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Abstract

Motivation: Novel recombinant viruses may have important medical and evolutionary significance, as they some-
times display new traits not present in the parental strains. This is particularly concerning when the new viruses
combine fragments coming from phylogenetically distinct viral types. Here, we consider the task of screening large
collections of sequences for such novel recombinants. A number of methods already exist for this task. However,
these methods rely on complex models and heavy computations that are not always practical for a quick scan of a
large number of sequences.

Results: We have developed SHERPAS, a new program to detect novel recombinants and provide a first estimate of
their parental composition. Our approach is based on the precomputation of a large database of ‘phylogenetically-
informed k-mers’, an idea recently introduced in the context of phylogenetic placement in metagenomics. Our
experiments show that SHERPAS is hundreds to thousands of times faster than existing software, and enables the
analysis of thousands of whole genomes, or long-sequencing reads, within minutes or seconds, and with limited
loss of accuracy.

Availability and implementation: The source code is freely available for download at https://github.com/phylo42/
sherpas.

Contact: pardi@lirmm.fr or gllm.scholz@gmail.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

A fundamental task in viral bioinformatics is to recognize when a
newly sequenced virus genome or genome fragment is a recombin-
ant—i.e. it carries regions from two or more genetically distinct par-
ental strains. Detecting novel recombinant forms has important
biological and medical implications, as the new recombinants are
sometimes associated with drug resistance (Moutouh et al., 1996),
increased virulence (Liu et al., 2002; Suarez et al., 2004), the ability
to infect new hosts (Kuiken et al., 2006) or to evade the host’s im-
mune system (Streeck et al., 2008). Moreover, for many viral spe-
cies, recombination is common: e.g. in HIV, the rate of within-host
recombination appears to be at least as high as that of point muta-
tions (Batorsky et al., 2011; Neher and Leitner, 2010). Interestingly,
a number of artifacts (e.g. caused by polymerase chain reaction amp-
lification or sequence assembly errors) can also result in recombin-
ant sequences, which however never really existed in vivo (Martin
et al., 2011; Pérez-Losada et al., 2015). Detecting such artificial

recombinants is also important prior to any further sequence
analysis.

A virus species is often subdivided into phylogenetically distinct
strains, sometimes called groups, types or subtypes (the nomencla-
ture varies depending on the virus), representing the diversity of the
genomes from that virus. For example, HIV-1 is divided into four
groups (M, N, O and P) and the M group, responsible for the HIV
pandemic, is further classified into at least nine subtypes (A, B, C, D,
F, G, H, J and K), some of which have sub-subtypes (Foley et al.,
2018). Here, we use the word strain to designate any subset of inter-
est for the virus under consideration. Different strains are sometimes
associated to important differences, e.g. in resistance to antiviral
drugs (Wainberg and Brenner, 2010) or in disease progression
(Kiguoya et al., 2017).

In this article, we focus on the computational task of recognizing
novel recombinants composed of genomic regions coming from
different strains (e.g. from different subtypes in the case of HIV-1).
Given a collection of query sequences, we wish to identify inter-
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strain recombinants, and for each putative recombinant: (i) recog-
nize which strains originated it; (ii) partition it into the regions com-
ing from different strains. Figure 1 shows an example of the type of
information that we intend to recover from a query.

A number of tools can already be used precisely for this task. For
example, jpHMM (Schultz et al., 2006, 2009)—which partitions
each query by ‘jumping’ between profile HMMs constructed for the
different strains—, SCUEAL (Kosakovsky Pond et al., 2009)—a
likelihood-based genetic algorithm—and the REGA subtyping tool
(de Oliveira et al., 2005)—which implements a sliding-window-
based phylogenetic bootstrap analysis (bootscanning) for HIV-1. All
these approaches use a reference alignment containing several repre-
sentative sequences from each strain. They either need to align the
queries to the reference alignment prior to the analysis (SCUEAL
and REGA) or they implicitly construct an alignment during their
execution (jpHMM). Sometimes the query alignment phase is fol-
lowed by a phylogenetic analysis step (SCUEAL and REGA), which
may have to be repeated over many different portions of the align-
ment. Because of the complexity of the computations involved, the
execution of these tools may become tricky when the datasets to
analyze contain more than a few thousands queries.

Because rapidly evolving sequencing technologies enable
researchers and clinicians to routinely produce increasingly large se-
quence datasets—potentially containing millions of viral reads—we
have developed a fast alignment-free method to detect inter-strain
recombinants within large collections of queries, based on the use of
phylo-k-mers (Linard et al., 2019) (see Section 2.2). The new tool,
called Screening Historical Events of Recombination in a Phylogeny
via Ancestral Sequences (SHERPAS) is able to process thousands of
long queries (potentially covering whole viral genomes) within
minutes or seconds. It can be used as a tool to screen large sequence
datasets for novel recombinants. If necessary, the putative recombi-
nants found by SHERPAS can be subsequently re-analyzed with
more precise methods, such as REGA, SCUEAL or jpHMM.

Besides being orders of magnitude faster than available tools for
the discovery of novel recombinants, SHERPAS presents other

points of interest. Unlike some popular web interfaces, the code of
SHERPAS is distributed freely, which may be an advantage when,
for privacy reasons, it is important to process the data in-house (e.g.
in a clinical setting). This also makes SHERPAS very flexible: users
can choose their own reference alignments, update them as new
high-quality sequences become available, and most importantly
adapt SHERPAS to any virus for which a reference alignment of suf-
ficient quality can be obtained. Moreover, SHERPAS appears to be
relatively robust to the high error rates that characterize Oxford
Nanopore sequencers. For these reasons, we believe that SHERPAS
is appropriate for recombination detection even in the most chal-
lenging scenarios, such as in-situ outbreak monitoring, where com-
putational resources and network accessibility may be limited
(Quick et al., 2016).

2 Algorithm

2.1 Preprocessing and overview
At a preprocessing stage, SHERPAS needs a collection of aligned ref-
erence sequences for the virus of interest and a phylogenetic tree
built from this alignment. Each reference sequence must be anno-
tated as belonging to exactly one strain, via a csv file. In the
Supplementary Section S3, we discuss a number of properties that
we would ideally expect the references (alignment, tree and strains)
to satisfy, such as the monophyly of strains and the absence of wide-
spread recombination within the reference alignment. From the ref-
erence alignment and tree, a database of phylo-k-mers (the pkDB) is
then constructed using the pkDB construction step currently imple-
mented in the RAPPAS software (Linard et al., 2019) (see next sec-
tion). The pkDB construction is a heavy computational step, but it
only needs to be executed when a new reference alignment is
employed, or when it is updated.

Once these preprocessing steps have been carried out, large data-
sets of unaligned DNA sequences can be analyzed with the pkDB, as
they become available. These sequences—which we refer to as
queries—can be genomic fragments of moderate size (a few hun-
dreds bp at least) up to entire genomes, including error-prone long
reads generated by third-generation sequencing technologies.

The output of SHERPAS is a text file classifying continuous
regions within the queries as either unassigned (‘N/A’) or as belong-
ing to one of the strains. The same format used by jpHMM is
adopted.

2.2 The phylo-k-mers
Informally, phylo-k-mers can be described as phylogenetically
informed k-mers (subsequences of length k) that are present with
non-negligible probability in unknown/unsampled relatives of the
sequences contained in the reference alignment (Linard et al., 2019).
Importantly, phylo-k-mers are inferred from the reference data
(alignment and tree), but not necessarily observed in any of the ref-
erence sequences. Typical values for k are currently in the range
from 8 to 10. While a detailed mathematical treatment is deferred to
the Supplementary Section S1, here, we provide an overview.

The inference of phylo-k-mers relies on standard techniques that
can calculate the posterior probability of the nucleotide state at (i)
any site defined by a column of the reference alignment, and at (ii)
any node with a well-defined location with respect to the reference
tree. While in traditional applications, such as ancestral sequence re-
construction, the focus is on the internal nodes of the tree, here, we
are interested in the probabilities at new nodes that are added to the
reference tree. These nodes, called ghost nodes, represent sequences
that have diverged from a given branch, and lie at pre-defined dis-
tances from their branch of origin.

Posterior probability calculations are implemented in many pro-
grams for likelihood-based phylogenetics (e.g. Guindon and
Gascuel, 2003; Kozlov et al., 2019), one of which is executed auto-
matically at launch of the phylo-k-mer construction step. For each
ghost node u, this step produces a table containing the posterior dis-
tribution of the nucleotide at u, at any site of the reference
alignment.

Fig. 1. Illustration of the task of inter-strain recombination detection. Top: Example

of what strains may look like in a realistic phylogeny (adapted from part of the ref-

erence tree for the HIV-pol dataset). Bottom: Illustration of the composition of a

query and of the outputs of two programs. The query combines a small segment of a

sequence annotated as A1, and a larger segment of a sequence annotated as B (nei-

ther of these two sequences were part of the reference alignment used to construct

the reference tree). SHERPAS and jpHMM (both run with default parameters) re-

turn the partitions represented by the other two bars. Black segments represent un-

assigned regions
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The probability of a k-mer w, at a specific ghost node u and at a
specific set of k consecutive sites, is then obtained as the product of
the posterior probabilities of its constituent nucleotides at their re-
spective sites, in the table for node u. This simple calculation relies
on the assumption of statistical independence among sites, which is
standard in phylogenetics (e.g. Felsenstein, 2004; Yang, 2006).

A k-mer w is called a phylo-k-mer for branch x of the reference
tree, if there exists at least one position in the reference alignment
and one ghost node associated to x, where the probability of w
exceeds a given threshold (controlled by a parameter of the phylo-k-
mer construction process). When multiple such positions and ghost
nodes exist for a given pair (w, x), the highest probability is the
probability score of k-mer w at branch x. A k-mer’s probability
score at x can be interpreted as a measure of how likely x is to be the
k-mer’s ‘phylogenetic origin’—i.e. the branch from which the k-mer
diverged from the rest of the reference tree.

Finally, note that a k-mer w can be a phylo-k-mer for several
branches, although with potentially very different probability scores.
All such information is stored in the pkDB, which is a look-up table
allowing, for a given phylo-k-mer w, the rapid retrieval of all
branches and probability scores associated to w.

2.3 Full and reduced pkDBs
Prior to applying the algorithm for recombination detection, out-
lined below, each branch of the reference tree is assigned at most
one strain from the user-specified set of strains, in the following
way: recall that each reference sequence belongs to exactly one of
these strains. If all the sequences that descend from a branch belong
to the same strain, then this branch gets assigned a label correspond-
ing to that strain, otherwise the branch remains unassigned.
Moreover, we call a branch x a root branch of strain X if (i) x is
assigned to X and (ii) no branch ancestral to x is assigned to X.
Note that, if a strain X is monophyletic (which we expect to be usu-
ally the case), then X has exactly one root branch, the one lying at
the root of the clade containing all sequences in X.

From there, two distinct versions of the pkDB can be con-
structed. The full pkDB is the one constructed by the phylo-k-mer
inference step currently implemented in RAPPAS, without modifica-
tion. The reduced pkDB is constructed by SHERPAS from the full
pkDB, by only keeping the information relative to the branches that
are root branches of some strain X. See the Supplementary Section
S1.5 for more details. We call SHERPAS-full and SHERPAS-
reduced the two variants of SHERPAS using the full pkDB (default)
and the reduced pkDB, respectively.

2.4 The sliding-window approach
The recombination detection phase in SHERPAS adopts a sliding-
window approach. Here, a window is defined as a contiguous subse-
quence of the query of a given length. For each window, instead of
performing complex phylogenetic analyses, SHERPAS only looks
for matches between the k-mers contained in the window and the
selected pkDB (full or reduced), and dynamically updates a table of
scores associated to the branches encountered in this process. We
refer to the Supplementary Section S2 for a detailed description and
analysis of the algorithm, and provide the main ideas below.

For each window, the score assigned to a branch is computed
using the same weighted vote approach as in RAPPAS’s placement
algorithm (Linard et al., 2019). This score is a function of the prob-
ability scores at that branch, of the k-mers in the window. The
scores for the first (leftmost) window are used to initialize a table of
scores. For each subsequent window, the table of scores is updated
efficiently on the basis of the k-mers that are added to it and those
that are removed from it. The number of k-mers that are added to
the new window does not need to coincide with the number of k-
mers that are removed from it. This is used to improve the behavior
of SHERPAS at the ends of the query: while the leftmost and the
rightmost window are relatively small (100 k-mers by default), the
window gradually grows as it gets further from the ends of the
query, until it reaches its maximum size (300 k-mers by default). By

default, the coordinates of two consecutive windows of maximum
size only differ by 1 bp.

SHERPAS is also able to process circular queries, which may
arise for viruses with circular genomes. In this case, the variable-size
approach described above is not executed. Instead, the sliding win-
dow retains the same size everywhere. When the sliding window
reaches the end of the query, it will extend to the other end of the
query, until the sliding window is back to the leftmost window in
the query.

Assuming that the signal for classification is strong enough (see
the next section for details), the midpoint in each window is classi-
fied into the strain that is associated to the highest-scoring branch
for the window. This allows SHERPAS to partition the query into
segments, each one associated with a strain identified as its origin.

2.5 Signal evaluation and unassigned regions
SHERPAS may leave some parts of a query unassigned, whenever
the evidence for the classification into any particular strain is
deemed to be too weak. In order to evaluate this, SHERPAS con-
verts the score of a branch into a likelihood score (details of this con-
version are provided in the Supplementary Section S2.4). The way
this is used depends on the version of the pkDB (full/reduced).

In its full version, the pkDB contains all the branches of the refer-
ence phylogeny, including some branches that are not assigned to
any strain. If the best scoring branch in a window is one of these un-
assigned branches, then SHERPAS classifies the window midpoint
as unassigned (or ‘N/A’). If instead the best and second-best scoring
branch belongs to the same strain, SHERPAS classifies the midpoint
in that strain. In all remaining cases, SHERPAS computes the ratio
‘1=‘2, where ‘1 and ‘2 are the likelihoods for the best and second-
best branch, respectively. If that ratio is smaller than a user-defined
parameter hF, SHERPAS classifies the window midpoint as un-
assigned, otherwise it classifies it in the strain of the best scoring
branch.

In the reduced version, all branches recorded in the pkDB belong
to some strain (usually just one branch per strain). In that case,
SHERPAS computes the ratio ‘1=

P
i ‘i, where ‘1 is the likelihood

for the best scoring branch/strain and ‘i; i � 1 are the likelihoods of
all branches/strains in the pkDB. Again, if that ratio is smaller than
a user-defined parameter hR 2 ½0; 1Þ, SHERPAS returns the window
midpoint as unassigned (or ‘N/A’).

In both SHERPAS-full and SHERPAS-reduced, setting the con-
trol parameter hF (or hR) to a small value is expected to result in a
liberal classification, potentially resulting in false-positive break-
points, while setting it to a high value corresponds to a more conser-
vative classification, potentially missing some evidence of
recombination. A last optional step that is applied by SHERPAS is
the removal of N/A stretches between two segments classified in the
same strain (by default, these regions are classified as belonging to
that strain).

An interesting observation is that, since by default two consecu-
tive windows only differ by two k-mers, it is very unlikely that their
midpoints are both confidently assigned to different strains. Because
of this, two genomic regions classified into different strains X and Y
are usually separated by a N/A fragment, which can be interpreted
as expressing uncertainty about the precise location of the break-
point between X and Y. In other words, we expect the breakpoint
X/Y to lie somewhere within this N/A fragment.

3 Materials and methods

3.1 Experimental protocol overview
We evaluated the performance of SHERPAS on four datasets of syn-
thetic recombinants, i.e. query sequences that are constructed by
concatenating fragments of real-world viral sequences. The first
three datasets were obtained following the same general procedure:
each dataset is constructed from a different pair of alignments con-
taining real-world sequences reliably annotated as belonging to
known strains of a virus of interest (details in Sections 3.3–3.5). One
of these alignments is used as the reference alignment for SHERPAS.

Recombination detection using phylo-k-mers 5353



The sequences in the other alignment are called pre-queries. We en-
sure the two alignments contain no sequence in common. The pre-
queries are used to build a large collection of queries by (i) drawing
random recombination breakpoints in the alignment containing the
pre-queries, (ii) cutting the pre-queries at those breakpoints and (iii)
concatenating the resulting fragments. The fourth dataset was
obtained by simulating long-read sequencing errors over the queries
of one of the other datasets (Section 3.6). For each of the queries, we
record the positions of the breakpoints, and the strain of origin of
the fragments that are separated by those breakpoints. This recorded
information is used as ‘ground truth’ to evaluate the accuracy of the
tested methods (see Section 3.2).

We compare the performance (accuracy and running times) of
SHERPAS over these datasets against that of jpHMM (Schultz et al.,
2006, 2009), a natural choice because (i) it is the only tool whose
main stated goal is the same as that of SHERPAS (detect inter-strain
recombinants and partition them according to the strain of origin).
Moreover, (ii) jpHMM is not specialized for any single virus species,
and is distributed with its own reference alignments for a number of
viruses, which allows us to compare it to SHERPAS using the same
reference alignments. Note that using the same reference alignment
(essentially a training set) puts two tools on an equal ground for
benchmarking purposes, allowing us to evaluate the relative merits
of the algorithms alone—and exclude the influence of the reference
data, which is potentially crucial (Pineda-Pe~na et al., 2013). Also
note that, when run with the -Q blat option to speed-up its execu-
tion, jpHMM appears to be at least as fast as SCUEAL and REGA
(Pineda-Pe~na et al., 2013), thus providing a good comparison for
running times. Those alternatives to jpHMM were excluded for the
following reasons: SCUEAL (Kosakovsky Pond et al., 2009) is speci-
alized for the detection of HIV-1 recombinants, including intra-sub-
type recombinants, and is only distributed with a single reference
alignment (for the pol gene). The REGA tool (de Oliveira et al.,
2005) has only been developed for HIV-1, and does not give access
to its code. Since it cannot be run on a local machine, it is not pos-
sible to perform fair running-time comparisons with it. All these ex-
clusion criteria also apply to COMET (Struck et al., 2014), a web-
based subtyping tool for HIV-1, whose main goal is not recombin-
ation analysis.

3.2 Measures of accuracy
To measure the accuracy of SHERPAS and of the other methods, we
used two approaches: a site-wise and a mosaic approach.

3.2.1 Site-wise approach

Since the composition of synthetic recombinant queries is known,
we can see such composition as a site-wise assignment. It is then pos-
sible to compare the assignment of a site by a recombination-
detection software with the correct assignment of that site. We use
two different measures of the accuracy of a software: we compute
the proportion of sites that are assigned to the correct strain, either
out of all sites—the site-wise sensitivity—or out of all sites that are
not assigned to N/A—the site-wise precision. We note that this is a
slight abuse of vocabulary, as in multi-class classification, precision
and sensitivity are class-specific measures (see the Supplementary
Section S4 for a mathematical reconciliation between these defini-
tions). In the absence of N/A regions, our definitions of site-wise
precision and sensitivity give the same value.

3.2.2 Mosaic approach

This is the same approach used by the authors of SCUEAL
(Kosakovsky Pond et al., 2009). Any partition of the query into
strains is translated into the sequence of strains that appear in it,
ignoring the position of the breakpoints and of unassigned regions,
when these are present. We call such sequence of strains a mosaic.
For example, the mosaic of the query in Figure 1 is A1, B. The mo-
saic of each query is compared to the mosaic reconstructed by the
software on that query. Each of these reconstructed mosaics is then
classified into one of the following four categories, where the word
subsequence is defined in the standard way, not implying contiguity

(Gusfield, 1997; Wikipedia Contributors, 2019). Match: the mosaic
returned by the software coincides with the correct mosaic.
Superset: the correct mosaic is a subsequence of the mosaic returned

by the software. Subset: the mosaic returned by the software is a
subsequence of the correct mosaic. Mismatch: none of the above.

For example, the second mosaic in Figure 1 (returned by SHERPAS)
is a superset compared to the correct mosaic (note the presence of
the light brown bar toward the right), whereas the third (returned

by jpHMM) is a match. For circular queries, the definitions above
are modified accordingly.

3.3 HIV-pol dataset
To evaluate the performances of SCUEAL, Kosakovsky Pond et al.
(2009) generated 10 000 synthetic recombinant queries, combining
fragments from 863 pre-queries from the HIV-1 pol gene. We used

this dataset without modification. The queries are about 1.6 kbp
long.

To run SHERPAS on these queries, we built the pkDB using the
same reference alignment as SCUEAL. This alignment contains 167

HIV-pol sequences distributed into 17 strains, which correspond to
groups, types, subtypes, chimpanzee SIV sequences and the circulat-
ing recombinant form (CRF) CRF01_AE. These strains are named

A, A1, A2, A3, AE, B, C, D, F1, F2, G, H, J, K, N, O and CPZ (the
inclusion of CPZ and AE is discussed in the Supplementary Sections
S3.3 and S3.4, respectively).

The output of SCUEAL on these queries is distributed along with
the software, so we did not re-run SCUEAL on this dataset (also be-

cause SCUEAL is a non-deterministic algorithm). The queries in-
clude intra-strain recombinants and SCUEAL’s output includes the

detection of intra-strain recombination. In order to make this infor-
mation comparable to the output of SHERPAS, we ignored intra-
strain recombination, and only retained inter-strain recombination

information. As a consequence, the mosaic-based accuracy measures
that we obtain for SCUEAL (Table 2) are much better than those

reported by Kosakovsky Pond et al. (2009) (e.g. 93.2% matches ver-
sus 46.6%). In order to interpret the results for jpHMM on this
dataset, we note that strains A and N cannot be recognized by

jpHMM, which negatively impacts its accuracy measures on this
dataset. The impact, however, is limited (see the Supplementary

Section S5.2 for more detail).

3.4 HBV-genome dataset
Both SHERPAS and the latest version of jpHMM are able to analyze
data from viruses with circular genomes, such as the hepatitis B

virus (HBV) (Schultz et al., 2012). To experiment with HBV data,
we used the reference alignment that is distributed with jpHMM. It

contains 339 whole-genome sequences classified into strains A, B,
C, D, E, F, G and H (known as genotypes). Prior to the construction
of the pkDB for SHERPAS, we extended this reference alignment by

copying the first nine columns of the alignment to the end of the
alignment. This allows the construction of phylo-k-mers (with
k ¼ 10) from positions that overlap with the artificial end of the

alignment.
To build a collection of queries, we started with a collection of

pre-queries extracted from the database of aligned whole-genome
HBV sequences available at the HBVdb website (Hayer et al., 2013;

HBVdb Contributors, 2019). To construct a query, 2X recombin-
ation breakpoints are chosen at random, where X � 1 is geometric-
ally distributed with parameter 0.8, while making sure that no two

breakpoints are <100 bp apart [as in Kosakovsky Pond et al.
(2009)]. In total, 2000 queries combine fragments from two pre-

queries, and 1000 queries are based on three pre-queries (see the
Supplementary Section S5.3, for full details on this procedure). The
parameters used in this procedure were chosen so that the queries

loosely reflect the characteristics of inter-genotype HBV recombi-
nants presented in a recent overview (Araujo, 2015). The queries are
about 3.2 kbp long.
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3.5 HIV-genome dataset
This dataset consist of whole-genome sequences from HIV. Again,
we used the reference alignment of jpHMM for HIV to build the
pkDB database for SHERPAS. This alignment contains 881 whole-
genome sequences, classified in the following 14 strains: A1, A2,
AE, B, C, D, F1, F2, G, H, J, K, O and CPZ.

To construct a collection of 3000 synthetic queries, we used pre-
queries extracted from Los Alamos HIV sequence database (the
‘complete Web alignment 2018’). In brief, the main difference with
the procedure for the HBV-genome queries is that the number of
parental pre-queries and the number of breakpoints are both drawn
from (shifted) geometric distributions. Again, the construction pro-
cedure was designed to reflect the broad characteristics of known re-
combinant forms, those listed in the Los Alamos HIV sequence
database. Full details of this procedure are described in the
Supplementary Section S5.4. The average length of the resulting
queries is 8.9 kbp.

3.6 Simulated nanopore reads from the HIV-genome

dataset
To test the robustness of SHERPAS to high error rates typical of
long-read sequencing technologies, we also built a dataset of reads
generated with NanoSim-H, a simulator of Oxford Nanopore reads
(B�rinda et al., 2018; Yang et al., 2017). For each query in the HIV-
genome dataset, we generated a single simulated read using
NanoSim-H with minimum and maximum length set to 1000 and
9000, respectively, and rate of unaligned reads set to 0. All other
parameters were left to their default values. A total of 3000 simu-
lated reads, with average length about 5.9 kbp, were thus obtained.
The reference alignment used for this dataset is the same as that for
the HIV-genome dataset (see the Supplementary Section S5.5 for
details).

3.7 Running the experiments
For each of the datasets described in Sections 3.3–3.6, a reference
tree was constructed from the reference alignment with PhyML 3.3
(Guindon et al., 2010) using GTRþ Cþ I as substitution model.
Alignment and tree were given as inputs to a customized version of
RAPPAS that built a pkDB using parameters k ¼ 10 and threshold
parameter 1.5 (called ‘omega’).

We ran SHERPAS with eight parameter combinations:
SHERPAS-reduced for hR 2 f0:90;0:99g and window size in f300,
500g, and SHERPAS-full for hF 2 f1; 100g and window size again
in f300, 500g. Using two values for each parameter allows us to
gauge their impact on the accuracy of SHERPAS. We also ran
jpHMM using its default behavior for HIV and HBV, with and
without the option -Q blat to speed-up its execution. See Section 3.1
for motivation regarding the choice of jpHMM for comparisons.
For the HIV-pol dataset (Section 3.3), the results of running
SCUEAL are distributed together with the software (Kosakovsky
Pond et al., 2009), so we included them in our comparisons.

The commands used for all these operations and links to files
used—including the pkDBs constructed by RAPPAS—are reported
for reproducibility in the Supplementary Section S5. All experiments
were run on the same PC with 32 GB RAM and using a single core

operating at 3.6 GHz. Running times were measured using the Unix
command time (recording user CPU time).

4 Results

4.1 Running times
Table 1 shows the running times of SHERPAS-full, SHERPAS-
reduced and of two ways of executing jpHMM, i.e. with and with-
out the -Q blat option to speed-up its execution. We do not include
the time necessary to construct the pkDBs with RAPPAS, as we as-
sume that the pkDB has been obtained prior to the analysis (to this
end, SHERPAS is distributed with the three pkDBs used in the
experiments reported here). Moreover, the numerical parameters of
SHERPAS (the h thresholds and the window size) have very little im-
pact on its running time. For this reason, we only report runtimes
for default parameters. The running times for jpHMM could not be
obtained in two cases for the following reasons: (i) for the HBV-
genome dataset, we must run jpHMM with the -C option for circu-
lar queries, which automatically activates the -Q blat option; (ii) for
the simulated Nanopore HIV reads, the -Q blat option resulted in
the program failing to execute, probably because of the difficulty of
aligning error-rich reads.

SHERPAS is orders of magnitude faster than jpHMM.
Compared to jpHMM with the -Q blat option, SHERPAS-full is
hundreds of times faster, while SHERPAS-reduced is thousands of
times faster. Datasets that took days for jpHMM -Q blat to analyze,
can be analyzed by SHERPAS in a matter of minutes, or even
seconds.

The running time of SHERPAS essentially depends on two char-
acteristics of the dataset. First, it scales linearly with the amount of
data to analyze (number of queries and their lengths). Second, it is
also related to the number of branches for which some information
is stored in the pkDB. In the full version, this number is proportional
to the size of the reference tree, while in the reduced version it is
equal to the number of root branches. These numbers are reported
in the first two columns of Table 1. See the Supplementary Section
S2.6 for a detailed complexity analysis of the algorithms imple-
mented in SHERPAS.

Consistent with the expectations above, the speed-up obtained
with SHERPAS-reduced relative to SHERPAS-full is related to the
strength of the reduction in the number of branches in the pkDB: the
speed-up is moderate for HIV-pol (from 332 to 23 branches), but
much more pronounced for HBV-genome (from 676 to 8 branches),
and for the two whole-genome HIV datasets (from 1760 to 20
branches). As for the differences across different datasets, it is not
surprising that the dataset that results in the longest running time
for SHERPAS is HIV-genome: its set of queries has the largest aggre-
gate size, and the number of branches in the full pkDB is by far the
largest. Running times for HIV-LR (the simulated Nanopore reads
dataset) are lower than those for HIV-genome because the simulated
reads are in general shorter than the whole genome.

4.2 HIV-pol dataset
Table 2 compares the accuracy of inter-strain recombination detec-
tion methods (see Section 3.7) on the HIV-pol dataset. SCUEAL and

Table 1. Running times of jpHMM and SHERPAS on the four datasets

jpHMM SHERPAS

Mbp #br Default -Q blat full reduced

HIV-pol 16.2 332 (23) 12 964 min 46 s 1533 min 22 s 2 min 40 s 32 s

HBV-genome 9.6 676 (8) — 673 min 24 s 2 min 35 s 11 s

HIV-genome 26.7 1760 (20) 4997 min 48 s 2367 min 36 s 20 min 44 s 51 s

HIV-LR 17.7 1760 (20) 7414 min 17 s — 12 min 29 s 33 s

Note: Column ‘Mbp’ reports the total size of the query dataset in Mbp. Column ‘#br’ reports the number of branches for which the full pkDB (reduced pkDB)

stores information. ‘HIV-LR’ refers to the dataset of simulated long reads. All times are measured in minutes (min) and seconds (s).
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jpHMM achieve high accuracies overall on this dataset. Here,
SCUEAL and jpHMM use different reference alignments, and two
strains (A and N) present in some of the queries cannot be recog-
nized by jpHMM (see Section 3.3). We also observed that many of
the pre-queries that Kosakovsky Pond et al. (2009) used to construct
the queries in this dataset are in fact part of the reference alignment
for HIV used by jpHMM. For these reasons, it is not a good idea to
draw conclusions about the relative performance of SCUEAL and
jpHMM here.

Overall, the accuracies displayed by SHERPAS on this dataset
are not as good as those of the other methods, especially in terms of
site-wise sensitivity and mosaic measures. The low sensitivity is due
to the high incidence of unassigned regions, which is particularly
pronounced for SHERPAS-reduced and high values of the thresh-
olds. On the other hand, for SHERPAS-full, a high value of the
threshold (hF ¼ 100) results in a better site-wise precision than
SCUEAL and jpHMM, and in mosaic measures that are almost as
good as those of SCUEAL and jpHMM (frequency of mosaic
matches: 88.4–89% versus 90–93.2%).

We also observe that on this dataset, SHERPAS-full is generally
more accurate than SHERPAS-reduced. This is not surprising, as
SHERPAS-reduced uses far less pre-computed information (a much
smaller pkDB) than SHERPAS-full. As for the effect of window size,
smaller windows consistently result in higher site-wise precision,
and lower frequencies of mosaic matches. This appears to be due to

the fact that a smaller window ‘switches’ more easily between differ-
ent strains and therefore has a tendency to produce finer classifica-
tions, but more fragmented mosaics. This is corroborated by the

observation that the frequency of superset mosaics is consistently
higher for windows of size 300 than for windows of size 500.

4.3 HBV-genome dataset
The results in Table 3 show that, again, jpHMM has a very high
overall accuracy, which is rarely matched by SHERPAS. Some of the

observations made for HIV-pol can be re-iterated here: again, the
site-wise sensitivity of SHERPAS is markedly lower than that of

jpHMM, and again, as expected, increasing the thresholds deterio-
rates sensitivity, and improves mosaic accuracy.

Interestingly, on this dataset, there does not seem to be any con-
sistent difference between the accuracies of SHERPAS-full and
SHERPAS-reduced. This may have something to do with the nature

of the reference tree for HBV, where the eight strains are monophy-
letic and well-delimited by relatively long root branches (which is

not the case for all the strains in HIV-1). This may imply that for
HBV, the phylo-k-mers inferred for the root branches represent well
their respective strains. It is also interesting to note that on this data-

set, setting the window size to 300 usually leads to better results
than 500, an observation that is not generally true for the other

datasets.

Table 3. Accuracies observed on the HBV-genome dataset

Site-wise Mosaic

Method thr w N/A sens prec m sup sub mm

jpHMM — — 0.0 98.5 98.5 91.4 0.4 6.8 1.4

SHERPAS R 0.9 500 1.6 93.7 95.3 80.2 5.1 14.0 0.7

SHERPAS R 0.9 300 2.5 94.6 97.0 81.4 11 6.6 1.0

SHERPAS R 0.99 500 3.5 92.6 96.0 81.2 2.2 16.5 0.1

SHERPAS R 0.99 300 5.0 92.9 97.8 86.6 3.7 9.4 0.3

SHERPAS F 1 500 2.1 93.5 95.5 76.0 8.7 14.4 0.8

SHERPAS F 1 300 1.5 95.3 96.8 74.7 19.3 5.0 1.0

SHERPAS F 100 500 4.8 92.0 96.6 80.2 1.3 18.3 0.2

SHERPAS F 100 300 3.8 94.1 97.8 84.4 7.5 7.4 0.8

Note: jpHMM stands for jpHMM launched with the -C option for circular queries. Note that, this option automatically activates the -Q blat (fast) option. All

other abbreviations are as in Table 2.

Table 2. Accuracies observed on the HIV-pol dataset

Site-wise Mosaic

Method thr w N/A sens prec m sup sub mm

SCUEAL — — 0.0 98.5 98.5 93.2 3.0 1.9 1.9

jpHMM — — 0.0 97.4 97.4 90.0 0.0 7.0 2.9

jpHMM-Qb — — 0.0 97.4 97.5 90.2 0 7.0 2.8

SHERPAS R 0.9 500 7.5 89.8 97.1 83.6 8.5 6.3 1.6

SHERPAS R 0.9 300 8.8 89.4 98.0 81.9 12.6 4.0 1.5

SHERPAS R 0.99 500 17.0 81.2 97.9 82.6 3.0 13.1 1.3

SHERPAS R 0.99 300 21.0 78.2 98.8 82.3 3.6 12.9 1.2

SHERPAS F 1 500 4.4 93.5 97.8 81.9 12.0 5.3 0.8

SHERPAS F 1 300 3.0 95.3 98.2 78.2 19.0 2.2 0.7

SHERPAS F 100 500 7.0 91.6 98.6 89.0 3.3 7.3 0.3

SHERPAS F 100 300 5.3 93.7 98.9 88.4 7.4 3.7 0.5

Note: jpHMM-Qb stands for jpHMM with the -Q blat (fast) option. ‘R’ and ‘F’ distinguish between SHERPAS-reduced and SHERPAS-full, respectively.

Columns ‘thr’ and ‘w’ report the threshold and window size used by SHERPAS. Column ‘N/A’ reports the percentage of sites that are not assigned to any strain.

Columns ‘sens’ and ‘prec’ report site-wise sensitivity and precision (in percentage), respectively. Columns ‘m’, ‘sup’, ‘sub’ and ‘mm’ report the percentages of mo-

saic matches, supersets, subsets and mismatches, respectively (see Section 3.2 for definitions).
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4.4 HIV-genome dataset
The results for the HIV-genome dataset, shown in Table 4, show a
slightly different pattern from the other datasets. On the one hand,
jpHMM and SHERPAS-full have similar site-wise accuracy meas-
ures. Unlike in the previous datasets, the sensitivity of SHERPAS-
full is higher than that of jpHMM in three cases out of four. On the
other hand, the frequency of mosaic matches for SHERPAS is now
substantially lower than that of jpHMM.

These seemingly contradictory observations can be explained by
inspecting the outputs of SHERPAS and jpHMM on the queries in this
dataset. The Supplementary Material (Annex C) contains an illustra-
tion of the outputs of SHERPAS-full and jpHMM on the first 100
queries out of the 3000 in this dataset. An important observation is
that the partition produced by SHERPAS often includes short errone-
ous fragments (i.e. that were not present in the correct partition of the
query). For example, among the first 10 queries shown in the
Supplementary Material, 5 queries present such short erroneous frag-
ments (queries 2, 3, 4, 6 and 9; in some cases the erroneous fragment is
so short that it is difficult to observe without zooming). The output of
SHERPAS in Figure 1 (corresponding to query 56) is also an example
of this phenomenon: note the short erroneous fragment from strain D.

A consequence of this behavior of SHERPAS is that, although its
output is usually close to the correct partition, the mosaics it produ-
ces are often supersets of the correct mosaics. This phenomenon was
also present in the other datasets, as can be seen in the frequencies
of supersets, which are always higher than in the other methods (see
again Tables 2 and 3). However, here, this becomes more visible be-
cause the queries are about 3–5 times longer than in the other data-
sets, meaning that the probability of observing such erroneous short
fragments in one query increases significantly. As we discuss in

Section 5.1, when using SHERPAS to screen for recombinants,
supersets should be regarded as far less serious errors than subsets or
mismatches. From Table 4, it is easy to check that here the aggregate
frequency of subsets and mismatches is higher for jpHMM (about
18%) than in all four runs of SHERPAS-full.

The lower sensitivity of jpHMM relatively to the other datasets
is due to its behavior at the two ends of queries spanning a whole
HIV genome. As can be seen in the Supplementary Material (Annex
C), jpHMM often leaves the ends of a HIV-genome query as un-
assigned (N/A). This is likely due to the difficulty of alignment and
of profile-based modeling in those peripheral regions.

Like in the HIV-pol dataset, we note that SHERPAS-full tends to
be slightly more accurate than SHERPAS-reduced, in terms of site-
wise measures. Using a window of size 300 instead of 500, strongly
reduces the frequency of mosaic matches, which is again due to a
higher frequency of short erroneous fragments. However, it consistent-
ly reduces the aggregate frequency of subsets and mismatches (not
shown), which may be important for screening purposes (Section 5.1).

4.5 Simulated nanopore reads from the HIV-genome

dataset
The results in Table 5 show that the simulated Nanopore reads pose
a significant challenge to jpHMM and SHERPAS. This is not sur-
prising, given the high error rates that characterize these reads. We
refer to Yang et al. (2017) and its supplement for an in-depth ana-
lysis of these error rates.

Strikingly, however, jpHMM is much more negatively affected
by the simulated Nanopore sequencing errors than SHERPAS. Note
that if a classifier was to choose randomly one of the 14 strains at

Table 5. Accuracies observed on the dataset of simulated Nanopore HIV reads

Site-wise Mosaic

Method thr w N/A sens prec m sup sub mm

jpHMM — — 15.0 38.7 45.5 0.7 49.8 0.4 49.1

SHERPAS R 0.9 500 16.7 65.2 78.4 2.7 71.2 0.6 25.5

SHERPAS R 0.9 300 25.2 56.3 75.2 1.1 75.1 0.2 23.6

SHERPAS R 0.99 500 28.7 59.8 83.9 9.4 55.0 2.7 32.9

SHERPAS R 0.99 300 38.3 49.3 79.9 5.0 56.0 1.6 37.4

SHERPAS F 1 500 21.8 71.8 91.9 12.3 58.4 3.9 25.4

SHERPAS F 1 300 21.8 69.3 88.7 3.2 75.9 0.4 20.5

SHERPAS F 100 500 25.7 70.3 94.6 34.1 30.2 16.8 18.9

SHERPAS F 100 300 21.8 73.8 94.4 22.3 51.3 6.3 20.0

Note: For jpHMM, only the results of launching it with its default options for HIV are reported, as the use of the -Q blat (fast) option resulted in the program

failing to execute. All abbreviations are as in Table 2.

Table 4. Accuracies observed on the HIV-genome dataset

Site-wise Mosaic

Method thr w N/A sens prec m sup sub mm

jpHMM — — 3.6 95.6 99.2 77.8 4.2 16.6 1.4

jpHMM-Qb — — 4.0 95.4 99.3 78.2 4.0 17.0 0.8

SHERPAS R 0.9 500 3.4 94.5 97.9 48.2 37.3 6.1 8.4

SHERPAS R 0.9 300 5.5 92.5 97.9 27.4 63.0 1.9 7.7

SHERPAS R 0.99 500 6.0 92.7 98.6 65.8 15.3 13.4 5.5

SHERPAS R 0.99 300 8.6 90.5 99.0 56.7 27.0 9.8 6.5

SHERPAS F 1 500 2.1 96.1 98.2 46.3 43.6 4.3 5.8

SHERPAS F 1 300 1.6 96.6 98.2 24.2 71.5 0.7 3.6

SHERPAS F 100 500 3.5 95.3 98.8 67.8 19.2 9.5 3.5

SHERPAS F 100 300 2.7 96.4 99.1 54.3 39.6 2.9 3.2

Note: All abbreviations are as in Table 2.
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every site, its sensitivity and precision would be 1/14¼7.1%, but if it
was to classify every query as a non-recombinant sequence belong-
ing to the most frequent strain (B) its sensitivity and precision would
be 41.9% (this is the proportion of sites from strain B in the
queries). Thus, jpHMM’s site-wise accuracy measures are only par-
tially better than those of random classifiers. On the other hand, the
site-wise precision of SHERPAS, especially in the full version, is
only marginally affected (cf. Table 4). The site-wise sensitivity is
lowered, which is due to the fact that error-rich regions are often un-
assigned. SHERPAS is also more accurate than jpHMM in terms of
mosaic measures (cf. the frequencies of matches and mismatches).

Finally, once again SHERPAS-full is consistently more accurate
than SHERPAS-reduced. Interestingly, on this dataset, using a
smaller window generally results in a deterioration of accuracy.
However, this is not true if the goal is to minimize the aggregate fre-
quency of subsets and mismatches (see Section 5.1).

5 Discussion

5.1 Uses of SHERPAS
SHERPAS is a tool for the detection and analysis of inter-strain
recombinants in a large collection of query sequences. It relies on
the availability of a reference multiple sequence alignment, which is
used to ‘learn’ to recognize sequences from the different strains. It
accomplishes a bioinformatics task considerably different from that
of detecting the presence of recombinant sequences within a multiple
sequence alignment—a task that can be tackled with other methods,
such as those implemented in the RDP software (Martin et al.,
2015, 2017). An important difference between the two tasks is that
here, we make a clear distinction between reference sequences
(known in advance and well-characterized) and the novel sequences
to analyze, the queries. The latter do not need to be aligned, which
opens the possibility of treating a much larger amount of sequence
data. SHERPAS can be used for any dataset of viral sequences for
which a reference alignment of sufficient quality and size can be
obtained. In fact SHERPAS, like SCUEAL, could also be used to de-
tect recombinant bacterial sequences (Kosakovsky Pond et al.,
2009), although we have not experimented with such data.

By default, SHERPAS uses the full pkDB, with hF ¼ 100 and
window size 300. If the user chooses to run SHERPAS-reduced, the
default parameters are hR ¼ 0:99 and again window size 300. These

default settings were chosen while trying to achieve a good balance
among all accuracy measures, and assuming a volume of data that is
not prohibitively large. However, users should be aware that the
choice of settings will depend on the nature of the data and the goal
of the analysis.

For example, SHERPAS may be used as a first screen to detect
potential recombinants in a large set of sequences. The putative
recombinants can then be analyzed further with more accurate but
slower software, such as REGA (de Oliveira et al., 2005; Pineda-
Pe~na et al., 2013), SCUEAL (Kosakovsky Pond et al., 2009) or
jpHMM (Schultz et al., 2006, 2009). In this case, the primary goal is
not high accuracy, but rather to lower the odds of missing evidence
of recombination in a query. In terms of inferred mosaics, this means
lowering the frequencies of subsets and mismatches. In Tables 2–5,
the parameter combinations that minimize the occurrence of subsets
and mismatches for SHERPAS-full and SHERPAS-reduced are the
ones with the lowest tested thresholds and window size 300. Note
that these combinations consistently produce fewer aggregate sub-
sets and mismatches than jpHMM.

To provide further insight into the ability of detecting evidence
of recombination, we re-analyzed the queries in the HIV-pol dataset,
which include a substantial number of sequences that are not inter-
strain recombinants. We then considered SHERPAS as a binary clas-
sifier for inter-strain recombination, classifying a sequence as a
‘positive’ if at least one breakpoint is detected, and a ‘negative’
otherwise. This allows us to observe how changing settings in
SHERPAS (full versus reduced database, threshold and window
size) affects its ability of recovering true positives (known as the re-
call of the classifier), and how much specificity has to be traded to
improve this ability. The results of this experiment, shown in
Figure 2, confirm that SHERPAS can indeed achieve high recall with
the use of low thresholds (not the default one), and small windows,
although users must be aware that this entails a loss of specificity. A
full description and discussion about this experiment can be found
in the Supplementary Section S5.6).

5.2 Scaling-up
Another important factor influencing how SHERPAS should be run
is the amount of data to analyze. The query datasets that we used
here were of relatively manageable sizes, to facilitate comparisons
with slower software. Should the data to analyze be substantially
more abundant (e.g. millions of reads), running SHERPAS in
reduced mode may become more appealing, or even necessary in
some cases. This is especially true if the reference tree is large, as in
this case the speed-up for SHERPAS-reduced is more pronounced
(see Section 4.1). Moreover, for some datasets or applications, the
accuracy of SHERPAS-reduced may be comparable to that of
SHERPAS-full (see, e.g. Section 4.3 and Fig. 2).

Because the running times of SHERPAS scale linearly with the
amount of data to analyze, running SHERPAS on few millions
queries is feasible in a matter of days (using SHERPAS-full) or in a
matter of hours (using SHERPAS-reduced; see Table 1). To the best
of our knowledge, none of the recombination detection tools cur-
rently available are scalable to datasets of that size. Although our
experiments focused on comparing SHERPAS to jpHMM—for the
reasons detailed in Section 3.1—previous comparisons of running
times between jpHMM and phylogeny-based tools for recombin-
ation detection (namely REGA and SCUEAL) showed that jpHMM
was at least as fast as those tools [see table 4 in Pineda-Pe~na et al.
(2013)], when run with the fast -Q blat option, meaning that the
running-time advantage of SHERPAS likely extends to the other
available tools.

5.3 Accuracy
Consistent with previous literature (Kosakovsky Pond et al., 2009;
Schultz et al., 2006, 2009), we evaluated the predictive accuracy of
SHERPAS using large datasets of semi-artificial recombinant
sequences, which combine fragments of real HIV and HBV sequen-
ces (the pre-queries) via artificially introduced breakpoints. In the
absence of large datasets of real sequences for which the true

Fig. 2. Trade-off between recall and specificity for the binary classification of HIV-

pol queries. Recall and specificity are plotted for SCUEAL (circle), jpHMM (dia-

mond) and SHERPAS (colored lines). The four colored lines correspond to the dif-

ferent combinations of a pkDB version (full/reduced) and window size (500, 300)

for SHERPAS. Each point in a colored line corresponds to a different value of the

threshold, with the lowest values of the threshold (1 for SHERPAS-full and 0 for

SHERPAS-reduced) resulting in the leftmost points. See the Supplementary Section

S5.6 for full details. Note that, all rates fall in the interval ½0:72; 1�, which is why the

curves are not depicted in the full [0,1] range
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recombinant structure is known with certainty, this is a good way to
evaluate a new method for recombination detection (note that, we
ensure that none of the pre-queries belongs to the reference align-
ment for the tested methods). Using sequences that are fully simu-
lated using a fixed evolutionary model (Kosakovsky Pond et al.,
2009) is also a viable option, but the choice of the simulation
parameters can have an important impact on the results, and the ad-
vantage over using semi-artificial sequences is unclear.

The experiments were designed to assess accuracy loss in
SHERPAS compared to jpHMM (Schultz et al., 2006, 2009). The
choice of jpHMM is motivated in Section 3.1. The other goal of our
experiments was to explore the influence of the parameters of
SHERPAS, including the use of full/reduced pkDB. Using two pos-
sible values for all parameters allows us to gauge their impact. The
two window sizes (300 and 500 bp) were chosen on the basis of
common practices of sliding-window approaches (e.g. the REGA
tool employs a window of 400 bp).

Possibly the most interesting result here is the inferior perform-
ance of jpHMM compared to SHERPAS on the simulated Nanopore
reads dataset. We suspect that the reason for this is that profile
HMMs may be strongly affected by large indels (which are common
in these reads) and by errors that do not correspond well to their
emission probabilities [which were estimated on error-free datasets
by Schultz et al. (2006)]. SHERPAS, on the other hand, appears to
be able to exploit the information coming from the error-free
stretches of sequences that lie between errors in the reads. Further
work, beyond the scope of this article, would be needed to investi-
gate these hypotheses.

5.4 Future work and limitations
SHERPAS-full implicitly computes the most probable branch of ori-
gin of any window within a query. This means that it can be used
for precise phylogenetic placement of the segments composing the
query (Barbera et al., 2019; Berger et al., 2011; Linard et al., 2019;
Matsen et al., 2010), or even to detect intra-strain recombinants.
We plan to add these functionalities in future versions of SHERPAS.

Second, the use of a sliding window has a few well-known disad-
vantages (Kosakovsky Pond et al., 2009). Specifically, it makes it
hard to precisely locate breakpoints (Schultz et al., 2006), and
choosing its size involves a trade-off between resolution and inform-
ativeness. In the future, we plan to implement algorithms that are
not window-based in SHERPAS (using, e.g. dynamic programing).
However, this will potentially entail a cost in terms of computation-
al efficiency.

Third, here, we focused on the problem of recognizing cases of
homologous recombination, which occurs when the new sequence
combines parental fragments with different origins, but joined at
homologous sites. Non-homologous or illegitimate recombination is
also known to occur in viruses, and results in genomes displaying
structural changes (e.g. with large insertions, deletions, duplications
etc.) (Crawford-Miksza and Schnurr, 1996; Galli and Bukh, 2014;
Scheel et al., 2013). Some preliminary experiments (not shown) sug-
gest that SHERPAS is also able to recognize and correctly partition
non-homologous recombinants. Note that phylogeny-based tools,
such as SCUEAL and REGA, align the query to the reference
sequences prior to the analysis, a problematic step when the query
contains, e.g. genomic duplications or translocations. In the future,
we plan to conduct an in-depth study of this novel functionality of
SHERPAS.

Fourth, SHERPAS was developed to detect novel recombinants,
but not to recognize widespread and well-known recombinants—
known as CRFs. If some of the query sequences are CRFs,
SHERPAS should detect that they are inter-strain recombinants, and
partition them accordingly. Although we have done so for one CRF
(CRF01_AE) in HIV-1, including CRFs in the reference alignment
and defining one strain per CRF is risky, as the reference tree will
not be an accurate description of the true history. This point is dis-
cussed in depth in the Supplementary Sections S3.2 and S3.3, where
we also explain how users may solve this problem by modifying the
reference alignment following an idea already exploited e.g. by
Kosakovsky Pond et al. (2009) and D. Martin (personal

communication). Automatic treatment of CRFs is a possible exten-
sion that we plan to add to SHERPAS.

Finally, every step involved in SHERPAS’s analyses can be in
principle parallelized, including the construction of the phylo-k-mer
database. This would further improve the scalability of our
approach.

5.5 Conclusion
SHERPAS achieves a reasonable accuracy compared to state-of-the-
art inter-strain recombination detection tools for viruses, but is
orders of magnitude more efficient. This advantage derives from the
fact that SHERPAS does not need to align the query sequences, and
from the relative simplicity of its classification algorithm. To the
best of our knowledge, it is the first software that can estimate the
recombinant structure of thousands of long sequences (up to whole
genomes) within minutes or even seconds. It also appears to be rela-
tively robust to high error rates typical of long-read sequencing tech-
nologies. SHERPAS paves the way to systematic screening of
recombinants in large datasets of long reads or assembled genome
sequences.
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