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Positive predictive value highlights four novel candidates
for actionable genetic screening from analysis of 220,000
clinicogenomic records
Kelly M. Schiabor Barrett1, Alexandre Bolze1, Yunyun Ni1, Simon White1, Magnus Isaksson1, Lavania Sharma1, Elissa Levin1, William Lee1,
Joseph J. Grzymski2,3, James T. Lu1, Nicole L. Washington1,4 and Elizabeth T. Cirulli 1,4✉

PURPOSE: To identify conditions that are candidates for population genetic screening based on population prevalence, penetrance
of rare variants, and actionability.
METHODS: We analyzed exome and medical record data from >220,000 participants across two large population health cohorts
with different demographics. We performed a gene-based collapsing analysis of rare variants to identify genes significantly
associated with disease status.
RESULTS: We identify 74 statistically significant gene–disease associations across 27 genes. Seven of these conditions have a
positive predictive value (PPV) of at least 30% in both cohorts. Three are already used in population screening programs
(BRCA1, BRCA2, LDLR), and we also identify four new candidates for population screening: GCK with diabetes mellitus, HBB with
β-thalassemia minor and intermedia, PKD1 with cystic kidney disease, and MIP with cataracts. Importantly, the associations are
actionable in that early genetic screening of each of these conditions is expected to improve outcomes.
CONCLUSION: We identify seven genetic conditions where rare variation appears appropriate to assess in population screening,
four of which are not yet used in screening programs. The addition of GCK, HBB, PKD1, and MIP rare variants into genetic screening
programs would reach an additional 0.21% of participants with actionable disease risk, depending on the population.
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INTRODUCTION
Genetic conditions that are appropriate for population screening
in US health programs are recommended to meet multiple criteria
as proposed in guidelines by the CDC and/or American College of
Medical Genetics and Genomics (ACMG) [1, 2]. Broadly, they must
be conditions that affect a large number of people, have a genetic
component with high penetrance in unselected populations,
benefit from identifying at-risk individuals before they have fully
developed the condition, have clear actionability for a change
in clinical care upon genetic identification, and have the utility of
screening confirmed by appropriate health economic analyses. An
example of such conditions includes the CDC Tier 1 conditions—
BRCA-related hereditary breast and ovarian cancer (HBOC), Lynch
syndrome (LS), and familial hypercholesterolemia (FH) (Table 1)—
which have highly penetrant and actionable genetic associations
[1]. In contrast, the ACMG has identified 73 genes recommended
for return of results of secondary findings, but most are not
currently recommended for population screening because,
although they have many of the same properties as CDC Tier 1,
they are often too rare to be identified in population studies and
have not undergone thorough analyses of their clinical and
economic impact [3].
In health systems currently offering population genetic screen-

ing based on CDC Tier 1 conditions, roughly 1% of an unselected
patient population harbors a pathogenic/likely pathogenic (P/LP)
variant, and as many as 80% of these individuals are unaware of
their elevated risk status [4, 5]. Leveraging available health-care

data, individuals with P/LP variants as a group display roughly
2–40 times higher risk of developing disease as compared to
those without variants, and they also demonstrate penetrance
averaging between 20% and 35% for personal history of relevant
disease, increasing to 30–65% when family history is also
considered, which helps contextualize lifetime risk of disease
development (Table 1) [4–7]. This means that there is a high
positive predictive value (PPV), generally >30%, when identifying
individuals with P/LP variants.
Given the real world prevalence and penetrance seen thus far in

genetic screening programs that detect and report P/LP variants,
identifying additional common diseases where genetic variants
confer a high PPV would expand the benefits of genomic medicine
and population screening, as well as improve our understanding of
disease biology.
In our opinion, the best candidates to expand genetic screening

programs are those rare variants that predispose individuals to
common diseases. Compared to common variants, rare variant
associations are much more penetrant, resulting in direct and
often more severe phenotypic effects that are also often relevant
across ethnicities [8]. Significant rare variant associations at the
population level not only distinguish differences in relative risk of
disease between individuals with rare variants and control groups
(often quantified as an odds ratio or OR), but also have high PPV,
indicating a high probability for individuals with the variant to
develop the disease in question. The high PPVs seen with many
associated rare variants are similar to relationships established for
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known P/LP variants. These results thus have both high clinical
validity and high clinical utility when used prospectively to modify
disease outcomes. When individuals with variants are identified
prior to disease onset, proactive actions such as diagnostics,
monitoring, and prophylactic risk reducing procedures, often
beyond or different from the standard of care, can be employed to
prevent or modify the disease for these individuals.
Because of this high PPV, the prospects of larger or additional

cohorts for rare variant analyses are very different from potential
benefits of larger sample sizes in common variant association
analyses. While larger sample sizes in studies of common variants
identify signals with smaller and smaller effect sizes, larger sample
sizes in studies of rare variants allow for the identification of rare
causal variants that can be used to very precisely inform an
individual about their risk of disease. Here, we leverage exome
and medical data from two large health-care cohorts to identify
rare variant—common disease relationships that are statistically
significant at the population level, with high PPV (≥30%) and
actionability relevant to the individuals with the variants, in line
with the recommendations for population screening programs.

MATERIALS AND METHODS
Study design
As prior studies have shown, reducing the dimensionality of the genetic
inputs can improve the power to detect associations with phenotypes
when analyzing rare variants at the population level [9, 10]. Furthermore,
differences in billing code (ICD) practices can artificially dampen diagnosis
phenotype resolution both within and across cohorts and, like genetic
signals from rare variants, they may also benefit from grouping methods
[11]. Here, we performed genetic disease association analyses with two
large exome-sequenced cohorts, the UK Biobank (UKB, n= 189,495) and
Healthy Nevada Project (HNP, n= 28,423), using both gene and phenotype
collapsing techniques.

Populations and genetic data
We utilized the OQFE version of the UKB PLINK-formatted exome files (field
23155) as well as the imputed genotypes from genome-wide association
study (GWAS) genotyping (field 22801–22823). The HNP samples were
sequenced and analyzed at Helix using the Exome+® assay as previously
described [9]. The UKB participants range in age from 40 to 69 and are 55%
female, while the HNP age range is from 18 to 89+ and is 68% female. The
UKB is 83% British European ancestry, with another 10% of other European
ancestry and 7% other ancestries, and the HNP is 77% general European
ancestry, 14% Hispanic ancestry, and 9% other ancestries.

Phenotypes
HNP phenotypes were processed from Epic/Clarity Electronic Health
Records (EHR) data as previously described [9]. UKB data were provided
from the UKB resource (http://www.ukbiobank.ac.uk/, accessed August
2020). For HNP, International Classification of Diseases, Ninth and Tenth
Revision ICD codes (ICD-9 and ICD-10-cm) were collected from available
diagnosis tables (from problem lists, medical histories, admissions data,
surgical case data, account data, claims, and invoices). For UKB, ICD codes
(both ICD-9 and ICD-10) were collected from inpatient data, cancer registry
table, and the first occurrences table (resource 593).
To map ICD to phecodes, ICD-9 (Phecode Map 1.2, used for both

cohorts), ICD-10 (Phecode Map 1.2b to ICD-10 beta, used for UKB), and ICD-
10-CM (Phecode Map 1.2b to ICD-10-CM beta, used for HNP) to phecode
maps from the Phewas catalog were used to code individuals as a 1 if they
had the phecode recorded at least once in their medical records, and
otherwise 0 [12–14]. Analysis phenotypes were restricted to have cases in
both cohorts, with at least 30 cases in the HNP data set (n= 1,044
phenotypes).
When identifying age at diagnosis, we required at least 5 years of

medical history prior to the diagnosis, meaning the first diagnosis of any
condition in the record must occur at least 5 years prior to the diagnosis in
question, except for when diagnosis occurred in the first five years of life.
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Gene-based collapsing
Variant annotation was performed with VEP 99 [15]. Coding regions were
defined according to Gencode version GENCODE 33, and the Ensembl
canonical transcript was used to determine variant consequence [16, 17].
Variants were restricted to CDS regions. Genotype processing was
performed in Hail 0.2.54-8526838bf99f.
For the collapsing analysis, samples were coded as a 1 for each gene if

they had a qualifying variant and a 0 otherwise [9]. We defined “qualifying”
as coding (stop_lost, missense_variant, start_lost, splice_donor_variant,
inframe_deletion, frameshift_variant, splice_acceptor_variant, stop_gained,
or inframe_insertion) and not PolyPhen or SIFT benign (PolyPhen benign is
<0.15, SIFT benign is >0.05). We also ran a loss-of-function (LoF) model that
only included LoF variants (stop_lost, start_lost, splice_donor_variant,
frameshift_variant, splice_acceptor_variant, or stop_gained). Variants were
only included if their minor allele frequency (MAF) was below 0.1% in all
gnomAD populations as well as locally within each population analyzed.
Only variants that passed our MAF and predicted function thresholds were
included, regardless of known P/LP status.

CNVs calls in HNP data
The Helix Exome+® platform includes a copy-number variant (CNV) caller,
allowing us to incorporate rare CNVs at exon-level resolution into our
gene-based collapsing analysis for the HNP samples [18]. Briefly, CNVs with
the PASS QC filter were annotated with overlapping canonical transcripts
(CT). For the collapsing analysis, rare CNV events were screened using both
exon and event-level frequency information from within the cohort (<0.1%
for each), as well as by relevant CNV type—deletions of at least one exon
of the gene for LoF model, and deletions or duplications for damaging.
Information on how many individuals carried CNVs in each significantly
associated gene can be found in Table S1. Including CNVs increased the
median frequency of individuals with variants in each gene by ~8%.

Genetic analysis
We used regenie for the genetic analysis [19]. Briefly, this method builds a
whole-genome regression model using common variants to account for
the effects of relatedness and population stratification, and it accounts for
situations where there is an extreme case–control imbalance, which can
lead to test statistic inflation with other analysis methods. The covariates
we included were age, sex, age*sex, age*age, sex*age*age, and bioinfor-
matics pipeline version as appropriate.
As previously described, a representative set of 184,445 coding and

noncoding linkage disequilibrium (LD)-pruned, high-quality common
variants were identified for both the creation of principal components
and for building the whole-genome regression model [9].
We performed two main analyses: (1) all ancestries together and (2) only

European ancestry, with 10 European ancestry-specific principal compo-
nents included as additional covariates. When collapsing rare (MAF <0.1%)
causal variants across a gene and analyzing with a linear mixed model or
whole-genome regression, signals tend to be consistent whether
restricting to one ancestry or analyzing across all ancestries [9]. This
method works in this setting because analyses of collapsed rare variants
are less influenced by ethnic background than are analyses of the common
variants used in a typical GWAS, in large part because causal variants are
being grouped together as opposed to tagging variants.
Meta-analysis was performed using the weighted Z-score p value in

METAL [20] on the summary stats from each separate analysis. QQ plots
showed no test statistic inflation. We required at least one individual to
have the variant in both the UKB and the HNP groups, and the meta p
value to be lower (better) than the p values for either individual cohort.
To identify significant associations, we used a conservative Bonferroni

correction for multiple tests for all genes that had individuals with
qualifying variants (p < 1 ×10-9).

PPV cutoff
To classify gene–disease relationships that would be strong candidates for
population screening, we first calculated the PPV (percent of individuals
with the variant who develop the condition) of each significant gene-
based association by grouping individuals based on age, either all ages
(ages 18–89+) or only 60+, to better estimate lifetime risk. Based on the
PPV of genetic conditions typically reported in existing genetic screening
programs (Table 1), we selected a PPV threshold of ≥0.3 to partition our
association results. We applied this threshold to both the all ages and

lifetime risk groups, and we included those associations from the 60+
group even if the PPV was lower prior to age 60.

RESULTS
Population-level associations
Our gene-based collapsing analysis of rare variants included
15,857 genes in the coding model, 15,617 of which were also in
the LoF model. For the phenotypes, we used phecodes to reduce
the phenotype complexity from >20,000 ICD 9 and 10 codes to
simply 1,044 medically relevant phenotypes based on available
electronic health records (EHR) for both HNP and UKB cohorts.
Our meta analysis across both data sets identified 74 statistically
significant associations (p < 1×10-9) between 27 genes and 49
phecodes (Table 2 and Table S1). While most of the significant
associations were obtained with a LoF model, 29 were associations
found with coding models, including eight genes for which there
was no significant LoF association (the association was only with
the coding model).
Importantly, the ethnic makeup of the two cohorts was quite

different despite each being predominantly of European ancestry,
and our analysis results were similar whether restricting to European
ancestry or analyzing across ethnicities (Table S1), consistent with
our previous study showing that collapsed rare variant signals tend
to be consistent across ancestries [9].

Applying PPV to highlight associations for population genetic
screening
We identified seven genes that passed our PPV cutoff of 0.3
(meaning at least 30% of individuals who carried qualifying
variants developed the condition). It is important to note that we
required the PPV to be above this threshold for both cohorts,
indicating that the predictive power of the genetic association is
applicable across different health systems, population demo-
graphics, and countries. Additionally, the ORs for these associa-
tions were all >4 in both cohorts, indicating a substantial increase
in risk. As expected, some of the statistically significant associa-
tions that meet or exceed this threshold cover gene–disease
relationships that are already tested in existing population
screening programs: BRCA1 and BRCA2 with breast cancer (BRCA1
p= 8.77×10-28, OR= 14.2; BRCA2 p= 3.96×10-45, OR= 8.5), and
LDLR with coronary atherosclerosis (p = 1.46×10-12, OR= 17.5).
Additionally, we observed several statistically significant associa-
tions that have just as strong or stronger PPVs than these
conditions, including LoF variants in HBB with hemoglobinopa-
thies (p = 1.91×10-129, OR= 197.2), LoF variants in PKD1 and with
cystic kidney disease (p= 4.54×10-48, OR= 78.5), coding variants
in GCK with diabetes mellitus (p= 1.46×10-33, OR= 11.3), and
coding variants in MIP with cataracts (p= 1.56×10-10, OR= 4.6)
(Table 2 and Fig. 1). The remaining significant associations have
PPV <0.3 and would have more limited utility if communicated to
patients under this paradigm (Table 2 and Table S1).
Importantly, each high-PPV gene–disease association identified

here is actionable at some level, further supporting their suitability
for inclusion in population screening programs. While some of the
conditions have clearly established preventive guidelines based
on genetics, all would benefit from earlier diagnosis. Since genetic
screening for highly penetrant conditions can lead to a more
accurate diagnosis, the resulting medical management guidelines
for the patients are likely to be improved. For example, treatment
recommendations for maturity onset diabetes of the young
(MODY) vary depending on the genetic status of the patient.
Individuals who have a GCK variant generally do not need
treatment and can benefit from a reduced need for surveillance so
long as any hyperglycemia remains the mild fasting hyperglyce-
mia typically seen with GCK. Clinical actionability, medical
management, surveillance methods, and genetics-dependent care
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pathways are summarized for these associations in Table 3 and
discussed further below.
Overall, we find seven associations with high PPV, four of which

would be novel for population screening and warrant examination
in additional cohorts to quantify suitability of screening in more
genetically diverse populations, how well population screening
can catch the conditions early and change disease course, and the
resulting economic impact.

DISCUSSION
Genetic screening programs that prospectively identify individuals
who are likely to develop conditions that are treatable or
preventable through medical interventions, especially when
detected before disease onset or early in the disease course,
could make substantial improvements to individual and public
health. Rare variants that can be identified as causing common
diseases in population-level analyses are the natural candidates
for population screening programs due to their relatively high

penetrance and prevalence. Here, we find that when conditions
identified from gene-based collapsing analyses of rare variants
consistently have a penetrance of at least 30% (PPV ≥0.3), they
have properties that make them excellent candidates for
population screening programs (Table 3). Our analysis identified
seven such conditions. Four of these—coding variants in GCK with
diabetes mellitus, LoF variants in HBB with hemoglobinopathies,
LoF variants in PKD1 with cystic kidney disease, and coding
variants in MIP with cataracts—are novel conditions for population
screening. It is notable that these four associations have a PPV as
high or higher than the other three associations we identified,
which are already used in population screening programs: LoF
variants in BRCA1 and BRCA2 with HBOC and LoF variants in LDLR
with atherosclerosis. These associations all represent genetically
driven subsets of common, complex diseases that are in line with
recommended guidelines for population screening and present
opportunities for precision medicine at scale (Table 3) [2]. We
briefly discuss each association below and the potential benefits

Table 2. Population-level significant rare variant gene–disease (p < 1x10−9) associations.

Gene Model Phenotype P value OR PPV ≥0.3 in both
cohorts

Age 60+ All ages

HBB LoF Other hemoglobinopathies 1.91E-129 197.2 + +

PKD1 LoF Cystic kidney disease 4.54E-48 78.5 b +

GCK Coding Type 2 diabetes 1.46E-33 11.3 + +

LDLR LoF Coronary atherosclerosisa 1.46E-12 17.5 + +

BRCA2 LoF Malignant neoplasm of female breasta 3.96E-45 8.5 + -

BRCA1 LoF Malignant neoplasm of female breasta 8.77E-28 14.2 + -

MIP Coding Cataract 1.56E-10 4.6 + -

JAK2 Coding Myeloproliferative diseasea 6.41E-62 7.6 - -

COL4A4 LoF Hematuria 8.96E-23 4.6 - -

TTN LoF Atrial fibrillation and fluttera 1.91E-17 1.8 - -

MSH6 LoF Malignant neoplasm of uterus 2.11E-17 19.6 - -

MYBPC3 LoF Other hypertrophic cardiomyopathy 5.07E-17 70.2 - -

IFT140 LoF Cyst of kidney, acquired 3.81E-16 10.2 - -

NF1 LoF Other benign neoplasm of connective and other soft tissue 1.25E-15 14.9 - -

PKD2 Coding Cystic kidney disease 1.85E-15 3.9 - -

TET2 LoF Neutropeniaa 2.34E-15 4.8 - -

VWF Coding Von Willebrand disease 2.77E-15 6.7 - -

SF3B1 Coding Myeloproliferative disease 4.21E-13 13 - -

CDKN2A Coding Melanomas of skin 5.57E-13 10.2 - -

TSHR Coding Hypothyroidism not otherwise specified 1.52E-12 1.9 - -

PALB2 LoF Malignant neoplasm of female breast 8.22E-12 5.0 - -

ASXL1 LoF Myeloproliferative disease 9.75E-12 13.0 - -

PROC Coding Phlebitis and thrombophlebitisa 1.35E-11 4.9 - -

ATM LoF Malignant neoplasm of female breast 2.49E-11 4.9 - -

SLC22A12 Coding Gout 4.86E-11 0.1 - -

MLH1 LoF Colon cancer 1.54E-10 240.7 - -

SLC4A1 Coding Other hereditary hemolytic anemias 1.99E-10 19.8 - -

LoF loss of function, OR odds ratio, PPV positive predictive value.
aA significant association was also found with another phenotype with a PPV that was higher than that for the main phenotype, but it was not a clinical
endpoint of main interest (for example, acquired absence of breast for BRCA1/2, or hypercholesterolemia for LDLR). For full details, see Table S1. bThe PPV was
>0.3 at age 60+ in UKB, but all 6 HNP PKD1 LoF heterozygotes with cystic kidney disease were aged <60.
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of returning rare variant screening results to relevant individuals
given current clinical knowledge and practice.

GCK and type 2 diabetes
While often misclassified as type 2 diabetes (T2D), individuals with
GCK variants typically have mild but stable fasting hyperglycemia
and do not develop the microvascular complications typical of T2D
[21]. The significant association (p = 1.46×10-33) and high PPV (0.5)
we observe between GCK rare coding variants and T2D corroborates
the misclassification of these cases seen in other studies, including
ours [22]. Returning GCK results to relevant heterozygotes is
actionable as it can help their health-care provider tailor the care
they receive and set realistic goals for their glucose levels, which are
unlikely to fall into the normal range regardless of lifestyle changes.
With building evidence for no effect of oral or insulin treatment on
glucose levels in GCK heterozygotes with mild hyperglycemia,
identifying and terminating pharmaceutical treatments in these
patients could lead to substantial lifestyle improvements and cost
savings [23].
While GCK heterozygotes generally do not have problematic

clinical outcomes for T2D, they are known to be at increased risk
for developing gestational diabetes and are advised to be closely
monitored during pregnancy [24]. Our analysis also identified a
significant association between rare coding variants in GCK and
gestational diabetes (Table S1), but the PPV did not pass our 0.3
cutoff (0.17 in HNP and 0.09 in UKB) because our main analysis for
this trait included all females and was not restricted to pregnant
females. However, when we limit our association analysis to
include only females with pregnancy phenotypes in their medical
records, we see the PPV for gestational diabetes rise to 1.0 for HNP

and 0.75 for UKB (respectively, 0 of 2,363 and 2 of 10,555 pregnant
females without gestational diabetes were heterozygous for
qualifying GCK variants), suggesting this may indeed be a genetic
condition worthy of prepregnancy population screening. In
particular, identifying whether the fetus has inherited a GCK
variant from either the mother or father can be important for
tailoring care during pregnancy: in a pregnancy where the fetus
has a GCK variant, hyperglycemia in the mother should usually not
be treated as it can lead to dangerously low birthweight, while
treatment with insulin is more likely to be indicated if the fetus did
not inherit the GCK variant [24].

PKD1 and chronic kidney disease
Autosomal dominant polycystic kidney disease (ADPKD, caused by
variants in PKD1 and PKD2) is the most common inherited kidney
disorder, is the fourth leading cause of chronic kidney disease, and
is often not diagnosed until later stages of the disease [25]. While
there is currently no cure for ADPKD, early detection of ADPKD can
provide the opportunity to treat comorbidities such as early onset
hypertension, cardiovascular complications, and cyst infections,
and kidney disease progression can potentially be slowed with
pharmaceutical intervention [26]. Genetic screening programs that
include PKD1 could help detect cases earlier and prioritize these
patients for total kidney volume (TKV) measurements in addition
to the more typical estimated glomerular filtration rate (eGFR)
surveillance for better monitoring of disease progression.
In addition to the association seen with PKD1, we also saw a

significant association between the related gene PKD2 and cystic
kidney disease (CKD) (Table 2). This coding model association had
a lower PPV (OR= 12.5; PPV= 0.03), compared to that of the PKD1
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LoF model (OR= 292; PPV= 0.44). Further investigation of the
data sets revealed that LoF variants in PKD2 had a PPV of 0.5 in
UKB (OR= 490; p value 2.5×10-42) but had not been included in
the analysis because there were only 4 individuals with variants
in total in HNP (OR~61; PPV= 0.5). Despite the similar effect sizes
between LoF variants in PKD1 and PKD2, LoF variants in PKD2
occurred in only 0.02% and 0.01% of the UKB and HNP
populations, respectively, compared to 0.03% and 0.06% for
PKD1. With the HNP study continuing to enroll more participants,
we will likely see additional individuals with a PKD2 variant and
CKD, which would likely revise this screening recommendation to
include both PKD1 and PKD2 for CKD.

HBB and hemoglobinopathies
Rare variants in HBB cause the recessive hemoglobinopathy β-
thalassemia major, which is quite severe and presents early in life
[27]. The statistically significant, dominant association between
HBB rare variants and hemoglobinopathies and the high PPV (0.55,
Table 3) found in our cohorts are driven by a mixture of some
individuals who may have β-thalassemia intermedia, a less severe
form of the disease that is sometimes inherited in a dominant
fashion, and many individuals with β-thalassemia minor, who are
generally asymptomatic but often have mild anemia [28, 29].
Individuals with β-thalassemia minor are often misdiagnosed as

having iron deficiency anemia. In our study, 30% of HBB LoF
heterozygotes with a thalassemia diagnosis and 16% of hetero-
zygotes without a thalassemia diagnosis had a diagnosis of iron
deficiency anemia, driving a statistically significant association
with this trait (Table S1; compared to only 6% of those without a
HBB LoF variant). Furthermore, 12% of HBB LoF heterozygotes
reported taking iron supplements, compared to 3% of those
without HBB LoF variants. Medical records indicated hemochro-
matosis in 1.6% of HBB LoF heterozygotes vs. 0.4% of those
without HBB LoF variants, 2.4% vs. 0.007% had hepatic fibrosis,
and 2.2% vs. 0.3% had nonalcoholic cirrhosis, indicating that
complications of iron overload can be a concern for HBB LoF
heterozygotes. Additionally, the bloodwork available for members
of these cohorts showed that 100% of the HBB LoF heterozygotes,
regardless of thalassemia diagnosis status, had red blood cell
(RBC) microcytosis (mean corpuscular volume [MCV] <80 μm [3];
compared to 6% of those without LoF variants), indicating that
many individuals with β-thalassemia minor may remain undiag-
nosed in these cohorts. For individuals with β-thalassemia
intermedia, common complications include extensive iron over-
load in many tissues through increased intestinal absorption, as
well as marked and progressive osteoporosis [27]. Not only can
the diagnosis of thalassemia be directly confirmed via blood tests,
but many screenings and treatments also exist to avoid or
mitigate the phenotypic complications, including bone density
scans, blood tests to assess iron overload, blood transfusions,
splenectomy, folic acid supplementation, and iron chelation
therapies [30, 31]. Early detection of HBB LoF heterozygotes is
useful for reproductive planning and for helping physicians tailor
treatment when considering the cause of the patient’s anemia. In
our study, only 29% of cases with HBB LoF variants with age of
diagnosis available had been diagnosed as children, indicating
that genetic screening of adults for this condition may be
warranted.

MIP and cataract
While previous studies have implicated MIP variants in rare,
familial, congenital cataracts, our results provide evidence for a
more general role of MIP in cataracts [32–34]. The median age of
cataract diagnosis in our study of adults was 61. Returning these
genetic results at an earlier age provides an opportunity for
health-care providers to encourage or even facilitate underutilized
cataract screening and promote possible prevention strategies

such as limiting UV exposure. The added risk may encourage
yearly eye exams, as well as safe and effective routine surgery, for
those at higher than average risk based on their genetics [35].
Cataract screening is typically performed as part of a routine eye
exam, but relatively few Americans keep up with this practice. In a
survey of the eye care usage trends of nearly 300,000 adults from
1997 to 2005, eye care utilization rates in the 12 months prior to
survey for those older than 65, a group who not only receive
coverage for an annual eye exam through Medicare but are also
the most likely to harbor an eye condition like cataracts, ranged
from 50% to 65% [35]. In addition to personal utility, the timely
treatment of cataracts can also have societal benefits. Cataract
surgery was recently associated with a 61% reduction in car crash
frequency in a cohort of nearly 3,000 drivers aged 60 and above
who underwent cataract surgery over the course of the study
period [36]. On a broader scale, a deeper understanding of this
genetic association has the potential to guide the development of
pharmaceuticals that may slow or even reverse cataract disease
progression [37, 38].

Population-level clinical impact and future directions
When combining together the variant frequencies for all
associations above our 0.3 PPV threshold, we find that population
screening for these conditions could impact up to 1% of program
participants (Table 3). Reassuringly, we identify genes (BRCA1,
BRCA2, and LDLR) that are typically included in existing population
health programs, which themselves account for more than half of
the potential impact (0.47–0.73% of individuals have relevant
variants in UKB and HNP, respectively). However, the inclusion of
HBB, GCK, PDK1, and MIP in the same programs would reach an
additional 0.19–0.36% of participants in each population (for UKB
and HNP, respectively; this value will also differ by population,
especially for HBB).
Recent economic evaluations have revealed that, in addition to

personal utility, genetic screening programs are cost effective for
payers, especially when performed earlier in life [39, 40]. Because
all of the conditions identified here have evidence of improved
outcomes when early actions are taken (Table 3), and given that
there is a net increase in findings with the same amount of work at
the population level (a single assay can just as easily screen one or
all human genes), it is likely that the addition of these four
conditions with the same or better PPV as existing population
screening genes would only improve the cost effectiveness and
overall economic benefit of a genetic screening program.
However, additional work is still required by official clinical bodies
to both evaluate the health economics of early intervention for
these conditions and to translate these findings from research into
clinical practice through official guidelines. In particular, guidelines
will be needed to determine the type and frequency of screening
modalities that will be needed for individuals who harbor risk
alleles for these conditions. It is also important to include genetic
counselors as a part of the return of results process and provide
educational materials for all health-care providers involved in the
communication of results. Therefore, the next step to expand the
boundary of genomics in medicine is the creation, evaluation,
and/or refinement of clinical guidelines based on genetics for
these conditions.
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