells [161].
As a result, squalamine prevents mitogen-stimulated activation, migration, coordination,
and proliferation of endothelial cells, and thus prevents neovascularization of tumors.

Squalamine itself has only a moderate effect on tumor growth [162]. However, its
combination with cyclophosphamide, cisplatin, 5-fluorouracil, and paclitaxel sensitizes
the tumor, delaying its growth 1.9–3.8 times compared with monotherapy with cytostatic
drugs, which was first shown in rats with breast carcinoma and Lewis lung carcinoma [162].
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The effectiveness of combined antitumor therapy with squalamine and platinum drugs has
been confirmed by several preclinical studies using lung carcinoma [161]. The combination
of squalamine with cisplatin is effective in ovarian cancer, including those with HER-2
overexpression, which is resistant to cisplatin monotherapy [150]. Furthermore, squalamine
inhibits the growth of HER-2-negative breast cancer MCF-7 and HER-2-positive MCF-7
in combination with trastuzumab by blocking the action of the endogenous activator of
angiogenesis VEGF [163].

It was suggested that squalamine is promising for other diseases characterized by
neovascularization. It was shown that squalamine at a dose of 25 mg/kg/day subcuta-
neously is effective in a model of oxygen-induced retinopathy in mice [164] and suppresses
neovascularization after laser injury in rats [165] and macaques even upon systemic admin-
istration [166].

6.2. Trodusquemine as a Unique PTP1B Inhibitor
6.2.1. Antiobesity and Weight Loss Activity

Further research expanded the known spectrum of biological activity of trodusquem-
ine. It has been shown to inhibit HIV replication in human monocytes [167]. Additional
studies carried out on various cell cultures found that the compound also affects the
ionic currents of calcium, chloride, and protons [160,168]. In particular, in frog oocytes,
trodusquemine caused the calcium-dependent opening of chlorine channels [169]. Surprisingly,
it has been found that the administration of trodusquemine induces weight loss in ro-
dents, dogs, and monkeys, which has prompted an in-depth study of the pharmacological
properties and mechanism of action of the compound.

Trodusquemine has been shown to induce a reversible decrease in food and fluid
intake in mammals, resulting in significant weight loss not associated with side effects, and
exhibiting antidiabetic properties in genetically obese mice. Trodusquemine is active when
injected into the third ventricle of the rat brain, suggesting a central mechanism of action.
When trodusquemine was injected into db/db dyslipidemic mice, a decrease in adipose
tissue and a correction of hyperglycemia were noted. Correction of obesity and glucose
tolerance was shown in both genetically obese (ob/ob) and diabetic (db/db) mice [170].
The post-receptor mechanism of action of the compound was hypothesized [171].

The study by Ahima et al. confirmed these observations [172]. It was found that the
main changes induced by trodusquemine are concentrated in the paraventricular nucleus
of the hypothalamus. This area of the brain integrates nerve signals from the nuclei of
the hypothalamus and the nucleus of the brain, regulating feeding behavior and several
neuroendocrine functions. The introduction of trodusquemine into this region reduced
the mRNA levels of the agouti-related peptide and neuropeptide Y in the hypothalamus,
suppressing orexigenic pathways.

Many of the drugs that reduce food intake and body weight work in part by blocking
the dopamine transporter, a protein responsible for the uptake of extracellular dopamine.
Evaluation of the effect of trodusquemine on DAT function did not reveal significant
changes in dopamine secretion and degradation while maintaining suppression of food
intake [173].

Protein tyrosine phosphatase 1B negatively regulates signaling pathways of leptin and
insulin, dephosphorylating their receptors and downstream components of the cascades.
The important role of PTP1B in the pathogenesis of obesity and diabetes mellitus was
confirmed by the deletion of the PTP1B gene in mice. Mice completely knocked out for
the PTP1B gene were protected from the development of obesity and diabetes. Moreover,
selective deletion of the PTP1B gene in the brain had the same effect on the weight and
carbohydrate metabolism of animals. Deletions in muscle, liver, and adipocytes have
no beneficial effect [174,175]. Although these results indicate the importance of PTP1B
neuronal activity in maintaining energy homeostasis, peripheral PTP1B is also being
investigated as a potential regulator of energy balance. In particular, the important role
of hepatic PTP1B expression in glucose homeostasis and endoplasmic stress has been
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shown [176,177]. PTP1B activity is increased in obesity and type 2 diabetes and is a major
cause of insulin resistance. The validation of PTP1B as a therapeutic target for obesity
and diabetes has given rise to the development of selective inhibitors of PTP1B [178,179].
These efforts have led to the discovery of several classes of inhibitors, but their therapeutic
potential has long been limited by low oral bioavailability [180].

As noted above, trodusquemine induces rapid and reversible weight loss in genetic
models of obesity. To better understand the potential effects in the clinic, it was neces-
sary to conduct studies on a model of diet-induced obesity. Lantz et al. administered
trodusquemine to mice with alimentary obesity and demonstrated suppressed appetite,
reduced body weight in a fat-specific manner, and decreased plasma levels of insulin and
leptin [181]. Subsequent enzymatic screening by the authors confirmed that trodusquemine
selectively inhibits PTP1B. At the same time, insulin-stimulated phosphorylation of the
insulin receptor and STAT3, direct targets of PTP1B, in HepG2 cells in vitro and in hypotha-
lamic tissue in vivo was significantly increased. Thus, for the first time, it was shown that
trodusquemine is an effective central and peripheral inhibitor of PTP1B.

This discovery was confirmed by studies of the role of the LMO4 protein, an endoge-
nous inhibitor of PTP1B, in the hypothalamic nuclei [182]. It was found that the introduction
of trodusquemine into the hypothalamus of LMO4-deficient mice restores central insulin
signaling and improves the response of peripheral tissues to insulin [120]. Determina-
tion of the molecular mechanism of action of MSI-1436 prompted further research on its
biological activity.

Despite the creation of effective, specific, and reversible low molecular weight in-
hibitors of PTP1B, the properties of the active site of the enzyme dictate that their molecules
should be negatively charged (competitive inhibitors of PTP1B are phosphotyrosine mimet-
ics [180]), which imposes restrictions on their bioavailability and limits their potential as
drugs. Krishnan et al. revealed a new mechanism of allosteric inhibition of PTP1B, which is
unique for trodusquemine [183]. The binding site located on the disordered C-terminal, the
non-catalytic segment of PTP1B, as well as a second site close to the catalytic domain, were
identified. The cooperative effect arising from the binding of the trodusquemine molecule
to these centers blocks PTP1B in a catalytically inactive conformation [184].

6.2.2. Anticancer Activity

Being an important regulator of cell signaling pathways, PTP1B also regulates the
activity of kinase cascades associated with carcinogenesis, and, in particular, is a ther-
apeutic target for HER2-positive cancers of the breast [177], lung [185], prostate [186],
stomach [187], and colon [188]. PTP1B stimulates ErbB2-induced oncogenesis at the level of
Ras/mitogen-activated protein kinase and PI3/protein kinase B signaling pathways. Addi-
tionally, its substrates are oncogenic proteins: receptor tyrosine kinases EGFR, insulin-like
growth factor 1 receptor, platelet derived growth factor receptor, colony stimulating factor
1 receptor; protein tyrosine kinase c-Src, Jak2, Tyk2, FAK; transcription factors STAT5a and
STAT5b; and adapter proteins p130Cas, Crk, p62Dok, β-catenin [185,189–191].

Fan et al. used trodusquemine to elucidate the important role of PTP1B as a negative
regulator of BRK and IGF-1Rβ signaling in ovarian cancer cells [192]. In the already-
mentioned study [183], trodusquemine showed the ability to suppress the HER2 signaling
pathway by inhibiting tumor formation in xenografts and metastasis in the mouse model
of NDL2 breast cancer. Thus, not only the effectiveness of PTP1B inhibition as a therapeutic
strategy in breast cancer was confirmed, but also the potential of disordered protein
segments as specific binding sites for therapeutic small molecules was shown.

6.2.3. Antiatherogenic Properties

Cardiovascular disease is the most common cause of death in patients with type 1 or
types 2 diabetes due to the development of endothelial dysfunction, accelerated atheroscle-
rosis, and macrovascular complications [193–195]. Recent evidence suggests a strong
relationship between atherosclerosis and insulin resistance due to impaired signaling
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through the insulin receptor [196–198]. In a mouse model of LDLR−/− atherosclerosis,
single and chronic administration of trodusquemine not only reduced body weight and obe-
sity and improved glucose homeostasis but also attenuated the formation of atherosclerotic
plaques [199]. This was accompanied by both a decrease in the level of total circulat-
ing cholesterol and triglycerides, as well as a decrease in the level of expression of the
macrophage-1 chemoattractant protein and hyperphosphorylation of Akt/protein kinase B
and AMPKα in the aorta. Thus, the possibility of using PTP1B inhibitors for the preven-
tion and reversal of the development of atherosclerosis and the reduction of the risk of
cardiovascular diseases was demonstrated for the first time.

6.2.4. Regenerative Properties

The search for low molecular weight compounds with regenerative activity is a new
and highly promising area of research [200]. Trodusquemine is the first-in-class regenera-
tive drug prototype. Intraperitoneal administration of trodusquemine to adult zebrafish
increased the rate of regeneration of the amputated caudal fin, which consists of bone,
connective, cutaneous, vascular, and nervous tissue, and also increased the rate of my-
ocardial regeneration. Intraperitoneal administration of trodusquemine to adult mice
within 4 weeks after induction of myocardial infarction increased survival, improved heart
function, decreased infarction size, decreased ventricular wall thickening, and increased
cardiomyocyte proliferation. Doses effective in stimulating regeneration are 5–50 times
lower than the maximum dose tolerated by humans. The shown safety and well-established
pharmacological properties of trodusquemine underline the potential of this compound as
a new treatment for myocardial infarction and other degenerative diseases [201,202].

6.2.5. Anxiolytic Properties

Chronic stress can lead to the development of anxiety and affective disorders. The
prevalence of these disorders and the lack of effectiveness of existing drugs necessitate
the search for new methods of treatment [203]. Recently, the pathogenetic role of PTP1B
in the development of anxiety disorders has been identified [204]. This opens up exciting
opportunities for the use of PTP1B inhibitors as anxiolytics [205].

Stress disrupts LMO4-dependent inhibition of PTP1B, which in turn inhibits mGluR5,
disrupting its mediated endocannabinoid production. Qin et al. used trodusquemine
to confirm the central role of PTP1B in the development of chronic stress-induced anxi-
ety [204]. They showed that treatment of F11 neuroblastoma cells with trodusquemine
leads to increased tyrosine phosphorylation of mGluR5. Moreover, administration of the
inhibitor to the amygdala, as well as systemic administration by intraperitoneal injection,
attenuated the phenotypic manifestations of anxiety and schizophrenia-like behaviors in
LMO4 knockout mice [206]. Similar results were obtained after the introduction of lentiviral
vectors expressing specific shRNA against PTP1B. In addition, they demonstrated that
trodusquemine treatment inhibits the reduction of endogenous cannabinoid levels in the
amygdala of stressed mice and reduces stress-induced anxiety.

6.3. Clinical Data

Phase 1 clinical trials have shown that squalamine is well tolerated in patients
with advanced solid tumors [207,208]. When administered intravenously, a dose of
192–384 mg/m2/day did not cause toxic effects. Dose-limiting toxicity was observed at
doses above 500 mg/m2/day as transient liver dysfunction (increased activity of hepatic
transaminases and hyperbilirubinemia). Phase 1/2a clinical trials investigated the antitu-
mor activity of a combination of 100–400 mg/m2/day squalamine with carboplatin and
mg/m2/day paclitaxel in patients with stage IIIB–IV non-small cell lung cancer [209]. Thus,
squalamine could be a valuable adjunct to the treatment of refractory cancers.

Squalamine lactate in the form of continuous intravenous infusion and eye drops has
been clinically tested as a treatment for senile macular degeneration (abnormal growth
of blood vessels in the choroid) [210]. Despite encouraging results and a good safety
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profile, trials of both drugs were suspended in 2007 and 2018 due to the introduction of
monoclonal antibodies to VEGF into clinical practice. Later, in phase 2 clinical study in
patients with macular edema caused by retinal vein occlusion, topical application of 0.2%
squalamine in combination with intraocular administration of 0.5 mg ranibizumab (frag-
ment of monoclonal antibodies to VEGF-A) restored vision more effective than ranibizumab
monotherapy. The combination therapy was safe and well-tolerated [211]. A significant
advantage of squalamine over anti-VEGF antibodies is the possibility of atraumatic topical
application instead of intravitreal injections [212]. Despite these promising results, the
phase 3 trial failed, presumably due to poor study design based on retrospective subgroup
analysis [213,214].

Squalamine phosphate was orally administered in a pilot clinical study to patients
with Parkinson’s disease (40 enrolled, 29 completed the dosing). The authors reported
improved colon motility and significant amelioration of constipation along with some
neurological and cognitive improvement. The effective dose ranged from 75 mg to 250 mg
and was well tolerated, presumably due to low systemic bioavailability [22].

Currently, trodusquemine is the most-studied small molecule PTP1B inhibitor. The
drug was originally developed by the compound’s discoverers, Magainin Pharmaceuticals,
later renamed Genaera. It has successfully completed phase 1 clinical trials as a treatment
for type 2 diabetes mellitus, showing good tolerability and pharmacokinetic profile in
healthy individuals (NCT00509132, 2008), as well as in obese and type 2 diabetes patients
(NCT00606112 and NCT00806338, 2009), and was planned to move to phase 2 trials. The
financial difficulties of the developer prevented the implementation of these plans.

Trodusquemine is currently licensed to Depymed, which has launched phase 1 clinical
trials for the treatment of HER-2 positive metastatic breast cancer (NCT02524951, 2017).
The study was terminated in 2018 due to a lack of interest by the sponsor (Northwell
Health, USA). Finally, the study of obstructive sleep apnea was announced by Angers
University Hospital to evaluate the contribution of atherosclerosis and inflammation that
can be ameliorated with trodusquemine (NCT04235023, 2020).

6.4. Synthetic Analogs of Squalamine and Trodusquemine and Structure-Activity Studies

The wide spectrum of pharmacological activity manifested by squalamine and tro-
dusquemine prompted researchers to direct their efforts to structural analogs that are more
accessible and can be scaled to industrial production.

In a study by Shu et al., a series of squalamine analogs were synthesized based on stig-
masterol [34]. The 7α-hydroxyl substituent was either absent or replaced by 7β-hydroxyl.
Analogs with 24-sulfate, 24-amino, and 24-hydroxy substituents were also synthesized to
assess the importance of a functional design of the side chains for the manifestation of
antimicrobial activity. All the derivatives obtained have significant antimicrobial activity,
which indicates that the substitution of C7 and C24 for aminosterols does not play a decisive
role in antibiotic properties. The most active compound, 210b, demonstrated MICs 1–2, 8,
8, 2 µg/mL against S. aureus, E. coli, P. aeruginosa, and C. albicans, respectively.

Similar patterns were revealed for a series of 3-amino- and polyaminosterol synthetic
analogs of squalamine and trodusquemine lacking a sulfate group. The activity was shown
to be highly dependent on the structure of the substituents at position C3, and one of
the most active compounds comprised 3-(4-aminobutylamine)-moiety 117. For it, the
minimum inhibitory concentrations against S. aureus, E. faecalis, E. hirae and E. coli were
6.25–25 µM [76].

Given the low availability of squalamine, numerous synthetically available analogs
have been synthesized that exhibit broad-spectrum antibacterial activity with minimal
inhibitory concentrations in the range of 2.5–40 µg/mL [33,34,76,81,110,215]. It was noted
that analogs with a tetra ammonium polyamine fragment are more active than analogs
with a shorter tris ammonium; while analogs with an axial (α)-hydroxyl substituent at C7
are more active than analogs with a corresponding equatorial (β)-hydroxyl group [70,216].
Derivatives with high activity against intracellular parasite T. brucei, the causative agent
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of African trypanosomiasis, and L. donovani, the causative agent of visceral leishmaniasis,
have been described [85].

Recently, a series of cholestane squalamine analogs was described by Brunel et al.
They lack sulfate moiety in the steroid side chain and, nevertheless, demonstrate similar
squalamine activity against most common pathogens 124 [69]. Interestingly, an antibacterial
and fungicidal activity comparable to squalamine was also observed for C7-spermidine
analogs 134a and 134b [37], and 131 [78], suggesting that antibiotic properties of aminos-
terols depend on their amphiphilic nature and are not receptor-mediated.

Hydroxyl at C7 also seems to be dispensable for activity with compound 120 being
more active than parent squalamine against S. cerevisiae, C. albicans and E. feacalis (MIC
6.25–12.5 µg/mL, but less active against S. aureus and E. coli) [74]. There is also a series of
active derivatives against multi-resistant cocci, especially methicillin-resistant S. aureus at
average concentrations of 2.5–5.0 µg/mL [75].

Another study focused on stereochemistry showed that 3β,5β-isomers have improved
activity over α-counterparts with β-sperminyl-23,24-bisnor-5β-cholane 112 S. aureus having
MIC value as low as 1 µg/mL against S. aureus ATCC6538P [73].

A series of compounds reported by Brunel et al. illustrated that the steroid back-
bone can tolerate amide functionality without compromising antibiotic activity [217].
Compounds exemplified by 225 (Figure 9) show high antibacterial and antifungal activty
(MICs 2–8 µg/mL against and P. aeruginosa strains, MIC50 0.5 µg/mL against C. albicans)
and ability to potentiate activity of other antibiotics along with low cytotoxicity against
CHO cells (CC50 42 µg/mL). Conversion of squalamine zwitterion to amide-functionalized
cations creates a valuable opportunity to overcome low intestinal absorption and inactiva-
tion by calcium ions.
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Polyamine conjugates of stigmasterol showed diminished antibacterial activity (com-
pound 170, MIC 50 µg/mL against S. aureus) [88].

Bile acid-polyamine conjugates as synthetic ionophores and squalamine mimics
demonstrated potent synergism with rifampin against many Gram-negative bacteria
with spermine conjugate 195 being the most active (MIC 0.78–6.25 µg/mL against E. coli,
P. aeruginosa, and S. aureus, although with a relatively low MHC of 12.5 µg/mL) [215]. A
structurally relevant series of 3α-hydroxy-23,24-bisnorcholane spermidine and spermine
carbamates was also reported [92]. In this case, steroidal backbone was replaced with
carbamate bioisostere. Authors concluded that A,B-cis is superior to A,B-trans config-
uration. Carbamate 185 was the most potent against S. aureus and P. aeruginosa (MIC
0.78 µg/mL and 3.13 µg/mL, respectively; MHC 25 µg/mL). Conjugates of glycocholic
acid with polyamine linker were also developed as modifiers of cholic acids intestinal and
hepatic uptake to potentially mitigate first pass effect and improve the safety of hepatotoxic
drugs [107].

Conjugate 84 as a synthetic ionophore showed comparable antibacterial activity to
gentamicin against S. aureus with IC50 values of 4.12 µg/mL and was less effective against
fungi with Trichophyton mentagrophytes being the most susceptible [69].

A polyaminosterol derivative of claramine [218], containing a spermine residue in the
C6 position, similarly to trodusquemine, retains the property of selectively inhibiting PTP1B,
practically without affecting the activity of the closest homolog, TC-PTP phosphatase.
In neuronal cell culture, F11 both claramine and trodusquemine activated the insulin
signaling pathway, increasing the phosphorylation of insulin receptor-β (IRβ), Akt, and
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glycogen synthase kinase 3 beta (GSK3β). Intraperitoneal administration of claramine or
trodusquemine effectively restored glycemic control in diabetic mice in glucose and insulin
tolerance tests. A single intraperitoneal injection of claramine or an equivalent dose of
trodusquemine reduced food intake and led to weight loss in animals without increasing
energy expenditure. Moreover, claramine proved to have pronounced antitumor activity in
animal models of IL13Rα2 overexpressing cancers, including glioblastoma and colorectal
carcinoma [219]. Claramine A1 also exhibits bactericidal activity against a wide range of
Gram-positive and Gram-negative bacteria, including multiply resistant bacteria, and, as
an adjuvant, restores the antibacterial activity of doxycycline against P. aeruginosa PAO1
and E. aerogenes EA28 [121].

The compound 226 (Figure 9), an orally bioavailable effective inhibitor of PTP1B
(IC50 100 nM versus 600 nM for MSI-1436) has also been described [220]. The MSI-1436-
resistant mutant PTP1B L192A/S372P is inhibited by 226 with an IC50 of 1 µM. In addition,
through several convincing experiments, the authors showed that 226 chelates the copper
cation, which enhances its PTP1B-inhibitory activity. Compound 226 antidiabetic properties
confirmed in an animal model of nutritional obesity [220].

Lou et al. has found that PDMS surfaces based on claramine derivative can be poten-
tially useful for the elaboration of biomaterials preventing biofilm formation and addressing
the issue of antibacterial resistance [221].

6.5. Ceragenins as Antibiotics

The discovery of ceragenins can be considered as a development of studies on the
antibacterial activity of squalamine. As it was mentioned above (Section 3.11), ceragenins
are positively charged polyamine derivatives of cholic acids that electrostatically interact
with negatively charged phospholipids of bacteria, viruses, fungi, and protozoa and lead to
an increase in fluidity, depolarization, and permeabilization of their membranes, which
inhibits infectivity or results in bacteria death. Multi-resistant strains of bacteria that
are susceptible to ceragenins include S. aureus, S. pneumoniae, S. pyogenes, H. influenza,
P. aeruginosa, N. meningitides, L. pneumophila etc., Candida, C. neoformans, and A. fumigatus
fungi, trypanosomes, as well as the vaccinia virus in 5 µM concentration [222–224].

These compounds exhibited antibacterial activity comparable or superior to polymyxin
B against Gram-negative bacteria, and some also effectively permeabilize the outer mem-
branes of Gram-negative bacteria [12,225,226].

The selectivity of the antibiotic action of the new compounds was assessed similarly
to squalamine for its ability to induce lysis of eukaryotic cells. For example, 186a has a MIC
for P. aeruginosa of 2 µg/mL and a minimum hemolytic concentration (MHC) of 29 µg/mL.
In the presence of pluronic F-127, antibacterial activity of ceragenin 186a was only slightly
decreased, but hemolytic activity was significantly inhibited. Ceragenin 186a exhibits
bacterial killing activity against clinical isolates of S. aureus, including methicillin-resistant
strains, P. aeruginosa present in cystic fibrosis sputa, and biofilms formed by different
gram-positive and gram-negative bacteria [99,227]. These properties render ceragenins
particularly useful in orthopedic medicine as antibiotics and implant coatings [228,229].
Silicone coating incorporating 186a developed by Williams et al. [230] proved to be bio-
compatible, safe, and effective against MRSA biofilms in vivo [231,232]. Another example
is contact lenses made with covalently bound 186b or 186c releasing polymers that resist
bacterial colonization with S. aureus or P. aeruginosa for 15–30 days (Figure 10) [233].

The selectivity of action is explained by the ability to bind to lipid A, specific for
prokaryotic membranes, which was confirmed using amphiphilic steroids labeled with
a fluorophore [105]. Ceragenin 186a builds into a phospholipid bilayer which results in
increased fluidity and destabilization [234]. Similar to other aminosterols, ceragenins elicit
bacterial membrane permeabilization and act synergetically with other antibiotics and an-
timicrobials, which was confirmed for colistin, tobramycin, ciprofloxacin, LL-37, lysozyme,
and lactoferrin [99,235]. Importantly, ceragenins elicit different gene responses in E. coli
as compared to cationic antimicrobial peptides, which is associated with a lower level
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of resistance [236]. Another important benefit of ceragenins is their improved activity in
cystic fibrosis sputum. It was shown that ceragenin 186a is significantly less sensitive to
extracellular polyanions that compromise the antibacterial activity of cationic antibacterial
peptides [97]. CSA-13 186a has potent antibacterial and antibiofilm activity against Achro-
mobacter spp. [237] and P. aeruginosa strains isolated from cystic fibrosis patients (MIC90
2 µg/mL) and acts synergetically with colistin, a polymyxin antibiotic [235]. Moreover,
colistin-resistant and chlorhexidine-resistant Gram-negative bacteria strains remain sus-
ceptible to ceragenins 186b and 186c (Figure 10) [238,239]. On top of this, ceragenin 186c
exceeds the activity of antimicrobial peptides against preformed bacterial and fungal-
bacterial biofilms [240,241], and 186a also stimulates cell migration which facilitates wound
healing [242]. These results were confirmed in the porcine model of burn wounds with
ceragenin 186b [243]. Another hard-to-fight pathogen, B. subtilis spores, is also sensitive to
CSA-13 186a treatment [244,245].
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Moreover, CSA-17 effectively eradicates drug-resistant clinical isolates of H. pylori
(MBC 0.275–8.9 µg/mL) and even retains activity in simulated gastric juice containing
pepsin and mucins that inactivates peptide-based antibiotics [144]. Recently it was shown
that ceragenins may be used to overcome bacterial resistance to carbapenems. NDM-1
carbapenemase-producing strains of E. coli, E. cloacae, and K. pneumoniae are susceptible to
186a–186c with MICs as low as 1–2 µg/mL [246]. Ceragenins 186a and 186c are also promis-
ing drugs against carbapenem-resistant A. baumannii strains [247], improving antibacterial
activity of LL-37 peptide against drug-resistant E. coli strains isolated from patients with
urinary tract infections [248], they retain activity against multi-drug resistant strains of
K. pneumoniae [249].

Ceragenins possess high fungicidal activity against a broad spectrum of pathogenic
fungi, e.g., 186a showed MIC in 0.5–4 µg/mL against C. albicans and Candida spp. [250,251],
including fluconazole-resistant strains [252]. The mechanism of action of ceragenins against
fungi is not precisely defined but as derivatives of cholic acid that mimic the morphology
of natural antimicrobial peptides, they are expected to act similarly, causing damage and
dysfunction of the plasma membrane. Ceragenins 186a and 186c have stronger candidacidal
activity than natural peptide and omiganan against all tested fluconazole-resistant yeast
cells as well as against young and mature biofilms [250].

In an attempt to further improve bactericidal activity and biocompatibility of 186a
several nanoparticle formulations were developed. The MNP-CSA-13 nanoparticles demon-
strate dual benefits: a decrease of ceragenin hemolytic activity and an increase of antimi-
crobial properties in body fluids [101]. MNP approach improved the antibacterial effect of
CSA-13 against methicillin-resistant S. aureus and P. aeruginosa [253]. Ceragenins 186 and
186c attached to MNPs exceed the antibacterial activity of LL-37 or metronidazole against
B. fragilis, P. acnes, and C. difficile and prevented formation of their biofilms [254]. Furthermore,
MNP-CSA-13 prevents Candida spp. Biofilm formation which is relevant for the treatment of
fungal infections in immunocompromised patients [255]. Silver nanoparticles conjugated
with ceragenin, or cationic antimicrobials (CSA-SNPs) hold potential as Gram-positive
selective antimicrobial [99]. Formulation of 186c in poloxamer micelles prevents damage to
ciliated tissues while retaining bactericidal activity against established biofilms [256].

Later several studies revealed that the membrane-permeabilizing capability of 186a
is linked not only to antimicrobial, but also anticancer properties [257]. Ceragenin 186a
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induces cell cycle arrest and apoptosis in wild-type and p53 null mutant HCT116 colon can-
cer cells at 5 µg/mL concentration [258]. MCF-7 and MDA-MB-231 breast cancer cells are
also susceptible both to free CSA-17 and CSA-17-loaded magnetic nanoparticles unlikely
to antimicrobial LL-37 peptide, which is protumorigenic [259]. Similar to antibacterial
studies, ceragenins immobilized on metal nanoparticles demonstrate synergistically im-
proved therapeutic potential against cancer cells. MNP-186a nanoparticles are also active
against DLD-1 colon cancer cells [260]. In these cases, 186a was a carrier to internalize
MNP and induce intracellular oxidative stress followed by apoptosis. Anticancer activity
of MNP-186c at a 10 µg/mL dose was further confirmed against several colon and lung
cancer cell lines [261].

To sum up the data of this section, we should conclude that aminosterols have several
principal benefits over commonly used antibacterial drugs. Ceragenins hold promise to
fight important human pathogens that are either multi-drug resistant or might become re-
sistant to currently used antibiotics in a near future. The development of second-generation
ceragenins and their nanoformulation in liposomes or nanoparticles demonstrated that a
combination of efficacy against various bacteria and fungi, even in established biofilms,
with biocompatibility and stability in vivo, is indeed possible. The mechanism of antibiotic
action relies on physicochemical interaction with phospholipids of cellular membranes.
Accordingly, there is no evidence that resistance to aminosterols may emerge since they
do not engage protein targets and are not subjected to enzymatic inactivation or active
efflux. In comparison with antimicrobial peptides, which share a similar mechanism of
action, aminosterols are less expensive to produce, resistant to proteolytic degradation,
which permits oral administration and retain their activity in biological fluids. Unlike
peptides, they are thermally stable enough to permit autoclave sterilization and use in
implant coatings or contact lenses, and even facilitate wound healing and reparation of
bone fractures.

The second promising application is linked to antiangiogenic activity for the treat-
ment of neoplastic diseases. Widely used cytostatic agents have intrinsic toxicity towards
normal cells, which results in immunodepression, gastrointestinal disorders, and alope-
cia. Furthermore, high proliferation rates permit the expansion of mutant cancer cells
that evade cytostatic therapy. Targeting vascularization of tumors instead is prone to the
development of resistance and proved to be tolerable in clinical trials. Choroidal neovascu-
larization is also effectively managed by topical squalamine administration that provides
an alternative to traumatic injections of anti-VEGF antibodies in age-related macular edema
and similar conditions.

Last but not least, trodusquemine and its synthetic analogs represent unique orally
available and brain penetrant allosteric inhibitors of PTP1B. There are no clinically approved
drugs targeting this important enzyme, thus aminosterols hold promise to be first-in-class
drugs that may relieve the burden of such important diseases such as type 2 diabetes
mellitus, obesity, cancer, neurodegenerative, cardiovascular, and psychiatric disorders,
including depression and schizophrenia. Further clinical trials are warranted to confirm
their safety and efficacy and to ultimately provide benefit to wide cohorts of patients
(Table 1).



Int. J. Mol. Sci. 2022, 23, 1075 33 of 54

Table 1. Therapeutic profiles of squalamine, trodusquemine, claramine, and ceragenins.

Primary
Target

Pharmacological
Action

Evidence Level
Squalamine Trodusquemine Claramine Ceragenins

Phospholipid
membranes

Antibacterial In vitro MIC 1–8
µg/mL: E. coli,
P. aeruginosa, S. aureus,
S. faecalis, P. vulgaris,
K. pneumoniae [38],
A. baumannii [132];
MIC 0.5–1 µg/mL
Methanobrevibacter
spp. [130,131]; in
animal studies as
monotherapy or as
sensitizer for
conventional
antibiotics against
resistant strains of
S. aureus, E. coli,
P. aeruginosa,
E. aerogenes,
K. pneumoniae
[103,128,142]

In vitro MIC
1–4 µg/mL: S. aureus,
P. aeruginosa,
C. albicans [7]

In vitro MIC
2–16 µg/mL: E. coli,
E. aerogenes, E. cloacae,
P. aeruginosa,
K. pneumoniae,
A. baumannii [120],
and as an adjuvant
for doxycycline
against P. aeruginosa
PAO1 and E. aerogenes
EA28 [121]

In vitro MIC
2–4 µg/mL: E. coli,
S. aureus, S.
pneumoniae,
S. pyogenes,
H. influenza,
P. aeruginosa,
N. meningitides,
K. pneumoniae,
L. pneumophila,
B. subtilis
[226,227,229–
231,239,242,248–253];
in animal studies as
sensitizer for
conventional
antibiotics
[99,228,229,235,243]

Antifungal In vitro MIC
12.6–25 µM:
C. albicans, C. krusei,
C. glabrata,
A. fumigatus, A. niger,
Fusarium spp.) and
protozoa (P. caudatum)
[127]

In vitro MIC in
0.5–4 µg/mL:
Candida spp.,
C. neoformans,
A. fumigatus
[245,254–256]

Antiviral In vitro: Dengue
virus, hepatitis B,
yellow fever,
herpesviruses
[146,147]; in animal
models: yellow fever,
eastern equine
encephalitis,
cytomegalovirus [30]

In vitro: HIV [167] In vitro: vaccinia
virus [224]

Misfolded
proteins

Neuroprotective In vitro:
alpha-synuclein,
amyloid-beta
[148,149]; in animal
models of Parkinson’s
disease [15,153];
phase 2 clinical trilas
of squalamine
phosphate for
Parkinson’s disease
[22,158]

In vitro:
alpha-synuclein,
amyloid-beta,
HypF-N
[119,152–155,157]
In animal models of
Parkinson’s and
Alzheimer’s diseases
(presumably PTP1B is
also involved)
[157,159–161]
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Table 1. Cont.

Primary
Target

Pharmacological
Action

Evidence Level
Squalamine Trodusquemine Claramine Ceragenins

NHE3 and
mitogen
signalling

Antiangiogenic As an adjuvant to
cytostatic drugs in
animal tumor models
[14,152,164–166]; as a
monotherapy in
animal retinopathy
models [167–169];
squalamine lactate as
monotherapy or in
combination with
mAb to VEGF in
phase 2 clinical trilas
for age-related
macular edema
[210–214];
combinatorial therapy
in phase 2 clinical
trilas for non-small
cell lung cancer
[210–212]

PTP1B

Antidiabetic
via insulin
and leptin
receptors
signalling

As monotherapy in
diabetic ob/ob and
db/db mice [173–175]
and DIO mice
[181,220]; as
monotherapy in
phase 1 clinical study
for type 2 diabetes
mellitus
(NCT00606112,
NCT00806338)

As monotherapy in
diabetic
CaMK2aCre/LMO4flox
mice [218]

Anticancer via
growth factor
receptors
signalling

As monotherapy in
animal models of
solid tumors
[180,186,188–195]; as
monotherapy in
phase 1 clinical study
for HER-2 positive
metastatic breast
cancer
(NCT02524951)

As monotherapy in
animal models of
glioblastoma and
colorectal carcinoma
[219]

Atherosclerosis In animal models of
LDLR−/−

atherosclerosis [199];
phase 1 study has
been announced

Anxiolytic In animal models of
anxiety and
schizophrenia
[205,206]

Regenerative In animal models of
trauma and
myocardial infarction
[201,202]
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7. Terpene- and Triterpene-Based Polyamine Derivatives

As was mentioned above, the chemistry and biological activity of steroid polyamines
had a strong impact on the synthesis of terpenoid-based polyamine derivatives that started
in the first decade of the 21st century. Literature analysis shows that the main group of ter-
penoid polyamines is obtained on the basis of triterpenic acids. For example, two syntheses
of C3 conjugates with spermidine have been realized. The interaction of methyl 3β-amino-3-
deoxybetulinoate 227 with tert-butyl-N-(4-cyanobutyl)-N-3-(iodopropyl)-carbonate 228 led
to betulin conjugate 229 in a 24% yield. In a yield of 21%, compound 229 was synthesized
by reductive amination of derivative 227 with tert-butyl-N-(4-aminobutyl)-N-3-(oxopropyl)
carbonate 230 in the presence of NaBH3CN. Conjugate 233 was obtained in a total yield of
34% by the reaction of methyl betulonoate 231 with N-(3-aminopropyl)-1,4-diaminobutane
in the presence of Ti(OiPr)4 to form imine 232 and its subsequent reduction with NaBH3CN
(Scheme 35) [262].
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Scheme 35. Reagents and conditions: (a) NC(CH2)3N(Boc)(CH2)3I 228, 95% HCOOH, LiAlH4,
THF, 66 ◦C; (b) H2N(CH2)4N(Boc)(CH2)2CHO 230, benzene, Ti(OiPr)4, 80 ◦C; (c) NH2OH HCl, Py,
114 ◦C; (d) NaBH3CN, NH4OH, 15% TiCl3, MeOH, 25 ◦C; (e) H2N(CH2)3NH(CH2)4NH2, Ti(OiPr)4,
80 ◦C, benzene.

Another approach included the reaction of cyanoethylation of triterpene alcohols.
Interaction of diols 234–237 with acrylonitrile in dioxane resulted in mixtures of 28-mono-
and 3,28-biscyanoethyl ethers with the prevalence of the latter (Scheme 36). As a re-
sult of catalytic hydrogenolysis of cyano-derivatives, aminopropoxy-modificants of be-
tulin, erythrodiol, uvol, and oleantriol of type 238 and 239 have been synthesized [263].
Aminopropoxytriterpenoids have proven to be highly active anticancer agents, inhibiting
the growth of colon cancer, leukemia, breast cancer, and melanoma. 3,28-bis-Aminopropoxy-
erythrodiol showed high antitumor activity against five transplanted mouse tumors [263,264].
3,28-bis-Aminopropoxy-betulin was found to be a potent micromolar inhibitor of yeast
α-glucosidase and simultaneously inhibit endosomal reticulum α-glucosidase, rendering it
potentially capable to suppress tumor invasiveness and neovascularization in addition to
the direct cytotoxicity [265]. Using the described approach, 3β,20R,28-tri-(3-aminopropoxy)-
betulin 240 [266,267] and 2-cyanoethoxy- 241 and 3-aminopropoxy-betulinic N-methylpipe-
razinylamide 242 were synthesized and showed highly cytotoxic activities towards non-
small cell lung, colon, breast, ovarian, leukemia, renal, melanoma, prostate and CNS cancer
cells [264,268].

Triterpenoids with alkane polyamine fragments in the C28 side chain were synthesized
on the basis of betulonic and oleanonic acids 243, 244. The reaction of cyanoethylation
of the terminal amino group of triterpene carboxamides 245–247 led to the formation of
mono- or bis-N-propionitriles, the reduction of which afforded 3-aminopropylamine deriva-
tives 250 and 251 (Scheme 37). Compound 250 was converted to partially soluble sulfate
252 [266,269]. In a similar route, aminopropyl group was introduced into the structure of
A-seco-3-aminobetulin 253 with the formation of 3-aminopropylamino-derivative 254 [270].



Int. J. Mol. Sci. 2022, 23, 1075 36 of 54

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 36 of 56 
 

 

terpenoid polyamines is obtained on the basis of triterpenic acids. For example, two syn-
theses of C3 conjugates with spermidine have been realized. The interaction of methyl 
3β-amino-3-deoxybetulinoate 227 with 
tert-butyl-N-(4-cyanobutyl)-N-3-(iodopropyl)-carbonate 228 led to betulin conjugate 229 in 
a 24% yield. In a yield of 21%, compound 229 was synthesized by reductive amination of 
derivative 227 with tert-butyl-N-(4-aminobutyl)-N-3-(oxopropyl) carbonate 230 in the 
presence of NaBH3CN. Conjugate 233 was obtained in a total yield of 34% by the reaction 
of methyl betulonoate 231 with N-(3-aminopropyl)-1,4-diaminobutane in the presence of 
Ti(OiPr)4 to form imine 232 and its subsequent reduction with NaBH3CN (Scheme 35) [262]. 

 
Scheme 35. Reagents and conditions: (a) NC(CH2)3N(Boc)(CH2)3I 228, 95% HCOOH, LiAlH4, THF, 66 
°C; (b) H2N(CH2)4N(Boc)(CH2)2CHO 230, benzene, Ti(OiPr)4, 80 °C; (c) NH2OH HCl, Py, 114 °C; (d) 
NaBH3CN, NH4OH, 15% TiCl3, MeOH, 25 °C; (e) H2N(CH2)3NH(CH2)4NH2, Ti(OiPr)4, 80 °C, benzene. 

Another approach included the reaction of cyanoethylation of triterpene alcohols. 
Interaction of diols 234–237 with acrylonitrile in dioxane resulted in mixtures of 
28-mono- and 3,28-biscyanoethyl ethers with the prevalence of the latter (Scheme 36). As 
a result of catalytic hydrogenolysis of cyano-derivatives, aminopropoxy-modificants of 
betulin, erythrodiol, uvol, and oleantriol of type 238 and 239 have been synthesized [263]. 
Aminopropoxytriterpenoids have proven to be highly active anticancer agents, inhibiting 
the growth of colon cancer, leukemia, breast cancer, and melanoma. 
3,28-bis-Aminopropoxy-erythrodiol showed high antitumor activity against five trans-
planted mouse tumors [263,264]. 3,28-bis-Aminopropoxy-betulin was found to be a po-
tent micromolar inhibitor of yeast α-glucosidase and simultaneously inhibit endosomal 
reticulum α-glucosidase, rendering it potentially capable to suppress tumor invasiveness 
and neovascularization in addition to the direct cytotoxicity [265]. Using the described 
approach, 3β,20R,28-tri-(3-aminopropoxy)-betulin 240 [266,267] and 2-cyanoethoxy- 241 
and 3-aminopropoxy-betulinic N-methylpiperazinylamide 242 were synthesized and 
showed highly cytotoxic activities towards non-small cell lung, colon, breast, ovarian, 
leukemia, renal, melanoma, prostate and CNS cancer cells [264,268]. 

 
Scheme 36. Reagents and conditions: (a) 1. СН2=СНСN, TEBAC, dioxane, 40% КОН, 25 °С, 26–36 
h; 2. H2, Raney-Ni, MeOH, 100 °C, 100 atm, 19 h. 
Scheme 36. Reagents and conditions: (a) 1. CH2=CHCN, TEBAC, dioxane, 40% KOH, 25 ◦C, 26–36 h;
2. H2, Raney-Ni, MeOH, 100 ◦C, 100 atm, 19 h.

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 37 of 56 
 

 

Triterpenoids with alkane polyamine fragments in the C28 side chain were synthe-
sized on the basis of betulonic and oleanonic acids 243, 244. The reaction of cyanoethyla-
tion of the terminal amino group of triterpene carboxamides 245–247 led to the formation 
of mono- or bis-N-propionitriles, the reduction of which afforded 3-aminopropylamine 
derivatives 250 and 251 (Scheme 37). Compound 250 was converted to partially soluble 
sulfate 252 [266,269]. In a similar route, aminopropyl group was introduced into the 
structure of A-seco-3-aminobetulin 253 with the formation of 
3-aminopropylamino-derivative 254 [270]. 

 
Scheme 37. Reagents and conditions: (a) 1. (COCl)2, CHCl3, 2 h, 25 °C; 2. NH3 or NH2(CH2)6NH2, 
Et3N, CHCl3, 60 °C, 3 h; (b) СН2=СНСN, 40% KOH, dioxane, TEBAC, 14 h; (c) LiAlH4, THF; (d) 
NaBH4, i-PrOH, 0 °C, 2 h; (e) H2, Raney-Ni, MeOH, 100 °C, 100 atm, 8 h; (f) H2SO4, Ac2O, Py, 55 °C, 
1 h, then 0 °C, 15 min. 

Cyanoethylation of methyl betulonoate oxime 255 led to 3-cyanopropoxy-amino de-
rivative, the following reduction with diborane afforded methyl 
3-deoxy-3β-(3-aminopropoxyamino)-20(29)dihydrobetulinoate, the terminal NH2-group of 
this compound was cyanoethylated again and reduced to form a polyamine 256. Stepwise 
interaction of 255 with acrylonitrile and hydroxylamine led to compound 257, and re-
peated cyanoethylation, and catalytic hydrogenolysis afforded derivative 258 (Scheme 38) 
[270]. 

Scheme 37. Reagents and conditions: (a) 1. (COCl)2, CHCl3, 2 h, 25 ◦C; 2. NH3 or NH2(CH2)6NH2,
Et3N, CHCl3, 60 ◦C, 3 h; (b) CH2=CHCN, 40% KOH, dioxane, TEBAC, 14 h; (c) LiAlH4, THF;
(d) NaBH4, i-PrOH, 0 ◦C, 2 h; (e) H2, Raney-Ni, MeOH, 100 ◦C, 100 atm, 8 h; (f) H2SO4, Ac2O, Py,
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Cyanoethylation of methyl betulonoate oxime 255 led to 3-cyanopropoxy-amino
derivative, the following reduction with diborane afforded methyl 3-deoxy-3β-(3-aminopr-
opoxyamino)-20(29)dihydrobetulinoate, the terminal NH2-group of this compound was
cyanoethylated again and reduced to form a polyamine 256. Stepwise interaction of 255
with acrylonitrile and hydroxylamine led to compound 257, and repeated cyanoethylation,
and catalytic hydrogenolysis afforded derivative 258 (Scheme 38) [270].
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their in vitro antibiotic enhancer properties against resistant Gram-negative bacteria of 
four antibiotics belonging to four different families. The mechanism of action against E. 
aerogenes of one of the most efficient of these chemosensitizing agents was precisely 
evaluated by using fluorescent dyes to measure outer-membrane permeability and to 
determine membrane depolarization. The weak cytotoxicity encountered led to per-
forming an in vivo experiment dealing with the treatment of mice infected with S. 
typhimurium and affording preliminary promising results in terms of tolerance and effi-
ciency of the polyaminoisoprenyl derivative 266h-doxycycline combination [273]. 
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A next series of derivatives was synthesized on the basis of monoterpenoids. Thus,
the synthesis of isoprene polyamines 260–263 was reported by the interaction of citral 259
with polyamines (Scheme 39) [271,272]. The study of the activity of derivatives 260–263
together with the antibiotic doxycycline against the resistant strain of P. aeruginosa showed
that compound 262 destabilizes the outer membrane and inhibits the outgoing cell pumps,
which facilitates easy penetration of the antibiotic into the bacterium. Thus, they created an
opportunity for the rejuvenation of forgotten antibiotic molecules with the help of “escort
molecules” to improve their action [271]. They were assayed against clinical isolates and
multi-drug-resistant strains. One of these compounds was able to decrease the MIC of
doxycycline on the reference strain, efflux pump overproducers, and clinical isolates of
P. aeruginosa, to the susceptibility level. Similar results were obtained using chloramphenicol
as the antibiotic. Membrane permeation assays and real-time efflux experiments were used
to characterize the mechanism of doxycycline potentiation. The results showed that the
selected compound strongly decreases the efficiency of glucose-triggered efflux associated
with a slight destabilization of the outer membrane. According to these data, targeting
natural resistance may become an interesting way to combat MDR pathogens and could
represent an alternative to already devised strategies.

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 38 of 56 
 

 

 
Scheme 38. Reagents and conditions: (a) СН2=СНСN, dioxane, 40% КОН, 25 °C, 2 h; (b) NH2OH 
HCl, NaHCO3, i-PrOH, 77 °C, 8 h; (c) NaBH4, BF3 Et2O, THF, 65 °C, 6 h; (d) H2, Raney-Ni, MeOH, 
100 °C, 100 atm, 9 h. 

A next series of derivatives was synthesized on the basis of monoterpenoids. Thus, 
the synthesis of isoprene polyamines 260–263 was reported by the interaction of citral 259 
with polyamines (Scheme 39) [271,272]. The study of the activity of derivatives 260–263 
together with the antibiotic doxycycline against the resistant strain of P. aeruginosa 
showed that compound 262 destabilizes the outer membrane and inhibits the outgoing 
cell pumps, which facilitates easy penetration of the antibiotic into the bacterium. Thus, 
they created an opportunity for the rejuvenation of forgotten antibiotic molecules with 
the help of “escort molecules” to improve their action [271]. They were assayed against 
clinical isolates and multi-drug-resistant strains. One of these compounds was able to 
decrease the MIC of doxycycline on the reference strain, efflux pump overproducers, and 
clinical isolates of P. aeruginosa, to the susceptibility level. Similar results were obtained 
using chloramphenicol as the antibiotic. Membrane permeation assays and real-time ef-
flux experiments were used to characterize the mechanism of doxycycline potentiation. 
The results showed that the selected compound strongly decreases the efficiency of glu-
cose-triggered efflux associated with a slight destabilization of the outer membrane. Ac-
cording to these data, targeting natural resistance may become an interesting way to 
combat MDR pathogens and could represent an alternative to already devised strategies. 

 
Scheme 39. Reagents and conditions: (a) R-NH2, Ti(OiPr)4 (1 eq.), MeOH, 20 °С, 12 h; NaBH4 (2 eq.), 
H2O, 0 °С, 2 h. 

Monoterpene derivatives 265 and 266 (Scheme 40), were successfully evaluated for 
their in vitro antibiotic enhancer properties against resistant Gram-negative bacteria of 
four antibiotics belonging to four different families. The mechanism of action against E. 
aerogenes of one of the most efficient of these chemosensitizing agents was precisely 
evaluated by using fluorescent dyes to measure outer-membrane permeability and to 
determine membrane depolarization. The weak cytotoxicity encountered led to per-
forming an in vivo experiment dealing with the treatment of mice infected with S. 
typhimurium and affording preliminary promising results in terms of tolerance and effi-
ciency of the polyaminoisoprenyl derivative 266h-doxycycline combination [273]. 
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Monoterpene derivatives 265 and 266 (Scheme 40), were successfully evaluated for
their in vitro antibiotic enhancer properties against resistant Gram-negative bacteria of
four antibiotics belonging to four different families. The mechanism of action against
E. aerogenes of one of the most efficient of these chemosensitizing agents was precisely
evaluated by using fluorescent dyes to measure outer-membrane permeability and to
determine membrane depolarization. The weak cytotoxicity encountered led to performing
an in vivo experiment dealing with the treatment of mice infected with S. typhimurium
and affording preliminary promising results in terms of tolerance and efficiency of the
polyaminoisoprenyl derivative 266h-doxycycline combination [273].
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derivatives. For almost all compounds, data on biological properties were obtained, 
mainly on cytotoxicity against cancer cells, antiviral, antibacterial, antidiabetic, and an-
tifungal activity. It is interesting to note that conjugates of betulinic, oleanolic, ursolic, 
and platanic acids with spermine at the C28 or C3 positions through a succinate spacer 
exhibited not only antimicrobial and antitumor activity [298,300], but also self-assembled 
into J-type fibrous systems in aqueous media, and also form supramolecular networks, 
which opens up many possibilities for the use of such structures for drug delivery sys-
tems in serum or other body fluids [298,301]. Triterpene aldimines with spermidine were 
found to be promising antibacterial agents against both Gram-positive and 
Gram-negative bacteria [302]. Amide BMS-955176, derived from betulin in seven steps, is 
an effective antiretroviral drug in phase 2b clinical trials [294,303]. Lupane carboxamides, 
conjugates with diaminopropane, triethylenetetramine and branched methyl 
3-cyanoethylated polyamine betulonoate showed high cytotoxic activity against most of 
the tested cancer cell lines with the lowest GI50 1.09 μM. Betulonic acid diethylentriamine 
conjugate showed partial activity against methicillin-resistant S. aureus and the fungi C. 
neoformans [265]. 
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Among triterpene-based polyamines, the most representative group is presented by triter-
penic conjugates with linear and cyclic diamines 267–299 (Figure 11) [263–265,267,274–299].
The reactions involved both native acids and their semi-synthetic derivatives. For almost all
compounds, data on biological properties were obtained, mainly on cytotoxicity against can-
cer cells, antiviral, antibacterial, antidiabetic, and antifungal activity. It is interesting to note
that conjugates of betulinic, oleanolic, ursolic, and platanic acids with spermine at the C28
or C3 positions through a succinate spacer exhibited not only antimicrobial and antitumor
activity [298,300], but also self-assembled into J-type fibrous systems in aqueous media, and
also form supramolecular networks, which opens up many possibilities for the use of such
structures for drug delivery systems in serum or other body fluids [298,301]. Triterpene
aldimines with spermidine were found to be promising antibacterial agents against both
Gram-positive and Gram-negative bacteria [302]. Amide BMS-955176, derived from betulin
in seven steps, is an effective antiretroviral drug in phase 2b clinical trials [294,303]. Lupane
carboxamides, conjugates with diaminopropane, triethylenetetramine and branched methyl
3-cyanoethylated polyamine betulonoate showed high cytotoxic activity against most of
the tested cancer cell lines with the lowest GI50 1.09 µM. Betulonic acid diethylentriamine
conjugate showed partial activity against methicillin-resistant S. aureus and the fungi
C. neoformans [265].

Conjugates of oleanolic acid with spermine 300 and 301 were studied for the character-
istics of their oleanolic acid backbone that is a conformationally rigid and convenient chiral
building block for preparing functional soft materials. However, besides their supramolec-
ular characteristics, conjugates displayed high cytotoxicity with a range IC50 0.8–3.7 µM
(Figure 12) [305].

Oleanolic acid conjugate with diethylenetriamine 302 (Figure 13) demonstrated
high inhibitory activity against C. trachomatis with chemotherapeutic index 8 and >8.
Compounds 302 and 303 exhibited remarkable activities against the NCI-60 subpanel (GI50
ranges from 0.18 to 2.21 µM) exceeding the activity of sorafenib with compound 302 as a
lead (GI50 0.17 µM for melanoma LOX IMVI) [306]. A series of oleanolic acid derivatives
holding oxo- or 3-N-polyamino-3-deoxy-substituents at C3 as well as carboxamide function
at C28 with different long chain polyamines have been synthesized and showed good
antimicrobial activities against Gram-positive S. aureus, S. faecalis and B. cereus (MIC values
from 3.125 to 200 µg/mL) and Gram-negative E. coli, P. aeruginosa, and S. enterica (MIC
ranging from 6.25 to 200 µg/mL) [307]. The testing of ability to restore antibiotic activity of
doxycycline and erythromycin at a 2 µg/mL concentration in a synergistic assay showed
that oleanonic acid conjugate with spermine spacered through propargylamide 304 led
to a moderate improvement in terms of antimicrobial activities of the different selected
combinations against both P. aeruginosa and E. coli. The study of mechanism of action of
the lead conjugate 305 presenting a N-methyl norspermidine moiety showed the effect of
disruption of the outer bacterial membrane of P. aeruginosa PA01 cells.
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found to be promising antibacterial agents against both Gram-positive and 
Gram-negative bacteria [302]. Amide BMS-955176, derived from betulin in seven steps, is 
an effective antiretroviral drug in phase 2b clinical trials [294,303]. Lupane carboxamides, 
conjugates with diaminopropane, triethylenetetramine and branched methyl 
3-cyanoethylated polyamine betulonoate showed high cytotoxic activity against most of 
the tested cancer cell lines with the lowest GI50 1.09 μM. Betulonic acid diethylentriamine 
conjugate showed partial activity against methicillin-resistant S. aureus and the fungi C. 
neoformans [265]. 
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Figure 13. Conjugates of oleanolic acid with diethylenetriamine 302, triethylenetriamine 303,
oleanonic acid conjugate with spermine spacered through propargylamide 304, and N-methyl-
norspermidine 305.

8. Conclusions

Squalamine and trodusquemine isolated from the dogfish shark Squalus acanthias at
the turn of 1990–2000 were involved in the systematic chemical and clinical investigations.
Due to the need for significant amounts for biological tests, different synthetic approaches
were suggested for their preparation from available steroids and cholic acids. In vitro and
in vivo studies of squalamine showed a broad-spectrum bactericidal antibiotic activity
against both Gram-positive and Gram-negative bacteria, and antiviral activity against
RNA- and DNA viruses, and an inhibition of pathological angiogenesis associated with
cancer and retinopathy. Trodusquemine and its synthetic analogs represent unique orally
available and brain penetrant allosteric inhibitors of PTP1B, and these aminosterols hold
promise to be first-in-class drugs that may relieve the burden of such important diseases
including type 2 diabetes mellitus, obesity, cancer, neurodegenerative, cardiovascular, and
psychiatric disorders (Figure 14).

From the beginning of the first decade of the 21st century, the chemistry and biological
activity of steroid polyamines had a strong impact on the synthesis of terpenoid-based
polyamine derivatives. The study of isoprene polyamines together with the doxycycline
against the resistant strain of P. aeruginosa revealed the derivative that destabilizes the outer
membrane and inhibits the outgoing cell pumps, which facilitates easy penetration of the
antibiotic into the bacterium, thus creating an opportunity for the rejuvenation of forgotten
antibiotic molecules with the help of “escort molecules” to improve their action. Triterpenic
conjugates with spermine, spermidine, triethylenetetramine, other linear and cyclic di- and
polyamines as well as branched aminopropoxy-derivatives have been synthesized. For
almost all compounds, data on cytotoxicity against cancer cells, antiviral, antibacterial,
antidiabetic, and antifungal activities were obtained. Among them, conjugates of several
triterpenic acids with spermine exhibited not only antimicrobial and antitumor activity,
but also formed self-assembled systems and supramolecular networks in aqueous media,
which opens up many possibilities for the use of such structures for drug delivery systems
in serum or other body fluids.
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cell membranes renders them resistant to virions and misfolded proteins (B); inhibition of patholog-
ical angiogenesis hampers development of macular edema and tumors (C); PTP1B inhibition im-
proves insulin sensitivity, decreases food intake and directly suppresses cancer cells proliferation (D). 

From the beginning of the first decade of the 21st century, the chemistry and bio-
logical activity of steroid polyamines had a strong impact on the synthesis of terpe-
noid-based polyamine derivatives. The study of isoprene polyamines together with the 
doxycycline against the resistant strain of P. aeruginosa revealed the derivative that de-
stabilizes the outer membrane and inhibits the outgoing cell pumps, which facilitates 
easy penetration of the antibiotic into the bacterium, thus creating an opportunity for the 
rejuvenation of forgotten antibiotic molecules with the help of “escort molecules” to im-
prove their action. Triterpenic conjugates with spermine, spermidine, triethylenetetra-
mine, other linear and cyclic di- and polyamines as well as branched ami-
nopropoxy-derivatives have been synthesized. For almost all compounds, data on cyto-
toxicity against cancer cells, antiviral, antibacterial, antidiabetic, and antifungal activities 
were obtained. Among them, conjugates of several triterpenic acids with spermine ex-
hibited not only antimicrobial and antitumor activity, but also formed self-assembled 
systems and supramolecular networks in aqueous media, which opens up many possi-
bilities for the use of such structures for drug delivery systems in serum or other body 
fluids. 
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Akt RAC-alpha serine/threonine-protein kinase
AMPK5′ adenosine monophosphate-activated protein kinase
BOP N-(benzenesulfonyl)-L-prolyl-L-O-(1-pyrrolidinylcarbonyl)-tyrosine sodium salt
BRK BRICK1 subunit of SCAR/WAVE actin nucleating complex
DAT dopamine active transporter
DAST (diethylamino)sulfur trifluoride
(DHQD)2PHAL hydroquinidine 1,4-phthalazinediyl diether
EEDQ 2-ethoxy-1-ethoxycarbonyl-1,2-dihydroquinoline
FAK focal adhesion kinase
FRET förster or fluorescence resonance energy transfer
GTPase guanosine triphosphate hydrolase
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HOBt 1-hydroxybenzotriazole
HypF-N N-terminal domain of the E. coli HypF carbamoyltransferase
IL13Rα2 interleukin-13 receptor α2
Jak2 Janus kinase 2
LDLR low density lipoprotein receptor
LMO4 LIM domain only 4
MBC minimum bactericidal concentration
MCP-1 macrophage-1 chemoattractant protein
MDR multidrug-resistant
mGluR5 metabotropic glutamate receptor 5
MHC minimum hemolytic concentration
MNP magnetic nanoparticles
mRNA messenger RNA
MRSA methicillin-resistant S. aureus
MECBS 2-methyl-CBS-oxazaborolidine
NDM-1 new Delhi metallo-beta-lactamase
NHE sodium-hydrogen exchanger
PADS petromyzonamine disulfate
PDMS Polydimethylsiloxane
PI3K phosphoinositide 3-kinase
PEI Polyethyleneimines
PTP1B protein tyrosine phosphatase 1B
PTSA 4-toluenesulfonamide
shRNA small hairpin RNA
SNP silver nanoparticle
STAT signal transducer and activator of transcription
TBHP tert-butyl hydroperoxide solution
TEMPO 2,2,6,6-tetramethylpiperidine 1-oxyl
Tyk2 non-receptor tyrosine-protein kinase 2
TMCS trimethylsilyl chloride
VEGF vascular endothelial growth factor
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