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ABSTRACT: This paper is an extension of our earlier paper in which it was shown
that the meniscus shape in a cylindrical capillary could be computed by solving the
Young−Laplace equation via optimization of a Beźier curve. This work extends the
previous work by demonstrating that the method is applicable to predict the
meniscus shape not only in a cylindrical capillary but also in other cases, such as at a
tilted plate, between two plates, and for a sessile drop. Numerous works have
attempted previously to solve the Young−Laplace equation, and their results all agree
with this paper’s validating its method. All the preceding approaches, however, used
special techniques to solve the differential equation, while the Beźier curve method
proposed in this work is more simple, which allows it to maintain greater
computational simplicity. Moreover, the Beźier curve method can be applied to solve
many other different differential equations in the same way as shown in this work. The effect of the Beźier curve degree on the
precision of prediction was also thoroughly investigated. It was found that the 4th degree Beźier curve was required to predict the
meniscus shape precisely in a cylindrical capillary, against a tilted plate, and between two plates, while the 5th degree was required
for the shape of the sessile drop.

1. INTRODUCTION
The calculation of the meniscus shape is actively researched
because of its importance in surface and interfacial science. For
the meniscus in a cylindrical capillary, when R, the radius of the
capillary, is significantly smaller than the capillary length,
l g/= = 2.713 × 10−3 m for water, where σ, ρ, and g are
the surface tension of water, density of water, and gravity
constant, respectively, the effect of gravity on the shape is
negligible, so the meniscus can be accurately approximated
with a spherical surface. There, the equation Δp = 2σ cos θ/R
can be used, where θ is the contact angle, and R is the radius of
the capillary. However, when R is significantly larger than the
capillary length, gravitational force is more impactful, flattening
the meniscus in the center and making the spherical
approximation inaccurate. Thus, providing a more accurate
description of the shape of the meniscus under the effect of
gravity is an area of active research. (It should be noted that
the capillary length is defined as a point, where the gravity and
surface forces are in equilibrium. It is often used for the
meniscus calculation of different shapes, as shown in the
following examples).
For example, Eslami and Elliot evaluated the depth of

capillary menisci by considering the three-phase contact line as
the initial point for the integration of the differential equations
they developed.1 Bullard and Garboczi minimized the free
energy to calculate the meniscus shape in a cylindrical capillary,
as well as the capillary rise between two closely placed parallel
planar surfaces.2 Lobanov calculated the shape and volume of
the meniscus at the upper horizontal plane of a specimen, at

the lower horizontal plane of a specimen, and at the surface of
a cylindrical specimen.3 Biery and Oblak modified the Young−
Laplace equation to a differential equation in which the two
radii of curvature are shown differently. Using this equation,
they numerically calculated the meniscus shape and validated
the calculation by experiments.4 Soligno et al. proposed a
numerical method to calculate the meniscus shape between
vertical and inclined walls and curved surfaces by minimizing
the thermodynamic potential of the system.5 Henriksson and
Erikson defined the capillary rise in a cylindrical capillary
rigorously.6 Ward and Sasges introduced explicit expressions
for the chemical potentials in the Laplace equation and found
that the condition on the chemical potentials could be used to
determine the pressure profile within the system.7 Malijevsky ́
and Parry dealt with the meniscus of a liquid confined between
an open capillary slit, showing that there are two types of
competing meniscus shapes, corresponding to corner filling
and meniscus depinning transitions.8 Recent publications also
reveal the continuing interest in this subject. For example,
Behroozi discussed the applications of the Young−Laplace
equation in hydrostatics, such as the differential pressure
within soap bubbles and liquid droplets, the rise and fall of
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liquids in capillaries, and the depth of liquid spills.9 Liu et al.
presented an analytical solution in the planer model and the
numerical solution to the axisymmetric model on the meniscus
shape and compared the results against Jurin’s law (the
maximum height of the capillary rise is inversely proportional
to the capillary diameter), modified Jurin’s law, and Surface
Evolver simulation.10 Lv and Shi extended the analytical
expression of the droplet shape on a flat surface to the shape of
the droplet on an inclined surface.11 Tang and Cheng
systematically studied the meniscus on the outside of a small
circular cylinder immersed vertically in a liquid bath in a
cylindrical container using the Young−Laplace equation.12
Eißman et al. presented three-dimensional calculations of the
meniscus of a magnetic fluid placed around a current-carrying
vertical and cylindrical wire.13 Liu et al. computed the
meniscus shape around a fiber vertically piercing into the
water surface to mimic the strider leg on the water surface.14

Liu et al. also computed the meniscus of a pendant droplet.15

In all the abovementioned methods, a point-by-point
balance is established between surface tension and gravitational
force, which leads to the Young−Laplace differential equation.
These equations are solved either analytically or numerically
under a certain boundary condition. There is another method,
in which the meniscus shape is obtained by minimizing the
total energy, including the potential energy term and surface
energy term, of the system. The method called “Surface
Evolver” was proposed by Brakke to study the shapes that are
governed by surface tension. Starting from an initial surface,
the program evolves it toward the minimum energy state by
interacting with the user. The advantage of this method is that
it can draw the shape of very complex geometries.16

Concerning the meniscus between two vertical plates with
different contact angles, Laplace mentioned that the meniscus
is lifted at the surface of the lower contact angle and dropped
at the surface of the higher contact angle, with an inflection
point on the meniscus. O’Brien, Craig, and Peyton measured
the capillary rise between two vertical plates, one made of glass
(CA of 14°) and the other coated with PTFE (CA of 110°),
and fitted their experimental data by the equation

h
gw

(cos cos )1 2= +
(1)

where h is the capillary rise, θ1 and θ2 are the contact angles
against the glass plate and coated glass plate, respectively, and
w is the distance between the two plates.17

Concerning the meniscus at a vertical plate partially
immersed in liquid, Neumann derived the equation
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where h′ is the meniscus height.18
Concerning the shape of a sessile droplet on a horizontal

surface, Bashford and Adams derived the differential
equation.19 In a dimensionless form, it is written as
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where x and y are x = r/l and y = h/l (see Figure 1),
respectively, and b is equal to y x x1/(d /d ) (at 0)2 2 = .

Dang et al.,20 and Srinivasan et al.21 also used the differential
eq 3 to calculate the shape of a sessile drop.
Note that all the preceding approaches used certain

mathematical techniques to solve the differential equation,
while the Beźier curve method proposed in this paper is
simpler. Moreover, the Beźier curve method can also be
applied to solve different differential equations and cases in the
same way.
The Beźier curve is a parametric function, consisting of one

polynomial function for each dimension. Therefore, like
polynomials, Beźier curves can be of any degree and express
complicated shapes as the degree increases. An nth-degree
Beźier curve is defined by n + 1 points, called P0, P1, ... Pn. The
curve begins at P0, goes in the direction of each of the
intermittent points, and then ends at Pn. The Beźier curve
method can approximate the solution of any differential
equation by changing the parameters of the Beźier curve to
minimize the difference between the two sides of the
differential equation. According to Venkataraman, the Beźier
curve is advantageous when solving differential equations for
four main reasons: its approximations are accurate, its
formulation is simple, the differential equations can be handled
in their original forms, and standard optimization techniques
can be applied.22

Indeed, a number of papers have been published to show
that the differential equations can be solved by the Beźier curve
method accurately and efficiently. Some of the examples are as
follows:
Ghomanjani and Hadi Farahi used the Beźier method to

solve delay differential equations approximately.23 Some
examples have also been given to demonstrate the efficiency
of the method. Ghomanjani and Khorram presented a method
to solve a quadratic Riccati differential equation by using
Beźier curves and gave some examples to demonstrate the
simplicity and efficiency of the proposed method.24 Ghoman-
jani and Shateyi solved one-dimensional Bratu’s problem by
the Beźier method, and the efficiency and accuracy of the
method were demonstrated by some numerical examples.25

Sweitzer and Kumar solved approximately systems of ordinary
and partial differential equations by using solvers such as the
ones Gurobi developed in Operations Research. The entire
functions were represented by Beźier curves or surfaces with
appropriate control points.26 Venkataraman solved approx-
imately the linear partial differential equation by using the
Beźier method as an extension of the solution of the ordinary
differential equation. The method was applied for the solution
of several engineering problems, such as the Poison equation,
one-dimensional heat equation, and the slender two dimen-
sional cantilever beam.22 Manikandan and Kamanat solved
three dimensional Navier Stokes equations near the rotating
disk by using the Beźier curve method, and the results were

Figure 1. Schematic representation of the shape of a sessile drop on a
horizontal plate.
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compared with the numerical solution given by the conven-
tional boundary value problem solver.27 Narooei and Taheri
used the Beźier method to analyze the equal channel angular
extrusion process of a rectangular cross section. Predicted
values agreed very well with the experimental ones for two dies
with different outer curved corner.28 Zheng et al. solved
differential equations numerically by the least squares method
using the control points of a Beźier curve. The convergence of
the method was further analyzed.29

Thus, the objective of this work is to calculate 1) the
meniscus shape in a cylindrical capillary, 2) the meniscus
between two vertical plates of different contact angles, 3) the
meniscus at a vertical plate partially immersed in a liquid, and
4) the shape of a sessile drop on a horizontal surface, under
gravity, by applying the Beźier curve method to solve the
Young−Laplace differential equation. The precision of the
solution is further evaluated and related to the degree of the
Beźier curve.

2. METHOD
2.1. Differential Equations and the Beźier Curve

Method. The differential equation applicable for each case of
the set objectives of this work has been found in the literature,
as summarized in the second column of Table 1 together with
its boundary conditions. The details of these differential
equations and the boundary conditions are explained later.
The Beźier curve method to solve the differential equations

is demonstrated for the cubic Beźier (the 3rd Beźier) curve as
an example, as follows.
The position of a point in the cubic Beźier curve at some

time t is

B t t P t tP t t P t P( ) (1 ) 3(1 ) 3(1 )3
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2
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2
2

3
3= + + +
(4)

From this equation, the x and y values at some time t are
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y t t y t ty t t y t y( ) (1 ) 3(1 ) 3(1 )3
0

2
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2
2

3
3= + + +
(6)

Therefore, x′, y′, x″, and y″ over t can be calculated easily by
differentiating eqs 5 or 6 once or twice over t. Since 5 and 6 are
polynomials in terms of t, this can be done symbolically easily
using a computer algebra system, the one used here being
SageMath, and the result will be another polynomial. (Note
that dy/dx = y′/x′ and d2y/dx2 = (x′y″ − y″x′)/(x′)2).
Accordingly, the left- and right-hand sides of the differential

equation can be calculated for a given set of the Beźier
parameters (x0, x1, x2, x3, y0, y1, y2, and y3) over t, and the
difference is called D(t).
The differential equation is solved by optimizing the Beźier

parameters (x0, x1, x2, x3, y0, y1, y2, and y3) to make D(t) as
close to 0 for as many values of t as possible. For this purpose,
quantity loss is defined as
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Then, the parameters x x x x y y y y( , , , , , , , and )0 1 2 3 0 1 2 3 are
chosen to minimize loss.
Note that D(t) is evaluated at 20 points of t, including t = 0

and 1, with an equal interval in between. Among the
parameters to be optimized, some are fixed: for example, x0
and x3, the beginning and the end of the Beźier curve,
respectively, are the beginning and end of the meniscus. In
addition, the boundary conditions may fix some other
parameters.
Sage expands and calculates the loss symbolically. Then, it is

minimized with the Sage minimize() function, which uses
Scipy’s simplex algorithm. This function requires some initial
values. In most cases, all x’s are set equal to x x( )/2,3 0 and
all y’s are set to 1. However, these were sometimes changed,
especially when the loss was larger than expected. The result
with the smallest loss was always accepted.

Table 1. Summary of Differential Equations and Boundary Conditions
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aθl and θr are the contact angles at the left and right plates, respectively. bφ is the tilt angle and θ is the contact angle at the plate. cb
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dθ is contact angle at the horizontal plate.
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The same method can be applied to the 4th degree Beźier
curve to find polynomial forms for x, y, x′, y′, x″, and y″ in
terms of t since the position of a point in the 4th degree Beźier
at time t is
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Similarly, the position of a point in the 5th degree Beźier is
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In general, the position of a point in the nth degree Beźier is
written as

B t n
i n i

t t P( )
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n

n i i
i

0

= !
! ! (10)

It should be noted that the pinning force is ignored in this
approach.30

2.2. Meniscus in a Cylindrical Capillary. Figure 2
schematically depicts the meniscus formed in a cylindrical
capillary.

By considering a force balance on a small section of the
meniscus surface, the differential eq 11 is derived based on the
Young−Laplace.4 The same equation can be derived by
minimizing the Helmholtz energy of the system.31
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where r and h are the radial distance from the center of the
cylinder and the longitudinal distance from a reference point,
respectively (see Figure 2). Note that the first and second
terms of eq 11 correspond to the reciprocal of the principal
radii of curvature involved in the Young−Laplace equation.
Let l = the capillary length. Then, eq 11 can be rewritten in a

dimensionless form as
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where x = r/l and y = h/l.
Equation 12 is solved with the boundary conditions

y
x

x t
d
d

0 at 0 ( 0)= = =
(13)

y
x

x x t
d
d

cot at ( 1)n= = =
(14)

where xn = R/l (R is the radius of the cylindrical capillary), and
θ is the contact angle.
In a Beźier curve, dy/dx at t = 0 is the same as the slope

between P0 and P1, and dy/dx at t = 1 is the same as the slope
between Pn−1 and Pn. Therefore, we can remove two unknowns
by setting

y y1 2= (15)

y y x x( )cotn n n n1 1= + (16)

Note that these conditions solve for half the meniscus. To
see the full meniscus, one must combine this image with its
mirror over the y axis.
2.3. Meniscus between Two Vertical Plates with

Different Contact Angles. The menisci formed between two
vertical plates with contact angles of θl and θr are shown
schematically in Figure 3.

Bullard and Garboczi made the prediction of the meniscus
shape for such a system2 by a differential equation
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where x = d/l and y = h/l.
In differential eq 17, the second term of eq 12 is removed

since one of the principal radius curvatures is infinity, and its
effect on the capillary force can be ignored.
The boundary conditions are

Figure 2. Schematic representation of the meniscus in a cylindrical
capillary.

Figure 3. Schematics of the meniscus between two plates with
different contact angles.
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y
x

x t
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cot at 0 (at 0)l= = =
(18)

y
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x x t
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cot at (at 1)r n= = =
(19)

where xn = D/l (D is the half of the distance between the
plates.)
These boundary conditions can be manipulated to remove

two unknowns

y y x x( )cot l1 0 1 0= (20)

y y x xcot ( )n n r n n1 1= + (21)

Note that, by the same reasoning as the single plate, the
plates can be slanted as well. However, the plates should not
cross; in that case, the water cannot flow freely from the water
level to the meniscus, so Bullard and Garbozci’s differential
equation no longer applies.
2.4. Meniscus at a Single Plate. Figure 4 shows

schematically the meniscus at a plate immersed partially in
water with a tilted angle of φ.

As shown in Table 1, the differential equation to be used is
the same as that of the meniscus between two plates with
different contact angles.
The boundary conditions, however, are different.
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and
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0 at which is very large ( 1)n= = =
(23)

The xn value at which the boundary condition 23 is satisfied
will be investigated in the results section.
These boundary conditions can be manipulated to remove

two unknowns

y y x x( )cot( )1 0 1 0= + (24)

y yn n 1= (25)

2.5. Shape of the Sessile Drop. As shown in Table 1, the
differential equation is
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where x = r/l, y = h/l, and b y x1/(d /d ) x
2 2

(at 0)= = .
The boundary conditions are

y
x

x
d
d

0 at 0= =
(27)

y
x

x x
d
d

tan at n= =
(28)

where xn = R/l.
These boundary conditions can be manipulated to remove

two unknowns
y y1 0= (29)

y y x xtan ( )n n n n1 1= (30)

3. RESULTS AND DISCUSSION
3.1. Effect of the Order of the Degree of Beźier Curve

on the Accuracy of the Calculation. In order to investigate
the effect of the degree of the Beźier curve on the accuracy of
the calculation, the meniscus between two vertical plates with
different contact angles is used as an example.
In Figure 5, the red and blue lines represent, respectively, the

left- and right-hand sides (LHS and RHS) of the differential eq
17 versus t. Note that the lines were drawn for the optimized
Beźier parameters for each degree of the Beźier curve. The
figure loss is also given. When the red and blue lines overlap, or
come as close to each other as possible, at all values of t, the
loss becomes near zero, and the accuracy increases for the
solution of the differential equation.
Figure 5a,b shows the results obtained by the cubic (3rd

degree) and 4th degree Beźier curves, respectively, when θl =
45°, θr = 14°, and xn = 10. The 4th order provides much higher
accuracy with a loss of 0.053 than the 3rd order with a loss of
0.209. xn decreases progressively from 10 in Figure 5b to 3 in
Figure 5c and further 1 in Figure 5d, which is accompanied by
a decrease in loss from 0.053 to 0.009 and further to 0.001. As a
result, both the red and blue lines overlap almost completely
for xn = 1. This means that the accuracy of the computation
increases as the distance between the plates decreases.
3.2. Meniscus in a Cylindrical Capillary. Figure 6

depicts the different loss values as xn changes from the 3rd
degree Beźier (red) to 4th degree Beźier (blue), when θ is fixed
at 45°. For the 3rd degree Beźier, loss increases linearly as xn
increases, with an average of 0.002 for every 1 increase of xn.
For the 4th degree Beźier, loss is nearly equal to zero at xn = 1
and then increases to 0.002 in a region of 2−4, before
decreasing to 0.0008 again at xn = 5. Losses do not increase
substantially thereafter.
Thus, the 3rd Beźier curve method is unable to give an

accurate answer for large xn, particularly when a wide flat
region appears due to the effect of gravitational force. An
additional point in the Beźier curve of the 4th degree improves
accuracy in this region.
Figure 7 depicts the minimum loss for different θs as θ

ranges from 10 to 170°. The graphs are of such different scales
that they are placed next to each other. The 3rd degree Beźier
[(a) red] has much higher loss when the angle is very large or

Figure 4. Schematic representation of the meniscus on a plate
immersed partially in water with a tilted angle of φ.
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small but has a smaller loss in the middle. The 4th degree
Beźier [(b) blue], on the other hand, has no apparent
correlation, and the loss is 2 orders of magnitude lower than
the 3rd degree.
Thus, the 4th degree Beźier always provides better accuracy

than the 3rd degree, especially when xn is large or the contact
angle is either very small or very large. Therefore, the 4th
degree Beźier will be used hereafter for the meniscus in a
cylindrical capillary.
Figure 8 shows the effect of xn on the meniscus height (see

Figure 2), when θ is fixed at 45°.
The meniscus height decreases as xn increases. This is

because the effect of the surface force decreases as the
cylindrical radius increases from xn = 0.3 (R = 0.814 mm) to xn
= 3.0 (R = 8.14 mm), resulting in the decrease of the meniscus
height from 5.6 to 0.2 mm. It is well known that water in a
capillary rises more as the capillary size decreases.

Figure 5. Left-hand side, y x y xd /d /(1 (d /d ) )2 2 2 3/2+ (red) and right-hand side, y (blue) graphed over t from 0 to 1, corresponding to optimized
Beźier parameters. (a) uses the cubic Beźier; (b−d) use the 4th degree Beźier.

Figure 6. Minimum loss for different xn when θ is fixed at 45° (red,
3rd degree; blue, 4th degree Beźier).
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These results obtained by the Beźier curve method were
further compared against the data provided by Eslami and
Elliot’s numerical calculation based on the differential equation
that they had derived, which was essentially the same as eq 11.1

Figure 9 shows that these two methods generally agree on the

meniscus depth, while θ goes from 25 to 75°, and R is fixed to
10 mm (xn = 3.686). The Beźier model has more of a linear
decrease, though, while Eslami and Eliott’s model curves
upward slightly in the middle.
Figure 10 shows the meniscus depths provided by both

methods when R goes from 5 to 40 mm (xn from 1.843 to

14.74), and θ is fixed to 25°. In this case, both methods agree
when R is smaller than 20 mm or larger than 70 mm, but the
Beźier curve method predicts slightly lower values when R is
between 20 and 70 mm.
The Beźier curve method decreases more rapidly after the

maximum at around 20 mm. Still, the difference is very small
and is likely caused by difficulties in reading Eslami and Eliott’s
data. It is interesting to note that the maximum of the
meniscus depth could be reproduced by the 4th degree Beźier,
unlike the 3rd degree Beźier that could not reproduce the
maximum.32

Figure 11 compares the calculated meniscus shape with a
spherical model for a small capillary with xn = 0.2. As
mentioned earlier, the meniscus is part of a spherical surface
when the capillary radius is smaller than the capillary length l.
In the figure, only one curve is visible because the two curves
are exactly overlapping. When the capillary radius is small, the
meniscus shape can be accurately approximated by a sphere, so
the spherical model is accurate. Therefore, if the Beźier model

Figure 7. Minimum loss for different θs when xn is fixed at 1 ((a) (red) 3rd degree, (b) (blue) 4th degree).

Figure 8. Meniscus height for different xn when θ is fixed at 45°
(meniscus height is measured to the bottom of the meniscus (y at x =
0 or r = 0 in Figure 2)).

Figure 9. Comparison of meniscus depth calculated by the Beźier
curve method with the data presented by Eslami and Eliott in Figure
11 of ref 1 (for different θs at R = 10 mm).

Figure 10. Comparison of meniscus depth calculated by the Beźier
curve method with the data presented by Eslami and Eliott in Figure
11 of ref 1 (for different Rs at θ = 25°).
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is so accurate in this already solved case, it is likely also
accurate when the width is larger.
Figure 12 displays an example of a meniscus drawn by the

4th Beźier curve method for xn = 5 > 1. Note that the radius of

the capillary (R = 13.565 mm) is five times as large as the
capillary length, and the effect of gravity can no longer be
ignored. Now the flat region appears in the center of the
meniscus; this is due to the effect of gravity working in the
center of the capillary.
3.3. Meniscus between Two Plates with Different

Contact Angles. Figure 13 shows the optimized loss for
different xn, while θl and θr are fixed. For the 3rd degree Beźier
model, the loss increases linearly as xn increases. Similar to the
cylindrical capillary, this is likely because the 3rd degree Beźier
is unable to calculate the height at the long flat region in the
middle of the meniscus, while also calculating the edges poorly.
The 4th degree Beźier also increases as xn becomes larger, but
much more slowly; for example, losses are 0.13 and 0.028, for
the 3rd and 4th degree Beźier, respectively, at xn = 9. At xn =
10, the difference is even larger. When xn is above 10, the two
plates are far enough apart that the meniscus height is basically
0 in the middle. Therefore, it can be solved separately using the
one-plate case twice, which is more accurate. Since the 4th
degree Beźier model is always more accurate, it will be used
hereafter.

Figure 14 shows the loss as θl and θr change, while xn is fixed
at 1. The loss always stays below 0.0023. There is no apparent
correlation between the contact angles and the loss in this case.
The meniscus was calculated by the Beźier method for D =

2.5 mm, θl = 14 and θr = 45°, and the results are compared
with the data of Bullard and Garboczi (given in Figure 4 of
their paper2) in Figure 15.
In the figure, the data from the two different sources almost

completely overlap, with the Beźier method’s result being
slightly higher on the right end.
3.4. Meniscus at a Single Plate. First, the meniscus shape

was calculated when xn was 100 for various φ + θ values. It was
noticed that the y value was essentially 0 when x reached 5 in
all cases, so the value of xn at which the meniscus ends was set
to 5. y is zero at x > 5.
From eqs 17, 22, and 24, it is obvious that the solution is

unique to a given value of φ + θ. It is interesting to note that
there are two mathematically valid solutions for a given value
of φ + θ, when φ + θ > 90°, depending on the initial guess, and
both solutions are physically meaningful. Those two cases

Figure 11. 4th degree Beźier model (blue) and spherical model (red)
of the meniscus when θ = 30° and xn = 0.2.

Figure 12. Meniscus of a cylindrical capillary with θ = 45° and xn = 5,
calculated by the 4th degree Beźier model (loss was 0.0013).

Figure 13. Minimum loss of 3rd and 4th degree Beźier curves for a
two plate system as xn changes, while θl and θr are fixed at 45 and 14°,
respectively.

Figure 14. Loss as θl and θr are changed among 30, 60, 90, 120, and
150°, and xn is fixed at 1 (this uses the calculations from the 4th
degree Beźier model.).
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correspond to the surfaces being either hydrophilic (θ < 90°)
or hydrophobic (θ > 90°) (see Figure 16a,b).

Figure 17 shows an example for φ + θ = 135°. These two
results were generated from different initial values. In Figure
17a, the meniscus shape starts by going left, while in Figure

17b, the meniscus shape starts by going right. However, φ + θ
= 135° for both. Both results could exist in the real world.
Figure 17a could happen if the plate is slanted rightward and
hydrophilic, and Figure 17b could happen if the plate is
hydrophobic.
The initial values can be determined deliberately to choose

which results the computer gives. If x1 is initially negative, then
the meniscus shape will start by going left, but if x1 is initially
positive, the meniscus shape will start by going right. The
Be ́zier parameters obtained at convergence were (0,
1 . 8467727149640079) , (−0 .5154921523027827 ,
1 .3312805626612252) , (0 .010350793933075336 ,
0.01807437762745126), (1.5624322460612419, 0), and (5,
0) for Figure 17a and (0, −0.7647056505944001),
(0 .5443274009164648 , −0 .2203782496779353) ,
(1 .509651498000658 , −0 .10860846237353626) ,
(2.1652509650623104, 0), and (5, 0) for Figure 17b.
Figure 18 displays the loss for different contact angles for the

3rd and 4th degree Beźier curves when the surface is

hydrophilic. Both the 3rd and 4th degree Beźier show the
same minimum loss of 0.0027 at θ = 75°, but the loss of the 3rd
degree Beźier increases quickly as θ decreases.
Newman, based on the rigorous solution of the Young−

Laplace equation, derived eq 2 for the meniscus height when φ
= 0, shown as h′ in Figure 19.18
After rearranging

Figure 15. Comparison of the meniscus calculated by the Beźier
method, and the data given in Figure 4 of Bullard and Garbozci2 (D =
2.5 mm and θl and θr are 14 and 45°, respectively).

Figure 16. Meniscus between a plate and horizontal water surface
formed when a tilted plate is partially immersed in water ((a)
hydrophilic surface and (b) hydrophobic surface).

Figure 17. Two valid possible menisci for φ + θ = 135° (calculated
using the 4th degree Beźier curve. (a) used initial values of x1 = −5/4,
x2 = 5/2, x3 = 15/4, y0 = 1, and y3 = 1, while (b) used initial values of
x1 = 5/4, x2 = 5/2, x3 = 15/4,y0 = 1, and y3 = 1).

Figure 18. Loss value for the optimized Beźier parameters with 3rd
and 4th degree Beźier curves as θ changes and φ remains constant at
0.

Figure 19. Schematic representation of the meniscus formed between
a plate and horizontal water surface when the plate is immersed
vertically in water.
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h
l

1 sin=
(31)

Figure 20 shows h′/l versus θ calculated by the Beźier
method and Neumann’s equation. The fit is almost exact; only

one line is visible because they are exactly over each other. The
agreement further validates the solutions by the Beźier method.
3.5. Sessile Drop. Figure 21 compares the minimum losses

obtained by using the 3rd, 4th, and 5th degree Beźier for

different θs when xn is fixed at 1. The 3rd degree Beźier
increases exponentially as θ increases and is highly inaccurate
in the large value range of θ. The 4th degree Beźier is very
accurate in the beginning, with a loss of 0.0058 at θ = 30°,
before increasing substantially at θ = 45° and staying at a
maximum value of roughly around 0.1 afterward. The 5th
degree Beźier starts significantly lower than even the 4th
degree, with a loss of around 0.00005 from 15 to 60° and then
increases to 0.0015 at 75°, before finally increasing to be
similar to but slightly less than the 4th degree Beźier when θ is
obtuse.
Figure 22 displays the minimum loss for the 4th and 5th

degree Beźiers as xn is changed, while θ is kept constant at
135°. The 3rd degree Beźier is not considered since its loss is
too high. The 4th degree Beźier increases greatly as xn

increases, because it does not have enough parameters to
model the flat top and the curved side. The loss flattens out
after xn = 7 at a high loss of above 0.35. For the 5th degree
Beźier, on the other hand, the minimum loss is the highest
when xn is 1, but it decreases at xn = 2 and then increases very
slowly. Therefore, the 5th degree Beźier needs to be used
especially for the calculation of the shape of the drop on a
horizontal surface.
When the size of the drop is very small, it should be a perfect

sphere since gravity does not have a very large impact. Figure
23 compares the Beźier model with the spherical model when

θ is 135° and xn is 0.05. At the bottom, they agree completely,
but at the top of the meniscus, the Beźier model is slightly
lower. This makes sense because the Beźier model takes gravity
into account, while the spherical one does not. In general,
however, they agree very well, so the Beźier predictions for the
cases that cannot be approximated by a sphere are likely
accurate as well.

Figure 20. Comparison of h′/l versus θ obtained by the Beźier
method and Neumann’s equation (changed from 10 to 90°).

Figure 21. Comparison of 3rd, 4th, and 5th degree Beźier curves (for
different θs and xn = 1).

Figure 22. Comparison of 4th and 5th degree Beźier curves (for θ =
135° and different xns).

Figure 23. Comparison between the 5th degree Beźier model
prediction and spherical model prediction for y versus x (for θ = 135°
and xn = 0.05).
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Figure 24 compares the result of the Beźier curve with Dang
et al.’s work (Figure 5 of their work18). Both largely agree, but
the Beźier curve is slightly taller and skinnier.

Figure 25 shows some examples of calculated shapes of
sessile droplets with large sizes, that is, (a) with a radius of

27.13 mm and (b) with 13.57 mm, which are 10 times and 5
times larger than the capillary length, respectively. It should be
noted that the droplet becomes flat in the central region
because of the effect of gravity. Interestingly, when the contact
angle is as large as 135°, the radius of the side of the droplet
becomes larger than at the bottom.
Notice that the volume of the sessile drop could be

calculated based on the width using this method, so the width
and shape of the sessile drop could be found based on the
volume as well.
The experimentally measurable contact angle (CA) for a

rough surface is an apparent CA, which may differ from the

ideal CA for a smooth, solid surface. Especially for a rough
surface with air-filled grooves, Cassie and Baxter proposed the
following equation

fcos (cos 1) 1CB s Y= + (32)

where θY and θCB are the CA (°) of a droplet resting on a
smooth surface and the CA on a composite surface of solid and
air, respectively. fs is the fraction of the solid surface which is in
contact with the liquid phase.33 According to the equation, θCB
increases from θY to 180° as fs decreases from 1 to zero. This
principle is often used to develop a superhydrophobic surface.
Hereafter, an attempt is made to compute the water droplet

shape on a surface with an air-filled hole at the droplet center
to examine if the presence of such a hole indeed increases the
CA, following the steps;
1) A meniscus shape on a smooth solid surface is computed
by the Beźier curve method for a given dimensionless
radius x and a CA (Figure 26a).

2) An arc is drawn above the air-filled hole. This arc is a
part of a circle since the contact angle between water
and air is 180°. The height of the circle is made equal to
that of the meniscus drawn in step 1). Then, the (x, y)
coordinates of the lower edge of the arc as well as the
tangent (dy/dx) can be obtained (Figure 26b)).

3) The meniscus shape from the edge of the arc is
computed by the Beźier curve method, using (x, y) and
(dy/dx) obtained in step 2, until it arrives at the solid
plate surface (Figure 26c).

For an example computation,
1) We start from a dimensionless radius x = 0.608 and a CA

θY = 130° to compute the meniscus shape on a smooth
solid plane. The meniscus height becomes 1.08.

2) The (x, y) coordinate and the slope (dy/dx) at the edge
of the arc are calculated to be (0.286, 1.00) and −0.623,
respectively.

3) The Beźier curve is drawn. It ends at a point (0.602, 0).

Figure 24. Comparison of the height versus distance from the center
of the droplet between the Beźier curve and Dang et al.’s work for (for
θ = 125° and R = 1.65 mm).

Figure 25. Some examples of the sessile droplet shape calculated
using the 5th degree Beźier curve method ((a) θ = 135° and xn = 10
and (b) θ = 45° and xn = 5).

Figure 26. Schematic representation of the steps to calculate the
meniscus shape on a plate with an air-filled hole ((a) meniscus on a
smooth solid plate, (b) meniscus on the air, and (c) meniscus drawn
by the Beźier curve method).
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The meniscus so computed is illustrated in Figure 27. The
shape of the droplet is more sagging in the lower part of the

meniscus when there is a hole in the plate. This shape was
observed experimentally for a water droplet formed on the
surface with a hole.34 As a result, the CA increased from 130°
on the smooth, solid plate to 140° on the plate with a hole,
showing that the presence of an air-filled hole makes the plate
more hydrophobic. According to eq 32, θCB is 136°.

4. CONCLUSIONS
The Beźier curve method can be applied to approximately
solve the Young−Laplace equation for various shapes of the
meniscus of water formed under gravity, such as in a cylindrical
capillary, beside one smooth plate, between two vertical plates,
and as a sessile water drop on a smooth plate. The accuracy of
the computation increases as the degree of the Beźier curve
increases. The degree of the Beźier curve necessary to achieve
sufficient accuracy within a certain range of the meniscus size,
and the contact angle depends on where the meniscus is
formed, that is, the 4th degree Beźier curve is required for the
meniscus in a cylindrical capillary, beside one smooth plate,
and between two vertical plates, while the 5th degree is
required for the shape of a sessile drop on a smooth surface. By
using straightforward optimization techniques, the solution can
be easily obtained by the Beźier curve method without any
sophisticated mathematical techniques.
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