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Abstract: Water is an important raw material in the food production process. Maintaining the quality
and safety of water is very important in the food field. In this study, a simple novel fluorescent
nanocellulose hydrogel (FNH) was prepared for the detection and removal of heavy metals (Fe3+ and
Pb2+) in aqueous solutions based on carbon dots (CDs). The CDs were grafted onto the carboxylated
nanocellulose (CNC) by the EDC/NHS coupling method, and then the nanocellulose (NC), CNC, and
FNH were characterized by FTIR analysis. The effect of adsorption environment on FNH adsorption
capacity was also investigated. After carboxylation and grafting of CDs, the adsorption capacity of
nanocellulose to Fe3+ and Pb2+ was greatly improved, and it was also allowed to make fast visual
responses to Fe3+ as an optical sensor to determine the concentration of Fe3+ through the visual signal.
Static adsorption experiment demonstrated that the removal rate of Fe3+ and Pb2+ by FNH exceeded
69.4% and 98.2%, and the adsorption capacity amount reached 98.3 mg/g and 442.0 mg/g. At the
same time, due to the fluorescence quenching effect of Fe3+, FNH could also be used for the detection
of Fe3+ concentration in aqueous solution, and the limit of detection (LOD) could reach 62.5 mg/L.

Keywords: nanocellulose; fluorescent nanocellulose hydrogel; heavy metals ion; adsorption;
fluorescent sensor

1. Introduction

Water plays a very crucial role in the field of food. Water is an important raw material
for most foods, especially in beverages and similar products, where water occupies an abso-
lute position. Moreover, water is an important agent in food processing. The solubilization
of many raw materials (water-soluble substances such as sugars, flavoring agents, etc.)
needs water, as well as many food processing processes (high-temperature sterilization,
cleaning, etc.). Furthermore, the amount of water will also directly or indirectly affect the
quality of the product, which is crucial in the field of food production and processing.

Water quality is very important in the food industry, especially in the preparation
of beverages. With the improvement of living standards, people’s worries about food
environmental safety are also increasing, especially worries about heavy metals in water,
such as cadmium, lead, arsenic, and mercury. Therefore, ensuring the quality and safety of
water and removing toxic and harmful substances in water has become an important issue
in the field of food industry. Heavy metals are difficult to degrade and easily accumulate in
organisms, and their enrichment through the food chain threats human health [1,2]. The
most commonly used methods for removing heavy metals in wastewater include biological
treatment, chemical precipitation, ion exchange, membrane filtration, and adsorption [3,4].

Nanocellulose (NC), has unique biological adsorption characteristics and has obvious
potential for the development of new green heavy metal removal technology [5,6]. The
adsorption method has the advantages of good reusability and simple operation, and is
currently considered to be the most effective and environmentally friendly method for

Foods 2022, 11, 1619. https://doi.org/10.3390/foods11111619 https://www.mdpi.com/journal/foods

https://doi.org/10.3390/foods11111619
https://doi.org/10.3390/foods11111619
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/foods
https://www.mdpi.com
https://doi.org/10.3390/foods11111619
https://www.mdpi.com/journal/foods
https://www.mdpi.com/article/10.3390/foods11111619?type=check_update&version=1


Foods 2022, 11, 1619 2 of 11

removing heavy metals in wastewater [7,8]. Due to the various functional groups and
three-dimensional network structure of hydrogel, it is considered to be the most promising
adsorbent for removing heavy metals in wastewater [9,10]. The combination of nanofibers
and hydrogels creates a more favorable three-dimensional network structure and provides
a better aggregate for heavy metal adsorption [11–13].

In recent years, carbon dots (CDs) have been widely used due to its unique lumines-
cence, chemical stability, biocompatibility, and non-toxicity. At the same time, CDs also
have the characteristics of easy access to raw materials and simple production process.
Therefore, CDs have been widely used in biological/chemical sensors, biomedical imaging,
optoelectronic equipment [14].

In this paper, a novel nanocellulose hydrogel with CDs was prepared for the detection
and removal of Fe3+ and Pb2+ in water. The structure and optical properties of FNH
was characterized, and the effect of the adsorption environment (contact time, pH value,
and adsorbent dosage) on the adsorption capacity of FNH was investigated to obtain
higher adsorption capacity. And the experiments conducted under the same experimental
conditions showed that the Fe3+ and Pb2+ in water adsorption capacity of FNH were
significantly higher than that of conventional adsorbents. In addition, FNH was used to
determine Fe3+ based on the fluorescence quenching effect of Fe3+ and CDs.

2. Materials and Methods
2.1. Materials

1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC, 98.0%), N-
hydroxysuccinimide (NHS, 98%), and N,N-methylenebisacrylamide (MBA, 99%) were
obtained from Aladdin Reagent Co., Ltd. (Shanghai, China). Sodium hydroxide, sodium
periodate, hydrochloric acid, acetic acid (HAc), sodium acetate (NaAc), acrylamidem
and potassium persulfate (PPS, 99.0%) were supplied by Sinopharm Chemical Reagent
Company (Shanghai, China). All other chemicals used in this work were of analytical grade.

2.2. Preparation of Nanocellulose

Acid hydrolysis and oxidation is mainly used to prepare cellulose nanocrystals ob-
tained by destroying the amorphous region of cellulose. Strong acid, such as sulfuric acid,
can easily hydrolyze the amorphous region of cellulose and even leads to carbonization.
Therefore, employing weak acids, such as acetic acid, has become a new method for the
preparation of NC due to their relatively safe use, high yield, and short preparation time.
The cellulose was mixed with 0.5% hydrochloric acid and 88% acetic acid at a solid to liquid
ratio of 1:30. Next, the mixture was stirred at 268 K for 1 h. The reaction was terminated
by cooling to room temperature with tap water, then centrifuged at 6000 rpm for 5 min to
remove excess acid, resuspended with deionized water, and repeat three times. Finally,
nanocellulose (NC) was obtained after freeze-dried.

2.3. Synthesis of Carboxylated Nanocellulose (CNC)

Sodium periodate and ammonium persulfate oxidation are two commonly used
methods to prepare carboxylated nanocellulose. The two methods were combined in this
paper to obtain better carboxylation effect [15,16]. The preparation of sodium periodate
carboxylated nanocellulose was according to Liu [17], the cellulose was uniformly dispersed
in a deionized water solution containing 5% NaIO4 and 7.6% CaCl2, adjusted the pH to
3.5 and reacted for 6 h at 318 K. The reaction was terminated by adding ethylene glycol [18],
followed by washing, three times, with deionized water, and centrifugation. Then, the
ammonium persulfate was used for further carboxylated [19,20], and the NC was dispersed
in 2 M ammonium persulfate solution, sonicated at 333 K for 6 h, and mixed with 200 mL of
1 M citric and continued sonication for 4 h. The carboxylated NC was washed three times
with deionized water and centrifuged. Finally, the CNC was obtained after freeze-dried.
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2.4. Preparation of CDs

The preparation of CDs was according to previous studies [21,22]. Briefly, 1.15 g
citric acid and 33.5 µL ethylenediamine was fully dissolved in 20 mL ultrapure water by
sonication, then the prepared mixture was poured into a polytetrafluoroethylene lining
and put into an autoclave, kept it in an environment of 573 K for 14 h to complete the
hydrothermal reaction, and cooled to room temperature after the reaction is complete.
The supernatant was sucked and filtered with 0.45 µm and 0.22 µm water-based filters in
sequence to obtain yellow carbon quantum dot solution.

2.5. Preparation of Carboxylated Nanocellulose Modified with Carbon Dots (CNC-CDs)

EDC/NHS coupling method was used to connect CDs to CNC [23,24]. Briefly, 0.4 g
CNC was fully suspended in 50 mL NaAc/HAc buffer (1 mM, pH 4.5) by sonication, Then,
EDC (119 mg), NHS (460 mg), and CDs (30 mg, 0.01 wt%) were added under stirring
conditions for 15 min. The reaction was conducted overnight in the dark. The mixture was
then dialyzed in a dialysis bag (12,000–14,000 Da) in ultrapure water for 4 days.

2.6. Preparation of Fluorescent Nanocellulose Hydrogel (FNH)

The nanocellulose hydrogel with strong fluorescence and high absorption was pre-
pared by free radical polymerization method [25]. Briefly, 2.5 mL of acrylic acid was added
to NaOH (5.5 mL, 5 M) with stirring at 273 K, then added with CNC-CDs, acrylamide
(0.5 g) and MBA (0.03 g), stirred for 30 min, then added with potassium persulfate and
stirred for 30 min. The reaction system was transferred to a water bath at 343 K for 5 h to
ensure the reaction complete [26].

2.7. Physicochemical Characterization

The presence of active groups in the NC, CNC and nanocellulose hydrogel were
obtained by a FTIR spectrometer (Vertex 70, Bruker, Rheinstetten, Germany) in range of
500–4000 cm−1, and 20 scans for each sample were conducted. The morphological structure
of the different FNH was observed by scanning electron microscope (SEM) (S-4800, Hitachi,
Tokyo, Japan), and Nano Measurer was used to measure the length and width of FNH.
UV-Vis spectra and fluorescence features of CDs were observed using a microplate reader
(Spark, Tecan Austria GmbH, Grödig, Austria).

2.8. Adsorption Studies

The adsorption capacity of FNH for heavy metal ions was studied by batch exper-
iments [27,28]. NC and FNH of certain amounts were added to Fe3+ and Pb2+ solution
(50 mg/L, 200 mL) in a 200 mL conical flask, and sampled at different time points, then
diluted with ultrapure water (0, 15, 30, 60, 105, 150, and 210 min). The concentrations of
Fe3+ and Pb2+ in the samples were measured by Atomic Absorption Spectrophotometer
(Jena Analytical Instruments AG, Jena, Germany) to determine the equilibrium adsorption
time. The pH (from 3 to 7) and adsorbent dosage (from 0.15 to 2.4 g) conditions were then
determined using the same method. The adsorption isotherm experiments with initial
concentrations ranging from 6.25 mg/L to 200.0 mg/L were carried out at 288, 298, and
308 K, respectively.

3. Results and Discussion
3.1. Physicochemical Characterization
3.1.1. FTIR

Figure 1 shows the FTIR spectrums of NC, CNC, and FNH. The peaks appearing
at 3415 cm−1 and 2914 cm−1 were attributed to stretching vibrations of O-H and C-H,
respectively [29]. The peak at 1052 cm−1 was attributed to the C-O-C pyranose ring
vibration. In the FTIR spectrum, a band at 1750 cm−1 (-CO-) appeared after the NC was
carboxylated, which proved that the -COOH was generated on NCs [30]. Compared to the
spectrum of CNC, a new band at 1650 cm−1 (-CO-NH-) appeared on CNC-CDs, and the
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1570 cm−1 band was increased in the spectrum of CNC-CDs, which indicated that the CDs
was grafted on the CNC [31].
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3.1.2. SEM

Figure 2 shows that the SEM image of FNH. FNH has a porous three-dimensional
structure, which can provide a high specific surface area for the absorption of heavy metal
ions [32].
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3.1.3. Spectral Features

Figure 3 shows the UV-Vis spectrum of CDs. There was a distinct characteristic peak
at 340 nm, which was mainly attributed to the n-π* transition of the carbonyl group in CDs.
The photoluminescence (PL) excitation and emission spectra of CDs were also shown in
Figure 3A, as could be seen at excitation and emission wavelengths for CDs were 360 nm
and 420 nm. Furthermore, as the excitation wavelength increased (from 340 nm to 440 nm),
the excitation wavelength deviated from the excitation wavelength, and the fluorescence
intensity also decreased (Figure 3B). At the same time, the PL emission peak shifted to
long wavelengths with increasing excitation wavelength, which might be caused by the
presence of carbonyl and carboxyl.
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3.2. Appearance and Fluorescence Behavior of FNH

Figure 4 demonstrates the appearance and fluorescence behavior of FNH (the CNC-
CDs content varying from 0.06 to 0.12, 0.25, 0.50, 1.00, and 0 wt%). With the increase
of CNC-CDs quality, the fluorescent brightness was enhanced. Among these hydrogels,
0.50 wt% showed the strongest fluorescent brightness.
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3.3. Effect of Experimental Parameters on Fe3+ and Pb2+ Adsorption Capacity
3.3.1. Effect of Contact Time

Contact time was an important parameter in adsorption experiments. The effect
of contact time on the adsorption capacity is shown in Figure 5. From 0–30 min, the
adsorption capacity increase rapidly when contact time increased, which might be due to
the more abundant adsorption sites on NC and FNH for Fe3+ and Pb2+ to occupy when
time extended. Fe3+ and Pb2+ adsorption rate onto NC and FNH gradually decreased
during 30–105 min and reached equilibrium gradually after 105 min. Therefore, the contact
time was set at 105 min.
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Meanwhile, the adsorption capacities of NC and FNH were compared (shown in
Figure 5), which indicated FNH had a higher adsorption capacity (71.0 mg/g) toward Fe3+

than NC (55.6 mg/g), and a higher adsorption capacity (195.0 mg/g) toward Pb2+ than NC
(128.5 mg/g). Thus, FNH was used as adsorbent in the following study.

3.3.2. Effect of pH

The pH was a key parameter for affecting the adsorption capacity of FNH, since the
state of metal ions differently under different H+ concentration, which might affect the
interaction with the adsorbent.

The precipitation will be formed when the pH of Fe3+ and Pb2+ solution was alkaline,
so the pH of Fe3+ and Pb2+ solution was controlled in the range of 3.0–7.0. Figure 6 shows
the influence of pH on metal removal using FNH materials. At high proton concentration
(pH 3.0), the sorption capacity of the two materials for heavy metal ions was poor. This
effect might be caused by H+ occupying the adsorption sites of FNH at low pH; in an
acidic environment, the reactive groups on FNH (carboxylic/amino groups mainly) will be
protonated, which weakens the sorbate/sorbent interactions and decreases the sorption
efficiency [33,34]. The adsorption capacity of FNH to Fe3+ and Pb2+ increases with the
increase of pH, and the adsorption capacity was the maximum at pH 5.0. Therefore,
subsequent experiments were performed at pH 5.0.
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3.3.3. Effect of Adsorbent Dosage

The experimental results of the effect of adsorbent dosage on Fe3+ and Pb2+ adsorption
in water was shown in Figure 7. When the dosage of the CNC-CDs in FNH increases from
0.02 g to 0.64 g, the removal rate of Fe3+ and Pb2+ significantly increase from 19.7% to 69.4%
and from 42.2% to 98.2%, while the adsorption capacity dramatically drops from 98.3 mg/g
to 10.8 mg/g and from 442.0 mg/g to 30.7 mg/g, respectively. As the amount of adsorbent
dosage increases, the removal rate of Fe3+ and Pb2+ also increases. Since more adsorbent
dosage provides more active adsorption sites, but at the same time, the adsorption capacity
decreases, mainly due to the unsaturated adsorption of the adsorbent. To make better use
of FNH, adsorbents loaded with 0.16 g and 0.08 g CNC-CDs in FNH were selected for
subsequent adsorption experiments, respectively.
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3.3.4. Adsorption Isotherm

To study the isotherm during FNH adsorption of Fe3+ and Pb2+, experiments were
performed at different initial Fe3+ and Pb2+ concentrations by adding FNH to Fe3+ and
Pb2+ solutions (50 mL, pH 5). As the temperature increased from 303 K to 323 K, the
adsorption capacity of FNH for Fe3+ and Pb2+ increased from 29.9 mg/g to 32.7 mg/g
and from 29.9 mg/g to 32.7 mg/g, respectively. Meanwhile, the adsorption equilibrium
data of FNH adsorption Fe3+ and Pb2+ were analyzed using the Langmuir and Freundlich
isotherm models, which can be expressed by Equations (1) and (2):

Ce/qe = 1/KLqmax + Ce/qmax (1)

lgqe = lgKF + 1/nlgCe (2)

where qe is the adsorption capacity of the metal ion at equilibrium (mg/g), Ce is the
concentration of the metal ion in the aqueous solution at equilibrium (mg/L), qm and KL are
the Langmuir constants related to the saturated adsorption capacity and binding energy,
respectively, and KF and n are the Freundlich constants related to adsorption capacity
and adsorption strength, respectively. In Table 1, qcal,max and qexp,max are the adsorption
capacities determined by theoretical calculations and experiments, respectively.

Table 1. Isothermal parameters obtained by the Langmuir model fitting.

Temperature R2 qcal,mas (mg/g) qexp,max (mg/g) KL (L/mg)

288 K a Fe3+ 0.9981 86.66 87.50 0.0377
298 K 0.9975 90.24 90.25 0.0446
308 K 0.9967 91.76 91.50 0.0491
288 K Pb2+ 0.9872 443.8 456.3 0.0460
298 K 0.9830 492.0 498.8 0.0439
308 K 0.9975 549.3 552.5 0.0473

a K: Thermodynamic temperature unit (Kelvins), with absolute zero as the starting point for calculation, every 1K
change is equivalent to a 1 ◦C change (0 ◦C ≈ 273 K).

The adsorption isotherm can be used to describe the interaction pattern between the
adsorbate and the adsorbent, which can explain the adsorption isotherm mechanism. The
Freundlich and Langmuir models were used to fit the isotherm adsorption properties of
the FNH, and the fitting curve results are shown in Figure 8, and Tables 1 and 2.

Table 2. Isothermal parameters obtained by the Freundlich model fitting.

Temperature R2 n KL

288 K Fe3+ 0.9594 2.232 10.42
298 K 0.9443 2.341 12.09
308 K 0.9324 2.393 12.94
288 K Pb2+ 0.9287 3.068 75.57
298 K 0.9071 3.046 84.06
308 K 0.9051 3.031 92.67

The Langmuir model is designed based on the monolayer adsorption process that
the adsorption sites on the adsorbent surface are homogeneous and there is no interaction
between adsorbates. From the data of the two models in Figure 8, and Tables 1 and 2,
the correlation coefficient of the Langmuir model is significantly higher than that of the
Freundlich model; therefore, the Langmuire model is chosen for the interpretation of the
adsorption capacity of the metal ion. The correlation constant (R2) of Langmuire model is
greater than 0.980, indicating that the calculated value of the theoretical adsorption capacity
will fit with the experimental value of adsorption. Thus, the adsorption of heavy metals by
FNH might be monolayer adsorption.
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3.4. Fluorescence Sensing of Fe3+

FNH was allowed to act as an optical sensor to achieve a fast visual response depend-
ing on the fluorescence quenching effect of Fe3+ on CDs. The sensitivity of FNH to detect
Fe3+ concentration is shown in Figure 9B. With the double dilution of Fe3+ concentration
(2000, 1000, 500, 250, 125, and 62.5 mg/L), the fluorescence color of FNH gradually changed
from dark black to blue. The fluorescence color of FNH was quantified by the ImageJ
software, with the concentration of the Fe3+ as abscissa and the brightness value as the
ordinate, and the standard curve is calculated and shown in Figure 9C. The fitting equa-
tion and correlation coefficient of theFe3+ response curve was y = −27.839x + 33,217 and
R2 = 0.930, respectively, with a calculated detection limit of 62.5 mg/L. The established
equation confirms that the exponential function of the brightness value of FNH and Fe3+

concentration can be used for the determination of the Fe3+ concentration. The selective
evaluation results of FNH on the adsorption capacity and fluorescence quenching perfor-
mance of other heavy metal ions (Pb2+, Fe3+, Ni2+, and Cu2+) are shown in Figure 9A. The
ability of FNH to adsorb and remove Pb2+ was the highest, followed by Fe3+. But in the
visual reaction of fluorescence quenching effect, the fluorescence quenching reaction could
only occur in the presence of Fe3+.

CNC itself was a natural adsorption-aggregator, which has outstanding performance
in the removal of heavy metals. At the same time, the amino, hydroxyl, and carboxyl
groups contained in FNH also provided heavy metal adsorption sites, which improved the
adsorption and removal ability of heavy metals. The three-dimensional network structure of
CNC-based fluorescent nanocellulose hydrogels provided sufficient ion transport channels
to facilitate the diffusion of heavy metal ions from the outside to the inside of the adsorption
site. The fluorescence excitation of CDs was limited, resulting in a fluorescence quenching
effect, which reduced the fluorescence brightness of FNH.
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4. Conclusions

In summary, to better purify heavy metal ions in water, a CDs-based FNH with
high-performance luminescence properties was prepared. In the preparation of FNH,
nanocellulose (NC) needed to be carboxylated first to obtain carboxylated nanocellulose
(CNC), then the CDs were grafted onto nanocellulose by the EDC/NHS coupling method,
and, finally, the fluorescent nanocellulose hydrogel was obtained using the traditional free
radical polymerization method. A novel FNH based on carboxylated nanocellulose (CNC)
grafted carbon dots (CDs) was successfully synthesized by the above method, which could
be used as biosorbent and biosensor for heavy metal removal and detection. After NC
was carboxylated and grafted, the number of carboxyl and amino groups that can adsorb
heavy metal ions increased, so the adsorption capacity of FNH to heavy metal ions was also
greatly improved compared with NC. The removal rate of Fe3+ and Pb2+ by FNH exceeded
69.4% and 98.2%, and the adsorption capacity amount reached 98.3 mg/g and 442.0 mg/g.
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