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Purpose: The purpose of this study was to evaluate the ability of contrast-enhanced 
ultrasonography (CEUS) with microbubbles to detect metastatic lymph nodes (LNs) for treatment 
planning and prognosis.
Methods: For the metastatic LN model, ground VX2 tumor tissues were injected subcutaneously 
in 12 rabbits, just below the right hind limb. The rabbits were classified into three groups based 
on the LN area: group A (n=4, >1.9 cm2), group B (n=4, 1-1.9 cm2), and group C (n=4, <1 
cm2). The LNs were monitored on CEUS for 10 seconds after injecting 2.5 mL of microbubbles. 
The percent area of metastatic LNs was calculated on pathologic images and compared with 
CEUS images.
Results: In group A, the mean percent area of metastasis was 40.7%±19.4%. In all cases of 
metastasis, round-shaped perfusion defects were clearly observed in CEUS images. The metastatic 
areas were strongly correlated with pathologic findings. The mean percent area in group B was 
21.5%±14.4%. The CEUS findings showed multiple nodular perfusion defects, clearly revealing 
the metastatic areas. In group B, the CEUS and pathologic findings were concordant for three 
of the four cases. The mean percent area in group C was 9.1%±6.4%. However, in this group, 
CEUS only detected a small perfusion defect in one case. 
Conclusion: CEUS has the potential to depict characteristic imaging features of metastatic LNs 
but still has limitations in early detection.
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Introduction

The lymphatic system is known to be involved in cancer metastasis (the spread of cancer from the 
primary tumor to other organs), and our understanding of the mechanisms of metastasis continues to 
evolve. Lymphatic vessels, which reach regional lymph nodes (LNs), are a possible metastatic route for 
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cancer cells [1]. LNs act as barriers that temporarily block the further 
spread of cancer cells. Once malignant metastatic cells spread and 
are observed in the LNs, current medical treatment options may be 
insufficient to provide a complete cure, resulting in an increased risk 
of mortality [2]. Therefore, the diagnosis of metastatic LNs is crucial 
for treatment planning, which can include surgery, radiation therapy, 
or adjuvant chemotherapy. Numerous methods have been used 
clinically to diagnose LN metastasis, including lymphoscintigraphy, 
computed tomography (CT), single-photon emission CT, near-infrared 
fluorescence imaging, photoacoustic imaging, magnetic resonance 
imaging, and ultrasonography (US) [3]. These modalities provide 
sufficient information for clinicians and surgeons to decide on a 
treatment method, but some have limitations for intraoperative use, 
such as a requirement to transfer the patient to an imaging facility 
and a relatively long preparation time. US has several advantages 
over alternative techniques such as positron emission tomography/
CT and lymphoscintigraphy, including the absence of radiation 
exposure or other harmful effects, easy accessibility, and lower costs 
[4,5].

Various modes of US exist, including as B-mode and color 
Doppler. Contrast-enhanced US (CEUS) combines traditional US 
with an ultrasound contrast agent [6]. CEUS images are generated 
from differences in acoustic impedance between soft tissues and 
gas in the ultrasound contrast agent, which contains commercial 
microbubbles (MBs). MBs are micron-sized bubbles (1-10 µm) filled 
with non-toxic and safe gas (sulfur hexafluoride, SF6) that have been 
developed in various formulations to enhance contrast, circulation 
time, and stability since Gramiak and Shah [7] first showed that they 
improved contrast in echocardiography in the 1960s. Because MBs 
are administered intravenously, the applicability of MBs depends 
on the vascularity of specific organs or tumors. Some attempts have 
been made to visualize sentinel LNs (SLNs) in animal models and 
breast cancer patients using CEUS imaging [8-12]. To enhance 
diagnostic accuracy and facilitate intraoperative imaging, it is 
necessary to compare CEUS images with pathologic images from 
the same region. However, to our knowledge, few reports have 
conducted a comparative analysis of 1-to-1-matched CEUS and 
pathologic images. 

In this study, with the ultimate goal of leveraging our findings for 
application in clinical practice, we utilized a US imaging modality 
and commercial MBs (SonoVue) to identify micro-metastases in 
popliteal LNs metastasized from VX2 tumors on the thigh in a rabbit 
model. 

Materials and Methods

Preparation of Animal Model
This study was approved by the institutional animal care and use 
committee of our hospital. Twelve adult New Zealand white rabbits, 
weighing 2.0 to 2.5 kg, were maintained in rooms with a constant 
temperature (23°C±2°C) and a 12-hour light/dark cycle. Throughout 
the study period (December 2015 to February 2017), the VX2 tumor 
strain was maintained in the hind limb of a carrier rabbit through 
deep intramuscular injection [13-15]. To establish a model of the 
VX2 tumor and metastatic LNs, fresh tumor tissues without signs of 
necrosis were harvested and collected. Then, the collected tumor 
tissues were finely ground and subcutaneously injected into the 
other rabbits, just below the right hind limb, to induce VX2 tumor 
establishment and popliteal LN metastasis. After inoculation, the 
tumor and popliteal LNs were monitored. In our study, the early 
stage of LN metastasis (group C) was normally examined on the 
10th day, the growth stage (group B) on the 14th day, and the 
advanced stage (group A) on the 21st day after inoculation.

US Contrast Agent and Instrument 
The US contrast agent, SonoVue (Bracco, Milan, Italy), was 
reconstituted according to the manufacturer’s instructions. Its size 
and morphology were characterized by Zetasizer (Nano ZS, Malvern 
Instruments, Malvern, UK) and an upright optical microscope (BX63, 
Olympus, Tokyo, Japan). Fig. 1 shows the shape and size of the MBs. 
Their average size was 2.2±0.6 µm by the dynamic light scattering 
technique, with a broad size distribution, ranging from a few 
hundred nanometers to 10 µm.

Gray-mode US imaging and CEUS were performed using a clinical 
US system (iU22, Philips Healthcare, Best, The Netherlands) with a 
L12-5 broadband linear transducer. To reduce MB destruction, low 
mechanical index values were applied for imaging (0.2-0.4). 

Before the US examinations, animals were anesthetized with 
respiratory anesthetic (isoflurane, Hana Pharm, Seoul, Korea). 
Rabbits were placed in the supine position, and the hair around 
the tumor and popliteal area was shaved to minimize differences in 
acoustic impedance between the US probe and the skin.

Before injection of the contrast agent, conventional US was 
performed in an attempt to identify the VX2 tumor and adjacent LNs. 
Then, 2.5 mL of SonoVue solution was administered subcutaneously 
in the right foot. The injection was performed slowly in an attempt 
to avoid the rupture of MBs via high pressure during the injection. 
The injection site was massaged for approximately 1 minute to 
accelerate the movement of MBs into the lymphatic channels and 
LNs. Then, CEUS was performed in the popliteal area in an attempt 
to identify the metastatic LNs in the right leg and the normal LNs in 
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the contralateral leg. The patterns of enhancement of the LNs were 
observed and recorded. After the CEUS study, the metastatic LNs 
on the right leg and the control LNs on the contralateral leg were 
harvested and prepared using standard hematoxylin and eosin (H&E) 
staining for histopathologic examinations.

Quantitative Image Analysis
Two radiologists with over 15 years of experience in US reviewed 
the video clips showing the CEUS examination of the LNs without 
knowledge of group allocation. They were asked to reach a 
consensus on the status of LNs as either positive or negative 
according to the presence or absence of perfusion defects in them.

For a quantitative analysis of LN metastasis, the tissue slides after 
H&E staining were scanned using a slide scanner (Super Cool Scan, 
Nikon, Tokyo, Japan) in the TIFF format. The scanned images were 
uploaded into the Image J program version 1.4.3.67, which is freely 
available for download from the website of the National Institutes 
of Health. Under the supervision of a pathologist, the outlines of the 
LNs and metastatic lesions were drawn manually. The size and area 
of the LNs and metastatic lesions were measured. The percentage of 
metastatic areas in the LN was calculated as (metastatic area [cm2]/
LN area [cm2]×100). The percentage of areas with perfusion defects 
was also measured and calculated using the formula [(area of gray 
image-area of CEUS image)/area of gray image]×100. To indicate 

the results of the 1-to-1 matching of the images, positive (+) and 
negative (-) signs are presented in Table 1, representing identical or 
different diagnoses between the histologic and ultrasonic analyses, 
respectively.

Statistical Analysis 
The animals were divided into three groups by the metastatic LN 
area on the right leg based on the pathologic specimens: group A 
(n=4), over 1.9 cm2; group B (n=4), between 1 and 1.9 cm2; and 
group C (n=4), less than 1 cm2. In each group, the length, width, 
and area of LNs; the metastatic area in the LNs; the percent area 
of metastasis; and the perfusion defects in the LNs were analyzed 
and compared using the Kruskal-Wallis and Mann-Whitney U tests. 
Moreover, the length of the normal LNs on the contralateral leg 
was measured and compared using the same statistical tests. In 
all statistical analyses, a two-tailed P-value of less than 0.05 was 
considered to indicate a statistically significant difference. Statistical 
analyses were performed using SPSS version 19.0 for Windows (IBM 
Corp., Armonk, NY, USA).

Results

Categorization of LNs
We investigated whether a higher metastatic stage was correlated 

Fig. 1. The morphology and size of microbubbles.  
A. A microscopic image shows variably-sized microbubbles. B. Dynamic light scattering analysis revealed that the sizes of microbubbles 
ranged from few hundred nanometers to 10 µm, with a mean size of 2.2±0.6 µm.
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cm (range, 0.69 to 0.90 cm) in group B, and 0.58±0.10 cm (range, 
0.50 to 0.71 cm) in group C. The size of the normal LNs showed no 
statistically significant difference among the three groups (P=0.078, 
Kruskal-Wallis test).

CEUS Findings of the Metastatic LNs
The metastatic LNs were observed by a clinical US system using 
CEUS, and visualized as perfusion defects within normally-enhancing 
tissues. Figs. 3-5 show representative findings of metastatic LNs 
seen on CEUS in each group. 

Table 1 also shows the percent area of metastasis and perfusion 
defects in the LNs. All cases in group A were over 1.9 cm2 in area, 
and the mean area percentage of metastasis was 40.7%±19.4%. 
The percent area of perfusion defects was 74.5%±9.8%. All cases 
of metastasis were clearly visualized as round perfusion defects 
on CEUS (Figs. 3, 6). Group B was categorized as having an LN 
area between 1.0 cm2 and 1.9 cm2, and the mean percent area 
of metastasis was 21.5%±14.4%. The percent area of perfusion 
defects was 42.3%±9.7%. The CEUS findings showed multiple 

to LN size. LNs were classified by the size of the metastatic LN. 
Fig. 2A shows representative pictures of both metastatic (left) 
and normal (right) LNs in each group. Fig. 2B is a bar graph of the 
average LN size, and Table 1 shows the sizes of all LNs and tumors. 

The mean length of the metastatic LNs in each group was 
1.99±0.51 cm (range, 1.85 to 2.20 cm) in group A, 1.32±0.33 cm 
(range, 1.50 to 1.13 cm) in group B, and 1.15±0.12 cm (range, 0.90 
to 1.50 cm) in group C. The mean width of the metastatic LNs in 
each group was 1.42±0.32 cm (range, 1.02 to 1.70 cm) in group A, 
0.92±0.17 cm (range, 0.75 to 1.14 cm) in group B, and 1.04±0.04 
cm (range, 0.90 to 1.50 cm) in group C. The length of the metastatic 
LNs in each group was significantly different (P=0.019, Kruskal-
Wallis test). A paired group analysis revealed that there was a 
statistically significant difference between groups A and B (P=0.021, 
Mann-Whitney test), as well as between groups A and C (P=0.021, 
Mann-Whitney U test). The width of the metastatic LNs did not show 
any statistically significant differences (P=0.073, Kruskal-Wallis 
test). The mean width of the normal LNs on the contralateral leg 
was 0.75±0.19 cm (range, 0.63 to 0.90 cm) in group A, 0.80±0.08 

Fig. 2. Gross specimen showing metastatic and normal lymph 
nodes (LNs) in each group and a graph showing the LN length. 
A. Gross specimen shows metastatic and normal LNs in each group. 
CL, control. B. The size of the metastatic and normal LNs was 
statistically significantly different in each group. a)P<0.05 relative 
to tumor of group A. b)P<0.005 relative to tumor of each group by 
Student's t test.
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Fig. 3. Metastatic lymph node seen 
with lobulated perfusion defects on 
contrast-enhanced ultrasonography 
(CEUS) in group A. 
A, B. CEUS  (A )  and  g ray - s ca l e 
ultrasonography (B) show lobulated 
perfusion defects in a metastatic lymph 
node (arrows). C, D. A gross specimen 
(C) and a hematoxylin and eosin-
stained slide (D) show a lobulated 
metastatic tumor in the lymph node 
(arrows).
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Fig. 4. Metastatic lymph node seen as 
multiple nodular perfusion defects on 
contrast-enhanced ultrasonography 
(CEUS) in group B. 
A, B. CEUS  (A )  and  g ray - s ca l e 
ultrasonography (B) show multiple 
nodu la r  pe r fus ion  de fec t s  in  a 
metastatic lymph node (arrows). C, D. A 
gross specimen (C) and a hematoxylin 
and eosin-stained slide (D) also show 
multiple tumor deposits in the lymph 
nodes (arrows).
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round, filled defects revealing metastatic areas (Figs. 4, 6). Even 
though a perfusion defect was detected in all cases, 1 case (B-4 
in Table 1) showed a discordant finding in comparison to the 
pathologic analysis. Group C was categorized as having a mean 

metastatic area of less than 1.0 cm2, and the mean percent area 
of metastasis was 9.1%±6.4%. The percent area of perfusion 
defects was 30.0%±9.5%. Only one case (C-1 in Table 1) showed 
a small perfusion defect on CEUS. Fig. 5 shows LNs with a minimal 

Fig . 5 . Metastat ic  lymph node 
not seen on contrast-enhanced 
ultrasonography (CEUS) in group C. 
A, B. CEUS  (A )  and  g ray - s ca l e 
ultrasonography (B) show no definite 
perfusion defects. C, D. A gross 
specimen (C) and a hematoxyl in 
and eosin-stained slide (D) show 
small areas of metastatic tumors 
(arrowheads) in the lymph node.

A B
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Fig. 6. Schematic drawings of the stages of lymph node metastasis. There are small perfusion defects in the peripheral portion of lymph 
node in the initial stage. Then, the metastatic areas grow into multiple nodular lesions. In the advanced stage, the multiple nodules are 
conglomerated and show lobulated contours.

Initial stage Growing stage Advanced stage
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metastatic area. In all the groups, metastatic LNs with a perfusion 
defect area over 40% were positively matched with the pathologic 
results.

The dimensions of the metastatic LNs, the metastatic area of LNs, 
and the percent area of metastatic LNs among the three groups all 
showed statistically significant differences (P=0.007, P=0.010, and 
P=0.049, respectively; Kruskal-Wallis test). The area of metastatic 
LNs was significantly different in all three groups (P=0.021, Mann-
Whitney U test), between groups A and B (P=0.021, Mann-Whitney 
U test), and between groups A and C (P=0.020, Mann-Whitney U 
test). The percent area of metastatic LNs was significantly different 
between groups A and C (P=0.021, Mann-Whitney U test).

Proposed Mechanism 
We visualized metastatic LNs on CEUS imaging and categorized 
them into three stages: the initial stage, the growth stage, and 
the advanced stage. Fig. 6 illustrates the gradual progression of 
LN metastasis that we propose. As illustrated by the LNs in group 
C, which had metastatic areas ranging from 9% to 20%, in the 
initial stage in Fig. 6, tiny and suspicious lesions are found in the 
peripheral portions of LNs. In group B, with a metastatic area 
ranging from 20% to 40%, multiple nodular perfusion defects 

were noted, corresponding to the growth stage. In group A, with a 
metastatic area of over 40% (the most advanced cases in our study), 
multiple nodular lesions were conglomerated, corresponding to the 
advanced stage. 

Discussion

SLNs, which are the first to receive lymphatic drainage from a 
cancer, are at the highest risk for regional metastasis [3,9]. The 
accurate detection and evaluation of SLNs are critical for diagnosing 
and staging cancer, estimating the prognosis, and deciding on a 
treatment plan [16-19]. 

Some methods exist for detecting SLNs intraoperatively. First, 
radio-colloid scintigraphy with intraoperative gamma probe counting 
or injection of blue dye is clinically useful in patients with melanoma 
and breast cancer; it is associated with a success rate of more than 
95% and a failure rate of less than 3.4% in SLN identification [19-
26]. However, the conventional methods of SLN detection have some 
limitations. First, the limited spatial resolution of lymphoscintigraphy 
may pose difficulties in providing accurate anatomic information 
during a preoperative evaluation. Second, the intraoperative gamma-
probe counting technique has inherent subjectivity in the detection 

Table 1. Size of lymph nodes and tumors by group 

Group Length (cm) Width (cm)
Lymph node 

dimensions (cm2)
Tumor 

dimensions (cm2) 
Area occupied by 

the tumor (%)a)
Perfusion defect 

(%)b)
CEUS/Pathology 

concordancec)

A-1 1.90 1.38 1.90 0.87 45.60 58.58 +

A-2 2.20 1.02 2.11 1.39 66.00 83.99 +

A-3 1.85 1.70 3.02 0.74 24.40 69.33 +

A-4 2.00 1.60 2.62 0.70 26.80 79.63 +

Mean±SD 1.99±0.51 1.42±0.32 2.41±0.51 0.92±0.32 40.70±19.35 74.48±9.82

B-1 1.24 0.80 1.32 0.37 28.00 41.54 +

B-2 1.40 0.75 1.18 0.43 36.60 47.15 +

B-3 1.50 1.14 1.74 0.32 18.60 43.14 +

B-4 1.13 1.00 1.87 0.06 2.90 39.89 -

Mean±SD 1.32±0.33 0.92±0.17 1.53±0.33 0.29±0.17 21.53±14.43 42.34±9.69

C-1 1.02 1.00 0.54 0.09 15.70 33.06 +

C-2 1.50 1.42 0.64 0.01 1.70 26.98 -

C-3 0.90 0.84 0.42 0.02 5.80 13.27 -

C-4 1.16 0.90 0.69 0.01 13.00 38.98 -

Mean±SD 1.32±0.33 0.92±0.17 1.53±0.33 0.29±0.17 21.53±14.43 30.02±9.54

P-valued) 0.019 0.073 0.007 0.010 0.049 0.007

SD, standard deviation. 
a)The area occupied by the tumor was analyzed using histologic images: area occupied by the tumor=(tumor dimension/lymph node dimension)×100. b)The perfusion defect 
was calculated based on gray-scale and contrast-enhanced ultrasonography (CEUS) images, as follows: perfusion defect=[(area of gray image-area of CEUS image)/area of 
gray image]×100. c)Positive (+) and negative (-) signs represent identical or different diagnoses between the histologic and ultrasound analyses, respectively. d)P-values were 
obtained using the Kruskal-Wallis test.
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method itself, as it requires a certain degree of operator experience 
with LN detection. Moreover, the high level of radioactivity at the 
primary injection site can hinder the detection of radioactive hot 
nodes by a gamma probe [22-24,27-30]. 

In the last decade, researchers have focused on applying 
CEUS with MBs for this purpose [31-36]. Some reports have 
demonstrated consistent positive results regarding CEUS images 
of metastasis. Goldberg and colleagues described that uniformly 
increased echogenic SLNs did not contain metastases, whereas SLNs 
in areas that did not enhance had metastases [35]. Wang et al. [9] 
asserted that unenhanced areas of LNs may be related to abnormal 
lymphatic drainage, caused by factors such as tumor infiltration, 
proliferation, and chronic inflammation. Cox et al. [12] demonstrated 
the possibility of detecting SLNs in breast cancer patients using 
CEUS; only 2% of patients with an initial benign SLN core biopsy 
were found to have two or more LN metastases. Recognition of SLN 
metastases using conventional gray-scale US is difficult early in the 
process of diagnosis and treatment. Detection and recognition via 
CEUS may be helpful for deciding upon a therapeutic strategy, such 
as initiation of neoadjuvant chemotherapy [37]. However, those 
studies did not differentiate between partially-metastatic LNs and 
micro-metastatic LNs in CEUS findings.

There are two main limitations of our study. First, the number 
of animals was not enough to clearly detect and classify LNs by 
the combined technique of CEUS and MBs in the early stage and 
the growth stage with approximately 1-cm LNs. To improve the 
sensitivity and specificity, we plan to conduct a further animal study. 
Second, because US examinations are intrinsically subjective, our 
results may reflect the radiologist’s experience. A possible resolution 
may be for multiple radiologists to participate or to conduct a cross-
confirmation using a secondary imaging modality or dye staining. 
However, SLN biopsy is the gold standard for patients with breast 
cancer and melanoma according to the National Comprehensive 
Cancer Network guideline. 

In conclusion, we demonstrated that metastatic LNs could be 
successfully detected by CEUS imaging with a commercial contrast 
agent. Perfusion defects could be clearly detected in LNs with 
a metastatic area exceeding 40%, and the CEUS images were 
compared with pathologic images to evaluate their correspondence. 
The high level of correspondence between the CEUS and pathologic 
images enabled not only the evaluation of metastatic LNs, but the 
determination of the stage of metastasis using CEUS imaging with a 
contrast agent. LN metastasis initially occurs as multiple peripheral 
lesions located in the peripheral area, then grows as multiple 
nodular filling defects, and finally becomes a conglomeration of 
filling defects on CEUS. Due to the wide accessibility of US imaging 
modality and real-time monitoring during surgery, we expect that 

CEUS imaging will become a feasible alternative modality for 
evaluating LNs in the clinic.
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