
TYPE Original Research

PUBLISHED 29 July 2022

DOI 10.3389/fcvm.2022.926965

OPEN ACCESS

EDITED BY

Dimpna Calila Albert-Brotons,

King Faisal Specialist Hospital &

Research Centre, Saudi Arabia

REVIEWED BY

Igor Victorovich Lakhno,

V. N. Karazin Kharkiv National

University, Ukraine

Marius Keute,

University Hospital Magdeburg,

Germany

*CORRESPONDENCE

Mohanad Alkhodari

mohanad.alkhodari@ku.ac.ae

Ahsan H. Khandoker

ahsan.khandoker@ku.ac.ae

SPECIALTY SECTION

This article was submitted to

Pediatric Cardiology,

a section of the journal

Frontiers in Cardiovascular Medicine

RECEIVED 23 April 2022

ACCEPTED 29 June 2022

PUBLISHED 29 July 2022

CITATION

Alkhodari M, Widatalla N, Wahbah M, Al

Sakaji R, Funamoto K, Krishnan A,

Kimura Y and Khandoker AH (2022)

Deep learning identifies cardiac

coupling between mother and fetus

during gestation.

Front. Cardiovasc. Med. 9:926965.

doi: 10.3389/fcvm.2022.926965

COPYRIGHT

© 2022 Alkhodari, Widatalla, Wahbah,

Al Sakaji, Funamoto, Krishnan, Kimura

and Khandoker. This is an open-access

article distributed under the terms of

the Creative Commons Attribution

License (CC BY). The use, distribution

or reproduction in other forums is

permitted, provided the original

author(s) and the copyright owner(s)

are credited and that the original

publication in this journal is cited, in

accordance with accepted academic

practice. No use, distribution or

reproduction is permitted which does

not comply with these terms.

Deep learning identifies cardiac
coupling between mother and
fetus during gestation

Mohanad Alkhodari1*, Namareq Widatalla2, Maisam Wahbah1,

Raghad Al Sakaji1, Kiyoe Funamoto1, Anita Krishnan3,

Yoshitaka Kimura4 and Ahsan H. Khandoker1*

1Department of Biomedical Engineering, Healthcare Engineering Innovation Center,

Khalifa University, Abu Dhabi, United Arab Emirates, 2Graduate School of Biomedical Engineering,

Tohoku University, Sendai, Japan, 3Division of Cardiology, Children’s National Hospital, Washington,

DC, United States, 4Department of Maternal and Child Health Care Medical Science, Tohoku

University Graduate School of Medicine, Sendai, Japan

In the last two decades, stillbirth has caused around 2 million fetal deaths

worldwide. Although current ultrasound tools are reliably used for the

assessment of fetal growth during pregnancy, it still raises safety issues on the

fetus, requires skilled providers, and has economic concerns in less developed

countries. Here, we propose deep coherence, a novel artificial intelligence

(AI) approach that relies on 1 min non-invasive electrocardiography (ECG)

to explain the association between maternal and fetal heartbeats during

pregnancy.We validated the performance of this approach using a trained deep

learning tool on a total of 941 one minute maternal-fetal R-peaks segments

collected from 172 pregnant women (20–40 weeks). The high accuracy

achieved by the tool (90%) in identifying coupling scenarios demonstrated

the potential of using AI as a monitoring tool for frequent evaluation of fetal

development. The interpretability of deep learning was significant in explaining

synchronization mechanisms between the maternal and fetal heartbeats. This

study could potentially pave the way toward the integration of automated

deep learning tools in clinical practice to provide timely and continuous

fetal monitoring while reducing triage, side-e�ects, and costs associated with

current clinical devices.

KEYWORDS

fetal cardiology, maternal-fetal coupling, phase coherence, electrocardiography,
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1. Introduction

Assessment of fetal wellbeing during pregnancy is of a high importance in ensuring

the delivery of a healthy offspring. fetal health monitoring during pregnancy can help

in reducing complications associated with asphyxia-mediated damages and in-utero

deaths, as it assures regular physiological and psychological development of the fetus

throughout trimesters and safe delivery of the mother (1). Globally, it is estimated that

more than 2 million babies were stillborn at 28 weeks or more of gestation with a rate of
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13.9 stillbirths in every 1,000 births (2). In addition, around

295,000 women died during or after giving a childbirth, where

the majority of these deaths (94%) could have been prevented if

resources were available (3).

The neurological system of the fetal develops steadily

throughout the first, second, and third trimesters of pregnancy

(4). The spinal cord synapses start growing first during week 7,

where the electrical activity in the brain begins to take place

to support spontaneous movements. By the end of the first

trimester and more toward the second trimester, involuntary

movements like yawning and sucking and other coordinated

movements get more visible in ultrasound as the fetal brain

continues to develop on weekly basis. The first glance of vital

function controls like heart rate and breathing does not appear

until the end of the second trimester with the development of

the brainstem. Additionally, the cerebral cortex develops by the

third trimester giving support to voluntary actions like thinking

and feeling, and it develops even further toward the end of

pregnancy with motor skills and senses (5, 6).

Currently, ultrasound-based tools are the most commonly

used techniques for fetal growth evaluation, biophysical

development assessment, and cardiovascular function

monitoring (7). However, despite of its reliability and

safety, ultrasound relies on the use of acoustic waves in a

form of energy that could potentially cause biological effects

on the fetus especially when frequent tests are performed

(8). In addition, ultrasound requires expensive equipment,

highly-skilled technicians, and strong clinical experience, which

could raise economic concerns in less developed countries

(9). Alongside ultrasound, fetal phonocardiography (PCG) is

another common technique for the evaluation of fetal heart

function (10). It relies on the auscultation of fetal heart beat

sounds non-invasively using a microphone transducer placed

on the mother’s abdomen (11–13). Although it allows for

long-term fetal heart rate measurements, it still does not provide

a clinically complete diagnosis due to its noisy nature, high

dependency on transducer placement and data acquisition

techniques, and non-linear transmission medium for sound

waves (14).

Most recently, fetal heart rate and cardiac rhythm

monitoring through non-invasive low-cost electrocardiography

(ECG) has been widely studied in literature (15–17) to assess

fetal wellbeing during pregnancy. It is considered as a non-

invasive signal acquisition technique that requires only proper

localization of electrodes on the mother’s abdomen (18). Upon

accurate separation of maternal and fetal ECG waveforms from

the abdominal ECG, maternal and fetal heart rate and heart

rate variability information can be calculated through detection

of R-peaks sequences. The assessment of fetal neurological

development can be carried out by analysis of fetal behavioral

states and heart rate variability. Heart rate variability was found

to grow with pregnancy weeks (19, 20), and coupling between

fetal movement and heart rate variability was found to increase

with gestational age (21). It was found that fetal motor activity

got affected by maternal skin conductance and heart rates, as

skin conductance was regarded as an indicator of a sympathetic

activation (22). Additionally, it was found in previous studies

(23, 24) that the parasympathetic nerves are not involved in the

low frequency component of fetal heart rate variability, as they

develop by the 18th gestational week. In addition, it was found

that the sympathetic nerves, which develops by the 20th week

of pregnancy causes the rapid increase in low frequency

power. However, due to maternal influence on fetal heart rate

variability, it is important to integrate maternal condition within

the assessment of fetal neurological maturation (25).

During fetal cardiac cycle, the inferior vena cava allows the

blood to enter the heart of the fetus. This behavior may cause

maternal information such as psychological and physiological

conditions to influence fetal cardiac rhythms, and thus, affect

the development of fetal heart during pregnancy. Many studies

have been carried in literature to investigate this mechanism

and identify matching characteristics in maternal-fetal cardiac

interactions. For example, several studies have reported a strong

association between maternal physio-psychological states with

fetal heart rates throughout gestation (26–28). An increased

maternal stress was found to cause an elevation in the heart

rate of the fetus (29, 30), whereas a decreased heart rate

was found in synchrony with a decreased maternal heart

rate during nocturnal activities (31, 32). In addition, maternal

exercise that results in an overall increase in maternal heart

rate causes hypoxia in the fetus (33). Maternal respiration was

found to cause alterations in the synchronization (34, 35),

as fast breathing induces the maternal-fetal coupling, while

reduced breathing results in higher vagal tone and beat-to-beat

differences that reduce this coupling phenomena. Therefore,

it is hypothesized that the oscillatory rhythm of maternal

respiration is the driving force behind these interactions

and the maternal cardiac system affects directly fetal heart

rhythms with an acoustic stimulus effect. Moreover, it was

found that maternal sleep positioning and patterns significantly

impact fetal heart rate and cardiac cycle (32, 36, 37). This

correlation between maternal and fetal heart rhythms strongly

suggests the possibility of having a hidden maternal-fetal

coupling mechanism between their cardiac systems (34, 38),

as it is found that fetal suprachiasmatic nucleus could play

a pivotal role in transferring maternal cardiac information

to the heart of the fetus (39). However, many specific

mechanisms leading to this coupling are still unexplained and

require further quantification using advanced signal and data

analysis techniques.

Conventional analysis techniques for the maternal-fetal

cardiac coupling through ECG highlighted the use of phase

locking (34), partial directed coherence (PDC) (27), transfer

entropy (26, 40), additive auto-regressive processes (41), partial

rank correlation (42), and bi-variate phase-rectified averaging

(43). An epoch of synchronization was observed in the
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majority of these studies as a consistent influence of the

maternal heartbeats preceding fetal heartbeats. However, there

is still a lack of knowledge of an accurate and comprehensive

representation of the coupling mechanism, especially with

the necessity of applying extra mathematical derivations in

current techniques, i.e., phase calculations, to quantify the

coupling, which could lead to bias in the observations

according to the used method and the type or quality of

input data.

In this study, we propose the analysis of cardiac coupling

between maternal and fetal heartbeats through deep learning.

A deep learning model trained directly on the raw ECG

information could potentially explain this relationship without

the need of any mathematical derivations or pre-processing

steps. To the best of our knowledge, this is the first

study to use an artificial intelligence (AI)-based approach to

explain the correlation between mother and fetus heartbeats

during gestation from a trained machine perspective. AI

FIGURE 1

Overview of the proposed approach for maternal-fetal cardiac coupling analysis using deep learning. (A) The procedure started by acquiring

abdominal electrocardiography (ECG) recording from the pregnant patient enrolled at the hospital/clinic. The method proceeded by splitting

the contaminated maternal-fetal signals and detecting their corresponding R-peaks locations. (B) The second step was arranging the input to

per-minute segments of the maternal/fetal combined heartbeats array and feeding it to a two-block convolutional neural network (CNN). (C)

The deep learning model was trained on predicting per-minute cardiac coupling scenarios ([1:2], [2:3], or [3:5]). In addition, it allowed for

extracting attention to such coupling in a form of a continuous signal using the gradient-weighted class activation mapping (Grad-CAM)

technique. We compared deep learning predictions and attentions vs. the ground-truth label (assigned using phase-occurrence counting) and

its corresponding phase coherence strength (λp) (see Section 4). (D) Deep learning allows for explaining the decisions by interpreting an overall

attention heatmap image which shows the variations of cardiac coupling strength with time. A zoomed-in heatmap allows for observing

patterns between maternal and fetal ECG signals alongside their corresponding R-peaks. We show the original prevalence (%) of each coupling

scenario in the 2–3 minutes time interval (deep learning prediction was [1:2]).
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has been widely used in understanding and resolving many

health conditions including cardiovascular-related diseases

(44), and deep learning could be a promising approach to

reduce the current uncertainties in evaluating the maternal-

fetal coupling. We test the reliability of our approach,

named deep coherence, by comparing it to a conventional

coupling analysis technique, the phase coherence method

and its corresponding phase coherence index (λp) (45, 46).

Our proposed approach ensures several advances relative

to previous works. We do not apply any mathematical

derivations, pre-processing steps, or signal transformations

to the input data. Instead, we let our deep learning model

learn freely from the raw ECG information and establish its

own learned parameters with regard to coupling scenarios.

In addition, we extend the benefits of using deep learning

by interpreting these learned parameters to derive the

knowledge on coupling decisions in a form of explainable

attention heatmaps that mimics the human perception in

identifying distinguishable characteristics. Lastly, we minimize

the duration needed for ECG recordings to 1 min only, which

could potentially reduce the bulkiness of the clinical data

acquisition protocols and heavily diminish the need for huge

computational demands.

2. Results

2.1. Preparation of input data

Our approach (Figure 1A) starts with minimal data

preparation before proceeding with further deep learning

analysis. After acquiring abdominal ECG recordings from

the enrolled patient, we split the contaminated maternal

and fetal signals. Then, we divided each signal (if more

than 5 min in length) and its corresponding annotations

into shorter 1 min segments (will be merged back at a

later stage). To identify the prevalence (in percentage) of

various coupling scenarios, we relied on phase-occurrence

calculations (see Section 5) between maternal and fetal R-

peaks annotations. Such technique is simply an R-peak

counting approach based on the various coupling scenarios.

Accordingly, we assigned a ground-truth label for each

maternal-fetal segment, which was the most prevalent coupling

scenario in the segment. The majority (>87%) of assigned

coupling labels corresponded to ratios of [1:2], [2:3], and

[3:5], therefore, we have selected their corresponding signals

as the only data used for analysis in this study. We then

split the input data as training set (n = 721 segments) and

completely-hidden local testing set (n = 152 segments) for deep

learning. In addition, we used maternal-fetal ECG data from

PhysioNet databases (n = 68 segments) for extra validation

(see Section 5). T
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2.2. Patient characteristics analysis

After segmenting the original patient data and assigning

proper ground-truth labels, we have statistically analyzed three

demographical information with each coupling scenario in

the training and the local testing sets (Table 1). Patients’ age,

gestational age, and body mass index (BMI) information were

statistically analyzed using a one-way analysis of variance

(ANOVA) test, where a significant different was observed if the

p-value was less than 0.05.

In the training set, all mothers were below 40 years old. A

significant difference (p-value<0.001) was observed in maternal

age especially with the [2:3] coupling scenario that had the

lowest median of age (26 years old). In contrast, [2:3] coupling

samples had higher gestational age inter-quartile range (IQR) of

29.66–36.12 weeks (p <0.001) compared to the other coupling

scenarios. It is worth noting that [1:2] and [3:5] had close IQR

values in both maternal age and gestational age, thus, they had

no significant difference observations. In maternal body mass

index (BMI), the lowest median values were in the [1:2] coupling

scenario (22.34 kg/m2) that were statistically significant (p

<0.001) from the [2:3] and [3:5] scenarios.

The local testing set had significant differences in gestational

age and maternal age only, with p-values of 0.010 and 0.028,

respectively. Similarly to the training set, [2:3] coupling scenario

had the highest median of gestational weeks (34.55 weeks) and

[1:2] coupling scenario had the highest IQR in maternal age

with 30.78–37.55 years. Moreover, maternal BMI was not found

significant between the three coupling scenarios, as they had

roughly a median range of 23.78–23.07.

When combining both sets altogether, the three

demographical information were found significant. The

[2:3] coupling scenario remained the lowest and highest in

terms of median maternal age and gestational age, respectively.

Similar to the training set, [3:5] coupling had the lowest median

gestational age of 27.20, while the highest median maternal

age was for the [1:2] coupling scenario with 33.00. In the BMI

variable, the [1:2] coupling had the lowest median value, which

made it significantly different from both of the other coupling

scenarios.

2.3. Deep learning prediction of coupling
scenarios

We tested the ability to discriminate between the three

coupling scenarios by training a complete deep learning model

(Figure 1B). The model was trained on extracting adaptive

features from the raw R-peaks locations of the maternal and

fetal ECGs. We designed the model to be as simple as possible

[two convolutional neural networks (CNN) blocks] to reduce the

computational demand while at the same time maintain high

levels of performance (47) (see Section 5). In addition, CNNs

provide stable gradients and allows for a better control over the

receptive field size and memory.

We validated the trained model initially on the training

set through a leave-one-out (LOO) cross-validation mechanism

(Figure 2A, top row). The model had an overall accuracy of

90.6% in predicting the three coupling scenarios. In addition,

the model had high sensitivity in predicting the [1:2] coupling

scenario with 95.7%. The lowest precision value was for [3:5]

coupling (74.7%) which could be due to similarities found

between the [1:2] and [3:5] coupling scenarios from the model’s

perspective. The area under the receiver operating characteristic

(AUROC) was relatively high for the three classes of at least

0.930 (Figure 2A, bottom row). Furthermore, the prediction of

the three classes had high confidence with intervals less/more

than 0.01.

Then, we tested the model on the completely-hidden local

testing set to ensuremore validity of the proposed approach. The

model achieved a 90.1% accuracy level with close sensitivity and

precisionmeasures to the training set predictions (Figure 2B, top

row). Moreover, the AUROC had slightly higher values with at

least 0.959 (Figure 2B, bottom row).

Lastly, we have evaluated the model on the PhysioNet testing

set to check the performance on an external patient cohort

(Figure 2C, top row). The accuracy in discriminating the three

coupling scenarios was closely similar to that in the training and

testing sets (89.7%). The prediction of [1:2] had a 100% precision

and 95% sensitivity, which was higher than the other two classes.

The AUROC exhibited close performance with at least 0.908

(Figure 2C, bottom row).

2.4. Explaining maternal-fetal cardiac
coupling

Training a deep learning model using CNN for the purpose

of cardiac coupling prediction allows for extracting additional

attention-based information about the decisions, which

transforms the regular black-box train-predict mechanism to an

explainable and informative approach. We take the advantage

of CNN in extracting unique patterns based on the decisions

of the network to obtain machine-based understanding of the

maternal-fetal cardiac coupling. Therefore, we assessed the

three coupling scenarios (Figure 3) to extract deep coherence

from the trained model and compared it with the commonly

used phase coherence (λp) (45, 46).

We first identified the phase occurrence of each coupling

scenario (Figure 3A) and assigned a ground-truth label

accordingly. Then, we trained the model and compared its

predicted coupling scenarios vs. the original assigned label

(Figure 3B). We extended the analysis by extracting the

attention (deep coherence) to the predicted coupling scenarios

Frontiers inCardiovascularMedicine 05 frontiersin.org

https://doi.org/10.3389/fcvm.2022.926965
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org


Alkhodari et al. 10.3389/fcvm.2022.926965

FIGURE 2

Performance of the trained deep learning model in predicting the three coupling scenarios including confusion matrices (top row) and receiver

operating characteristics (ROC) curves (bottom row). (A) Training set. (B) Local testing set. (C) PhysioNet testing set. In the confusion matrix, the

bottom row shows the sensitivity, right column shows the precision, and bottom-right corner the overall accuracy. Each of the ROC curves

includes a shaded region to represent the 95% confidence interval (CI). A zoomed-in view of the ROC curves shows the interval of more than

50% specificity.

for each 1 min maternal-fetal R-peaks segment (Figure 3C) and

compared it with the λp metric. The attention was extracted

using the gradient-weighted class activation mapping (Grad-

CAM) technique (48). Using this technique, the attention shows

the most important regions in the input that derived the model’s

prediction of a certain class, i.e., coupling scenario. Lastly,

we illustrated this attention (deep coherence) as an attention

heatmap to obtain unique patterns (vertical colored lines) for

every predicted coupling scenario (Figure 3D).

Although the model predicted almost all segments correctly,

it did not predict few segments due to the close prevalence

of the three coupling scenarios. For example, in Figure 3A left

column, the model failed to predict minute 4 and minute 9,

which have resulted in an accuracy of 80%. However, such

missed predictions could be due to the close prevalence of

phases in the three coupling scenarios ([1:2]: 68%, [2:3]: 65%,

and [3:5]: 62%), which does not necessarily mean that the

predictions were totally wrong. Similarly, this was repeated

in the third example (Figure 3, right column) at minute 3

between [1:2] and [3:5] coupling ([1:2]: 77% and [3:5]: 67%). The

deep coherence was closely following the same pattern of the

strength of phase coherence across minutes. The first scenario

shown in Figure 3C (left column) had a 0.128 root mean square

error (RMSE) although it had two miss-predicted segments.

Accordingly, the middle and right column examples had a 0.287

and 0.300 RMSE, respectively.

We extended the analysis by viewing the attention heatmaps

for each coupling scenario relative to the original maternal and

fetal ECG signals (Figure 4). The attention to the [1:2] coupling

scenario was narrower (vertical red lines) than the other two

scenarios (Figure 4A). In addition, the [2:3] coupling scenario

had wider attention (Figure 4B) which could imply detecting

more beats in both signals. In the [3:5] coupling scenario,

the heatmap showed an attention that is spread allover the

signals with less variability between high and low attentions

(Figure 4C). In general, as the number of R-peaks increases,

the heatmaps spread wider in terms of attention to those

R-peaks locations.
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FIGURE 3

Three examples of maternal-fetal coupling assessment through deep learning relative to the selected ground-truth method (phase-occurrence

counting and phase coherence (λp)). (A) Determining the ground-truth label using the phase-occurrence counting technique (see Section 4).

The values indicate the prevalence (%) of each coupling scenario, and the highest was assigned as the ground-truth label. (B) The predictions of

the trained deep learning model relative to the original label. (C) The extracted deep learning attention (deep coherence) using the

gradient-weighted class activation mapping (Grad-CAM) technique was considered as a representation of coupling strength relative to the

conventional phase coherence (λp). (D) An illustration of the coupling attention heatmap extracted from the deep learning model.

2.5. Analysis across the whole dataset

The averaged deep coherence and phase coherence across

each coupling scenario group showed strong agreements with

low levels of error (Figure 5A). For the [1:2] coupling, both

methods had a strength of coupling in the range of 0.6 to 0.8

with an RMSE of 0.165. The [2:3] coupling had the lowest

error (RMSE: 0.108) with a similar trend going through minutes

between deep learning and λp. The [3:5] coupling scenario had

a 0.187 error with a similar pattern during minutes 4–10 and

13–18. In general, deep coherence was stronger in reflecting the

coupling (in terms of amplitude).

The Bland-Altman plots (Figure 5B) explained the changes

in the average and difference in coupling between deep learning

and λp for each scenario. The [1:2], [2:3], and [3:5] coupling

scenarios had mean differences of 0.16±0.21, 0.06±0.24, and

0.03±0.39, respectively. All three scenarios had a linear fitting

that is positive (increasing) with respect to the average coupling

with the majority of points being within the range of twice of

the standard deviation. In addition, there was a bias toward

deep learning values due to having a positive mean in all

three scenarios, however, [1:2] had the highest positive mean

with 0.16.

With respect to gestational age (during 20–40 weeks), both

deep coherence and phase coherence had unique patterns that

were almost similar for [1:2] and [3:5] coupling scenarios

(Figures 5C,D). For [1:2] coupling, deep learning had a

decreasing trend throughout gestation (Figure 5C, left column)
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FIGURE 4

Three examples of coupling heatmaps extracted from the deep learning model using the gradient-weighted class activation mapping

(Grad-CAM) technique overlapped with maternal-fetal electrocardiography (ECG) signals. (A) correctly predicted [1:2] coupling 30 s segment.

(B) correctly predicted [2:3] coupling 30 s segment. (C) correctly predicted [3:5] coupling 30 s segment. The black boxes show a strong coupling

region for each scenario. The red boxes show a weak coupling region.

with a linear fitting correlation (R) of −0.173 and a p-value

of 0.002. Similarly, λp had a decreasing pattern with gestation

(Figure 5D, left column) with an R-value of −0.308 and p-

value of 0.001. In [2:3] coupling, the coupling was increasing

as gestation develops (R = 0.039) for deep learning (Figure 5C,

middle column), and it had the opposite decreasing pattern in

λp (R = −0.045) (Figure 5D, middle column). In both methods,

the fitting was not significant with 0.636 and 0.599, respectively.

Lastly, for [3:5] coupling, a significant linear fitting was observed

in both deep coherence (Figure 5C, right column) and phase

coherence (Figure 5D, right column) with p-values of 0.048

and 0.001, respectively. The coupling was decreasing in both

methods with respect to gestational age with R-values of−0.166

and −0.432 for deep learning and λp, respectively. It is worth

noting that smaller confidence intervals (CI) were observed for

deep learning compared with the conventional λp metric.

3. Discussion

In this study, we have investigated the reliability of using

deep learning in quantifying the synchronization between the

mother and fetus cardiac rhythms throughout gestation. To

the best of our knowledge, this is the first study to explore

the feasibility of utilizing deep learning for this purpose.

This comes with the knowledge that fetal cardiac changes

could be potentially driven by the maternal heart function.

Therefore, deep learning could play a pivotal role in explaining
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FIGURE 5

The averaged deep coherence and phase coherence (λp) values extracted from the whole dataset with additional evaluation with respect to

gestational age. (A) The overall deep coherence and phase coherence for coupling scenarios [1:2] (left column), [2:3] (middle column), and [3:5]

(right column). (B) Bland-Altman plots between the overall deep learning attention and λp signals. (C) Deep coherence relative to gestational age

in weeks. (D) Phase coherence relative to gestational age. The coupling-gestational age plots include the 95% confidence interval (CI) and

linearly fitted line characteristics.

these relationships numerically and visually as the pregnancy

progresses. Such analysis could guide the assessment of the

fetus from early gestation up to late gestation, and could highly

ease the monitoring of any abnormal behaviors as the heart of

the fetus continue to grow. Moreover, the integration of ECG-

based information alongside the commonly used ultrasound

tools would aid clinicians in providing timely and continuous

assessment of maternal-fetal cardiac correlation with less triage

and risks on the pregnant mother and fetus.

The assessment of fetal heart growth during pregnancy is

of a substantial importance in ensuring proper development of

their physical and psychological systems. In addition, this should

be provided in parallel with proper monitoring of the mother’s

cardiac changes during gestation, as it has been shown that they

highly affect the fetal cardiac system (26, 35). Our study has

demonstrated this correlation by effectively distinguishing three

coupling scenarios with three different ratios of maternal and

fetal heartbeats. Predictions of the pattern of synchronization

could be crucial in evaluating the linkage between maternal and

fetal hearts throughout gestation, which has been illustrated as

variation in the deep learning attention (deep coherence) to the

coupling scenario from week 20–40 (Figures 5C,D).

The prevalence of coupling scenarios within each 1 min

maternal-fetal R-peaks segment had high impact on the overall

accuracy of the trained model. Although the trained model had

almost 90% accuracy in predicting all sets, it had few miss-

predicted segments that showed close prevalence percentages

(almost 5%) between the three coupling scenarios (Figure 3B).

Where it was considered as a wrong prediction relative to the

assigned ground-truth label, it could be a correct prediction
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from the machine perspective. This comes with the knowledge

that the model was trained on high number of samples to best

differentiate between the three scenarios and to optimally select

the coupling representation within each segment. Additionally,

it could be less accurate to call a coupling representation only

by the highest count of maternal-fetal heartbeats, especially

with close prevalence values. In contrast, this was done in

deep learning through extraction of deeper features from both

maternal and fetal R-peak signals and after learning (during

training) from the information of the whole training set.

Our proposed deep coherence and its corresponding

Grad-CAM attention heatmaps could provide a more thorough

interpretation of the relationships between mother and fetus

heartbeats. This explanation mechanism of deep learning

decisions suggests unique patterns (as vertical colored

lines) of each coupling scenario that can be visualized for

each patient. This advantage is lacking from conventional

techniques, i.e., phase coherence, thus, it allows for extending

current assessment applications of fetal wellbeing throughout

gestation with direct overlap on the original ECG signals.

For example, we have observed patterns that include

thinner important regions (high coupling—red color) in

the [1:2] coupling scenario and get spread wider while

progressing to [2:3] and [3:5] coupling scenarios (Figure 4).

This could be illustrated as a one-to-one relationship in

[1:2] coupling which resulted in thin red colors, while wide

regions indicated the contribution of more parts within

the segment, i.e, more R-peaks. The ability to visualize

such difference through deep learning could potentially

facilitate new protocols in the evaluation of maternal-fetal

synchronization, especially in the presence of cardiovascular

diseases. Although other conventional techniques are highly

efficient in characterizing the coupling, deep learning could

provide more generalizability through learning patterns from

big data, Therefore, it could be a promising data-driven

approach that is comparable to conventional mathematical

techniques. In this study, we propose deep learning for the

first time for the purpose of maternal-fetal coupling analysis,

however, more testing under unusual cardiac situations should

be evaluated.

With regard to coupling behavior as the pregnancy develops,

our findings were close to what have been reported in

the literature (26, 49). Dividing the gestational age into

two periods less than or more than 30 weeks provides

better analysis of the attention and λp with respect to fetal

heart growth. In our findings (Figures 5C,D), both methods

showed a drop in the [1:2] coupling scenario going from

the first to the second gestational period, which is an

evidence on proper fetal cardiac development that reaches

higher heart rates than the maternal (50). Additionally, the

[2:3] coupling scenario with deep learning attention had an

increasing pattern with gestational age as an indication of

more fetal heart activity closer to late pregnancy, which

matches our previous findings (49). Interestingly, the [3:5]

coupling scenario had a significantly falling linear fit from

20 weeks up to 40 weeks. Such behavior could illustrate

reductions in the fetal heart rhythms as pregnancy develops

if they were high at the early gestational weeks, which might

be an approach to stabilize the heart function of the fetal

in late gestation.

Although our study showed a potential in explaining

maternal-fetal synchronization using deep learning, we would

like to highlight some limitations. We demonstrated the

potential of deep learning in discriminating between three

coupling scenarios, however, the dataset we used did not

include patients with maternal or fetal cardiac abnormalities.

Thus, it would be essential to explore the impact of heart

diseases on the model’s performance. In addition, our study

showed significant increasing or decreasing patterns of coupling

scenarios with respect to gestational age. A follow-up study

of the same patient from early to late pregnancy would boost

the findings on case-by-case analysis and could elaborate

more on patient-specific coupling mechanisms throughout

gestation. Furthermore, due to the limited knowledge in the

field and the lack of clinical data in the used dataset, the

coupling is still unclear relative to fetal behavioral states. Since

fetal activity affects fetal heart rate, it is expected that such

activity can influence the coupling. Therefore, the inclusion

of fetal behavioral states within the deep learning model may

strengthen the predictive ability during the assessment of fetal

neurological development.

Future work for this study would consider the inclusion

of larger sets of patients with emphasis on cardiovascular

diseased pregnant women. Moreover, a complete patient-by-

patient-based study throughout gestation would enhance the

understanding of coupling progression and fetal growth. Lastly,

our deep learning model could be expanded to include more

layers, which results in increased levels of learning from larger

input data.

4. Conclusion

Our study revealed detailed information on the coupling

between the mother and the fetus during gestation from a

trained machine perspective. Using a simple deep learning

model, we were able to effectively and significantly explain

the synchronization mechanism in three major beat-to-

beat coupling scenarios ([1:2], [2:3], and [3:5]). Our study

paves the way toward the integration of deep learning

tools in clinical settings alongside current ultrasound devices

to ensure timely and continuous fetal growth monitoring

while reducing any triage or side-effects on the mother or

her fetus.

Frontiers inCardiovascularMedicine 10 frontiersin.org

https://doi.org/10.3389/fcvm.2022.926965
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org


Alkhodari et al. 10.3389/fcvm.2022.926965

5. Methods

5.1. Dataset

5.1.1. Training and local testing sets

The training and local testing sets used in this study

included a total of 109 pregnant women (training: 74, testing:

35) recruited at the Children’s National Hospital, Washington,

United States (15 patients, 13.8%), Tohoku University Hospital,

Sendai, Japan (77 patients, 70.6%), and Kanagawa Children’s

Medical Center, Kanagawa, Japan (17 patients, 15.6%). All

women had no cardiovascular disorders and with healthy

fetal cardiac conditions. The acquisition protocol of abdominal

ECG signals was approved by Children’s National Hospital

Institutional Review Board (IRB) and Tohoku University (IRB:

2015-2-80-1 and 2020-1-951) with appropriate institutional

agreements. A written consent form was obtained from all

patients before participating in any data acquisitions. All

experiments were performed in accordance with relevant

guidelines and regulations of the Declaration of Helsinki.

Patients’ age was ranging between 20 and 45 years old and

had a gestational age range of 20–40 weeks. A data acquisition

device for abdominal ECG monitoring was used to bi-polar

record the signals from 12 electrodes placed on the mother’s

abdomen. The obtained signals were sampled at 1 kHz with a

16-bit resolution. Signals length for each participant was variable

but all were recorded for at least 1 min and at most 20 min.

All recordings were taken while the participant was lying in a

supine position.

Each abdominal ECG recording is a composite of maternal

signal, fetal signal, and noise. To separate these components, the

recording was filtered using a band-pass filer with a bandwidth

of 0.05–100 Hz and a notch filter to remove any powerline

interference noises (50/60 Hz) caused by electronic devices.

The fetal ECG signal was then separated from the composite

recording by employing a cancellation technique of the maternal

ECG signal as well as the technique of blind source separation

with reference (BSSR) (51, 52). After obtaining the extracted

fetal ECG signal, R-peak locations were detected by a custom-

made MATLAB routine program (49, 53).

5.1.2. PhysioNet testing set

PhysioNet testing sets were obtained from the abdominal

and direct fetal electrocardiogram (ADFE) database (54) and

the PhysioNet/Computing in Cardiology (CinC) 2013 challenge

(55).

The ADFE set included multi-channel ECG signals recorded

from five pregnant women (38–41 weeks of gestation)

at the Department of Obstetrics, Medical University of

Silesia, Katowice, Poland. All signals were recorded using a

KOMPOREL system (ITAM Institute, Zabrze, Poland) of four

electrodes located around the navel alongside a reference spiral

electrode for direct scalp fetal ECG recording. Signals (5 min

long) were sampled at a rate of 1 kHz and a resolution of 16-

bit. All R-peaks locations were annotated from the direct fetal

ECG signal using the KOMPOREL system and verified at a later

stage by a group of cardiologists.

On the other hand, PhysioNet/CinC challenge set included

75 abdominal ECG recordings (training set ’a’ and extended

’a’) obtained from multiple resources. All signals were recorded

for 1 min and sampled with 1 kHz sampling rate. The R-peaks

annotations were provided as part of the challenge, as they were

acquired from a direct scalp fetal ECG signal.

In both sets, fetal R-peaks annotations were provided,

however, maternal R-peak locations were missing. Therefore,

we performed R-peaks detection on all abdominal ECG signals

considering that the maternal R-peaks are stronger in amplitude

and easily detectable from the signals. The detection was

performed using the famous Pan-Tompkins algorithm in

MATLAB (56).

5.2. Segmentation and ground-truth
labeling

All ECG signals (maternal and fetal) alongside their

corresponding R-peaks annotations were initially segmented

into 1 min segments. This resulted in a total of 802 segments

in the training set, 175 segments in the local testing set, and

78 segments in the PhysioNet testing set. In each segment,

prevalence percentages of different coupling scenarios between

maternal and fetal R-peaks annotations were determined

through a phase-occurrence calculations approach (57).

In this approach, we calculated the occurrence of coupling

ratios relative to maternal heartbeats. Accordingly, ratios were

calculated by first counting the number of fetal beats occurring

per one, two, and three maternal beats intervals. A one maternal

beat was considered to be the interval located between the

first maternal R-peak and the second maternal R-peak. Two

maternal beats were considered to be the interval between the

first R-peak and the third R-peak. Three maternal beats were

considered as the interval from the first R-peak and fourth R-

peak. Fetal beats were counted if they were located within such

intervals. After counting all available maternal-fetal beats per

interval (coupling count), the prevalence ratio (%) of each was

calculated by dividing the number of occurrence of a particular

coupling count by the total number of occurrences of all the

other occurring coupling counts.

To label segments with a ground-truth coupling scenario,

the highest coupling prevalence ratio among other occurring

ratios was selected as an overall representation of the coupling

in the selected segment. After assigning ground-truth labels, the

majority (>87%) of coupling scenarios were for ratios [1:2],

[2:3], and [3:5], therefore, they were the only selected scenarios
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used for any further analysis. This have resulted in 721, 152,

and 68 segments in the training, local testing, and PhysioNet

testing sets, respectively, after discarding segments with any

other coupling scenarios.

5.3. Deep learning modeling

5.3.1. Model architecture

We arranged the input segments of maternal and fetal

heartbeats as peaks-only signals (Figure 1B), where each R-

peak location had a value of 1 on a 1 min segment of zeros

(60,000 samples, vector: [2, 60,000]). Then, we designed the

structure of the deep learningmodel to be based on a simple two-

block CNN (Figure 1). A simple CNN model does not require

high computational and memory demands, especially in clinical

practice. Each CNN block consisted of a one-dimensional (1D)

convolutional layer, a batch-normalization layer, and rectified

linear unit (ReLu) layer. The first layer had a convolutional

kernel size of [2, 1,024] to extract 8 filters’ features at each step

(stride: [1, 1]) from bothmaternal and fetal input signals at once.

In addition, the second layer had a smaller convolutional kernel

size of [2, 512] with 12 filters and stride of [1, 1]. To handle any

data bias issues caused by the unbalanced labels, we included

a fully-connected layer with soft-max and weight-modified

classification layers that assigned class weights empirically.

5.3.2. Training and prediction

The proposedmodel was trained using the adaptive moment

estimation (ADAM) optimizer with a mini-batch size of 12 and a

maximum of 15 epochs. The learning rate was assigned as 0.001

with an L2-regularization of 0.0001. On each epoch, the mini-

batch was shuffled randomly to reduce the bias during training.

We validated the proposed model first using a leave-one-out

(LOO) cross-validation scheme (58, 59). A total of 721 iterations

were followed (number of training data samples), where on

each iteration, an ith subject was used for testing and the

remaining n–1 subjects were used for training until the whole set

is evaluated. Then, we tested our trained model on a completely-

hidden local testing set as described earlier (152 samples). For

more validation, we tested the trained model on the PhysioNet

testing set (68 samples) and observed the performance.

5.4. Phase coherence index

We compared our deep learning coupling attention with

a commonly used mathematical approach based on phase

coherence index (λp) (45, 46). At any selected oscillatory cycle

between the two signals (maternal and fetal R-peaks), the

instantaneous phase (ϕ(tk)) was calculated as,

ϕ(tk) =
2π(t − tk)

(tk+m − tk)
+ 2πk (1)

where t and tk are the timings of the selected fetal and maternal

R-peaks, respectively, and m is the total number of maternal

heartbeats in each coupling scenario, i.e., 1, 2, or 3.

Then, the relative phase of occurrence (9(tk)) of the

maternal R-peaks with respect to fetal R-peaks was calculated as,

9(tk) =
ϕ(tk) mod 2π

2π
(2)

In the case of a strong synchronization between both signals,

a syncrogram with parallel horizontal lines is usually observed,

whereas no synchronization shows a randomly distributed

points on the syncrogram.

Lastly, an estimation of the phase coherence index (λp(tk))

was provided in the range of 0 to 1 by quantifying the relative

phase (9(tk)) in the selected time window (tw) as,

λp(tk) =

∥

∥

∥

∥

∥

∥

1

N

k+N/2
∑

j=k−N/2

ei9(tj)

∥

∥

∥

∥

∥

∥

2

(3)

where N is the number of expected R-peaks within the selected

time window tk − tw/2 ≤ tj < tk + tw/2. In this study, N was

selected as 15 due to having shorter signals (1 min segments).
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