
REVIEW Open Access
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Abstract

Epigenetic modifications are heritable changes in gene expression that do not directly alter DNA sequence. These
modifications include DNA methylation, histone post-translational modifications, small and non-coding RNAs.
Alterations in epigenetic profiles cause deregulation of fundamental gene expression pathways associated with
carcinogenesis. The role of epigenetics in oropharyngeal squamous cell carcinoma (OPSCC) has recently been
recognized, with implications for novel biomarkers, molecular diagnostics and chemotherapeutics. In this review,
important epigenetic pathways in human papillomavirus (HPV) positive and negative OPSCC are summarized, as
well as the potential clinical utility of this knowledge.
This material has never been published and is not currently under evaluation in any other peer-reviewed
publication.
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Background
The field of epigenetics is defined as the study of heritable
changes in gene expression without alteration of the DNA
sequence. Epigenetic regulation has been implicated in
multiple phenomena in both plants and animals. These
include embryonic development, cell differentiation,
imprinting, X chromosome inactivation, and various other
gene expression patterns [1–3]. Aberrations within the
epigenome have been implicated in several human
diseases and most types of cancer [2, 4–8].
Epigenetic changes influence tumor development, prolif-

eration, metastasis, and resistance to chemoradiotherapies
[2, 4–7]. The primary mechanisms of epigenetic carcino-
genesis involve DNA methylation, histone modifications,
small and non-coding RNAs (ncRNA), which ultimately
orchestrate complex gene regulatory pathways [1, 9–12].
Over the past decade, various aspects of these epigenetic
processes have been shown to be of diagnostic and prog-
nostic importance in oncology while offering novel thera-
peutic approaches. In more recent years, the role of

epigenetics in oropharyngeal cancer has gained appreci-
ation with new opportunities for translational research. The
purpose of this review is to provide a general overview of
epigenetic mechanisms in oropharyngeal squamous cell
carcinoma (OPSCC) and knowledge of how this could be
applied to novel treatment strategies.

Main text
HPV, epigenetics and oropharyngeal cancer
The incidence of HNSCCs has been gradually decreasing
since the 1980s in association with the declining use of
tobacco products. However, the incidence of OPSCC
been steadily increasing over the past decade due to the
rise in oncogenic HPV infections [13–16]. Early studies
suggested HPV-positive tumors accounted for approxi-
mately 40–60% of OPSCCs [15, 17]. These rates have
risen to greater than 80% in some regions [14, 18–24].
HPV is a nonenveloped, double-stranded DNA virus

that is approximately 8000 base pairs (bp_ [25]. Over 150
serotypes of HPV have been associated with human epi-
dermal and mucosal epithelium. HPV is classified as a
sexually transmitted virus, with the majority of infections
transmitted human-to-human via genital-to-genital or
oral-to genital contact [26–28]. Viruses are categorized as
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either “low-risk” or “high-risk” with regard to their onco-
genic potential. Low-risk types such as HPV 6 and 11
often manifest in the form of epithelial warts or oral papil-
lomas [29]. Approximately 13 HPV serotypes are included
in the high-risk category. Serotypes 16, 18, 31, and 33 have
causal links with HPV-associated oropharyngeal carcino-
genesis; however, HPV-16 has shown a much higher asso-
ciation with OPSCC (>90%) relative to other serotypes
[13, 30–36]. Their viral genome consists of eight proteins
(E1, E2, E4, E5, E6, E7, L1, L2) involved in viral replication,
maintenance, and capsid structure [37, 38]. Viral proteins
E6 and E7 have been shown to play an important role in
carcinogenesis.
Upon infection of the host cell, HPV replicates its gen-

ome as extrachromosomal elements within the nucleus and
integrates into the host genome. In cancer cells, chromo-
somal integration results in an increased expression and
stabilization of viral oncoproteins E6 and E7 [39]. HPV
integration sites are broadly distributed throughout the
human genome, with various serotypes focusing on specific
regions. HPV-16 favors integration at chromosomes 1, 2, 3,
5, 8, and 9 [40]. An interesting discovery by Akagi et al. has
shown an association between the number of HPV inte-
grants and their effects on neighboring gene expression.
They found a higher number of integrants resulted in the
direct disruption of neighboring genes via alterations in
genomic structures [41]. This area of research is still in its
infancy and further investigation into HPV integration-
associated mutagenesis is required.
HPV-positive OPSCCs have distinct host gene expression

profiles relative to HPV-negative OPSCCs [42–47]. These
gene expression differences are thought to involve mecha-
nisms of cancer tumorigenesis, proliferation, invasion, and
metastasis. These differences are further reflected by dis-
tinct clinical presentations and responses to treatment mo-
dalities [13, 14, 17, 21, 48–57]. HPV-positivity is most often
determined clinically by p16 overexpression, as an accept-
able surrogate marker of this disease. The impact of p16 for
diagnostics, prognostics and treatment stratification of
OPSCC has highlighted the clinical utility of biomarkers for
this disease [57–61]. In other cancers, novel epigenetic bio-
markers have shown an increase in popularity for their
potential specificity and biomarker-directed therapy [62].
DNA methylation, histone modifications and miRNA

modifiers have all been shown to be important biomarkers
and their role in OPSCC will be discussed in this review
(Table 1). Specific DNA methylation patterns are showing
increased promise as biomarkers, with some investigators
some claiming superiority to other markers, as they
hold higher levels of stability and can be amplified in
a cost-effective manner [63, 64] Histone modifications
may also have potential utilization as prognostic markers.
For example, the methyltransferase enhancer of zeste
homolog 2 (EZH2) and its substrate (H3K27 methylation)

is overexpressed in numerous cancer types and is fre-
quently indicative of a poor prognosis [7, 58, 65, 66]. How-
ever, histone modifications may be limited as biomarkers
in isolation without knowing the extent of gene activity
changes are associated with [7]. Despite being the most
recently discovered of the epigenetic modifiers, miRs have
shown some of the greatest potential as prognostic markers.
MiRs have been shown to play central roles in tumorigen-
esis, invasion, metastasis, and responses to therapy [7, 67].

DNA methylation in oropharyngeal cancer
Alterations in DNA methylation occur via three mecha-
nisms; hypomethylation, hypermethylation, and loss of
imprinting [68, 69] Hypomethylation of gene promoter
regions can result in the activation of various proto-
oncogenes and chromatin restructuring [70]. DNA hyper-
methylation tends to be site-specific, targeting promoter
CpG islands catalyzed by a set of enzymes known as DNA
methyltransferases (DNMTs). There are three primary
DNMTs; DNMT1, responsible for the maintenance of the
standard epigenome, DNMT3a and DNMT3b, responsible
for de novo methylation patterns [71–73]. DNA hyperme-
thylation in cancers often results in the silencing of various
genes, frequently tumor suppressors involved in cell cycle
control, DNA repair mechanisms, and apoptosis [1, 74–76].
The most well documented epigenetic event occurs dir-

ectly at the level of DNA, with 5’ methylation of CpG resi-
dues, primarily at gene promoter regions. In OPSCC,
distinct host methylation profiles can be seen in HPV-
positive cancers when compared to HPV-negative cancers
[47, 77]. Nearly three times as much differentiation in
methylation profiles can be seen between HPV-positive and
HPV-negative disease when compared to adjacent somatic
cells [78]. HPV-positive cancers have been found to have
higher levels of methylation in specific regions of the gen-
ome (promoters, genic, and LINE-1). HPV-negative cancers
show a much higher degree of genome-wide hypomethyla-
tion. It has been suggested that-negative cancers are far less
genomically stable relative to their HPV-positive counter-
parts [47, 72, 79]. Genomic instability in turn leads to wide-
spread deregulation of cellular processes characteristic of
aggressive tumors.
DNMT dysregulation is one potential mechanism for

altered DNA methylation in OPSCCs. HPV-positive
HNSCCs have shown increased expression in DNMT1
and DNMT3a, a pattern also seen in cervical cancers,
suggesting a common mechanism of carcinogenesis by
HPV [47, 80, 81]. This process is known to occur
through HPV viral oncoproteins E6 and E7 (Fig. 1). HPV
viral oncoprotein E6 causes the inhibition of the p53
tumor suppressor protein [48, 72, 82, 83]. As suggested
by Anayannis et al. [82], this inhibition allows transcrip-
tion factor Sp1 to be overexpressed to promote onco-
genesis. The more notable interaction is seen by HPV E7
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as it has been shown to directly interact with the tumor
suppressor pRb, allowing the release of E2F (Fig. 1) from
its protein complex to promote the transcription of
DNMT1 [84]. E7 has also been shown to directly interact
with DNMT1 in vitro, however, its implication requires
further investigation [85].
Low expression of CDKN2A is seen in HPV-negative

cancers, while high expression is found in HPV-associated
disease [86]. Schlecht et al. has identified four CDKN2A
loci downstream of the p16INK4A and p14ARF transcrip-
tion start sites that are frequently hypermethylated in
HPV-positive OPSCC, suggesting a potential mechanism
for p16 overexpression in HPV-positive OPSCC [81]. This
study also identified multiple Sp1 binding sites within the
CDKN2A locus, further supporting the pRb/E2F pathways
role in carcinogenesis (Fig. 1).

Histone post-translational modifications in oropharyngeal
cancer
The structure of chromatin is dynamic and involves nu-
merous pathways that regulate cell metabolism. The most
basic unit of chromatin is the nucleosome, a 165 bp strand
of DNA wrapped in a left-handed supercoil around an
octamer core of histones approximately 1.7 turns. The
octamer core consists of two of each four globular pro-
teins; H2A, H2B, H3, and H4, with a singular histone (H1)
providing linkage alongside DNA [72, 87]. At the amino-
terminal ends of the histone proteins, various post-
translational modifications can be applied. Through the
modification of histone structures, gene expression is reg-
ulated via the allowance or blockage of access to various
target genes to transcriptional machinery. These include
acetylation, phosphorylation, methylation, ubiquitination,

sumoylation, and ADP-ribosylation. These modifications,
while all able to remodel chromatin structure, frequently
show aberrations in acetylation and methylation profiles
in human cancers [88–91]. The primary modulators of
histone methylation and acetylation processes include his-
tone methyltransferases (HMTs), histone demethylases
(HDMs), histone acetyltransferases (HATs), and histone
deacetylases (HDACs) [11, 12].
There are two known types of HATs; A-type within

the nucleus, involved in the catalysis of transcription-
related acetylation, and B-type within the cytosol, associ-
ated with newly generated histones. HATs facilitate the
opening of chromatin for recruitment of transcriptional
machinery by transferring acetyl groups from acetyl-CoA
to specific lysine residues [92, 93]. Their overexpression
has been associated with various cancers by aberrantly
driving gene expression [94, 95]. Conversely, the overex-
pression of HDACs promotes deacetylation, resulting in
abnormal gene silencing in the cancer epigenome [95–97].
Histone methylation works in a comparable process,

where methylation, or multiple methylations, of lysine and
arginine residues will result in structural rearrangements of
chromatin [91, 92]. Like histone acetylation, aberrant ex-
pression of histone HMTs (enzymes that add methylation)
and HDMs (enzymes that remove methylation) have been
associated with carcinogenesis of various cancers [98–104].
Tumor cells frequently show altered methylation profiles
on histone H3 at specific lysine sites including K4, K9, K27,
K36, K79 and on histone H4 K20 [104–110]. Adding fur-
ther complexity to this process, mono-, di- or trimethyla-
tion can occur on any given histone methylation site.
A recurring histone modifier in cancer literature is the

methyltransferase EZH2, a catalytic subunit within the

Table 1 Epigenetic regulators specific to OPSCC

Name Description Role in OPSCC Reference

Histone Modifying Proteins

EZH2 PRC2 protein Hypermethylation of H3K27me3 [90]

BMI1 PRC1 protein Stabilization of H3K27me3 [90]

DNA Methylation

DNMT1 DNA methyltrasferase Overexpression [145]

DNMT3A DNA methyltrasferase Overexpression, de novo methylation [62, 145, 146]

ncRNAsa

miR-21 microRNA Overexpression [145]

miR-205 microRNA Overexpression [145]

miR-181 microRNA Overexpression [146, 147]

miR-17–92 cluster microRNA Overexpression [62, 148]

miR-106b–25 cluster microRNA Overexpression [58, 149]

miR-106–363 cluster microRNA Overexpression [62]

Let-7d microRNA Downregulation [66]
aCompared to normal tissues, only miRs frequently associated with cancer diagnosis; EZH2 Enhancer of zeste 2 polycomb repressive complex 2 subunit, DNMT DNA
methyltransferase, BMI1 B-cell–specific Moloney murine leukemia virus integration site 1
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polycomb repressive protein complex 2 (PRC2) [101].
EZH2 catalyzes the trimethylation of lysine 27 on his-
tone 3 (H3K27me3) and appears to have a regulatory
role in cell proliferation and cell-cycle progression. Vari-
ous cancers have displayed overexpression of EZH2 and
it has been associated as a marker for malignancy poten-
tial and poor clinical prognosis, including HPV-positive
OPSCC [111, 112]. HPV status and EZH2 overexpres-
sion are closely related, as EZH2 is a downstream target
of E7 in vitro via the release of E2F from pocket proteins
(Fig. 1) [113]. As proposed by Holland et. al., p53 sup-
pression via E6 may also provide a mechanism for EZH2
overexpression [113]. As expected, HPV-positive (positive
for p16INK4A) OPSCCs have genome-wide elevations of
H3K27me3 [103]. An additional method of carcinogenesis
by EZH2 overexpression may be through DNMT3A, as
EZH2 has been shown to recruit DNMT3A; however, the

de novo functionality of DNMT3A is not directly activated
by this process [111].
B-cell–specific Moloney murine leukemia virus integra-

tion site 1 (BMI1) is a central component of the polycomb
repressive complex 1 (PRC1). Overexpression has also
been associated in carcinogenesis, functioning by stabiliz-
ing H3K27me3 and preventing transcriptional initiation
[112, 114, 115]. Huber et al. have shown that BMI1 ex-
pression plays a potential role as a prognostic biomarker
of OPSSC. Its aberrant expression in conjunction with
p16 silencing is negatively correlated with recurrence-free
survival in OPSCC [112].

Small and non-coding RNAs in oropharyngeal cancer
ncRNAs have been implicated in carcinogenesis and ma-
lignancy progression, with one of the first examples
shown in chronic lymphocytic leukemia [116]. ncRNA

Fig. 1 Summary of epigenetic pathways involved in oropharygeal squamous cell carcinoma. Oncogenic human papillomavirus integrated into
the human genome, resulting in the expression of HPV-associated proteins E6 and E7. This results in alterations of p53, Rb and Polycomb Repressive
Complex (shown here including EZH2, SUZ12, EED and HOXD) related pathways with downstream epigenetic deregulation in OPSCC. Overexpression
of P16INK4a occurs as a result of loss of Rb and is used as clinical surrogate marker for HPV-positive OPSCC. *FOXM1 and HOTAIR are presumed to have
a role in OPSCC based on studies in OCSCC
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are categorized based on their size. Nucleic acids less
than 200 bp are known as small ncRNAs and greater
than 200 bp are known as long non-coding RNAs
(lncRNAs) [117]. Included within the small ncRNAs are
the small interfering RNAs (siRNAs), micro RNAs
(miRs), and PIWI-interacting RNAs (piRNAs) [118]. The
majority of cancer research focuses on miRs as they have
been shown to promote carcinogenesis through multiple
pathways, including the direct interaction with mRNA,
either through mRNA translation inhibition or mRNA
degradation [67, 119]. Epigenetic silencing of specific
miRs may have a causal link in carcinogenesis as they
have shown to act as tumor suppressors. lncRNAs have
no formal categorization. Most are organized based on
the transcripts function; chromatin remodelling and
transcription factor modulation. The majority of cancer
literature focusing on the former, such as the well Xist
transcript [6, 120].
Our current knowledge of the ncRNAs role in carcino-

genesis is relatively limited, largely due to the novelty of
the molecules discovery. The direct implication ncRNAs
in OPSCC further confirm this, as known ncRNAs in-
volved are limited to a few products. For the purposes of
this section, the field of study will be expanded slightly
to include ncRNAs implicated in other head and neck
cancers, in addition to those found in OPSCC.
HPV status in tumors has shown distinct epigenetic

profiles and clinical relevance. These distinctions is well
outlined in the review by Lajer et al., who compared epi-
genetic profiles of HPV-positive cervical and head and
neck cancers. They found a significant overlap in various
miR clusters [121]. Sethi et al. outlined a comprehensive
list of multiple miRs with aberrant expression patterns
in head and neck cancers in addition to those mentioned
by Lajer and colleagues [122]. This suggests distinct miR
expressions are associated with HPV-associated cancers.
This concept is further enforced by the direct interaction
of some miRs, such as miR-15 and miR-16, with viral E6
and E7 [123].
One miR not acknowledged in literature, but which

provides great interest, is miR-101. miR-101’s aberrant
expression, namely its downregulation, has been involved
in multiple cancers and has shown to mediate the overex-
pression of EZH2 [124–126]. The restoration of miR-101
via DNMT3A inhibition has also been shown to suppress
lung tumorigenesis [126]. As both DNMT3A and EZH2
overexpression occurs in HPV-positive OPSCC, it may
serve an important role in carcinogenesis [82].
Of the ncRNAs present within head and neck cancer lit-

erature, lncRNAs mirror the scarcity of miR counterparts.
However, one lncRNA in particular, HOTAIR, has shown
great promise as a potential biomarker. HOTAIR is a
non-coding RNA transcript of 2.2 kb transcribed from
the HOXC locus to transcriptionally silence HOXD

[117, 127]. Interactions of HOTAIR have shown the 5’do-
main to bind to the PRC2 complex described previously
as well the 3'domain binding the histone demethylase
KDM1A (Fig. 1). These interactions potentially show
methods of carcinogenesis, as its overexpression has been
demonstrated in multiple cancer types including esopha-
geal, nasopharyngeal, breast, pancreatic, and colorectal
cancers [127–129] Overexpression of HOTAIR has been
associated with an overall poor clinical prognosis, demon-
strating increased lymph node metastasis and resistance
to apoptosis. HOTAIR’s direct linkage to OPSCC requires
further study. Other lncRNAs of interest are FTH1P3,
PDIA3F and GTF2IRD2P1, as they have been associated
with the progression and metastasis of oral SCC via the
targeting of multiple tumor regulator genes [130].

Epigenetic chemotherapeutics
Aberrant events within the epigenome are suggested to
occur more readily than structural gene modification
through mutation. Given the reversible nature and spe-
cificity of epigenetic modifications, they have become
an attractive target for cancer prevention and thera-
peutic intervention [2, 5, 73, 131]. Epigenetic chemo-
therapeutics are classified into two primary classes;
histone deacetylase (HDAC) inhibitors and DNMT in-
hibitors. These classes are likely to expand as our
knowledge of epigenetics advances and further che-
motherapeutics are developed and tested. There are
currently five USFDA-approved epigenetic chemothera-
peutics on the market. Two are DNMT inhibitors; 5-acac-
tidine (Vidaza) and 5-aza-2’-deoxycitidine (Decitabine).
Three are HDAC inhibitors; suberoylanilide hydroxamic
acid (Vorinostat), F-228 (Romidepsin), and LAQ-824
(Farydak). Current epigenetic chemotherapeutics in
clinical trials or approved by the USFDA are summa-
rized in Table 2.
Both DMNT inhibitors, Vidaza and Decitabine, are the

only epidrugs that have been approved for the treatment of
patients with acute myeloid leukemia (AML) and myelody-
plastic syndrome (MDS) [132]. Vidaza and Decitabine are
nucleoside analogs of cytosine modified in position five of
their pyrimidine ring [133]. Upon exposure, Vizdaza is
incorporated into RNA and Decitabine is incorporated
into DNA where they disrupt interactions between
DNMTs and DNA. During this process, a covalent
bond is formed with DNMT triggering a DNA dam-
age signal and targeting the DNMT for degradation.
When utilized in clinical practice, their applicability
encountered major limitations. These are characterized
by poor bioavailability, poor activity with solid tumors,
severe toxic effects, instability in physiological media, and
gross non-specific changes to epigenome to both normal
and cancer cells. Fortunately, several new specific inhibi-
tors are under development. Of these are [133] MG98,
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small molecule RG108, nucleoside analog Zebularine, and
arsenic trioxide. These inhibitors have shown increased
specificity, chemical stability, increased bioavailability, and
lower cytotoxic effects [132, 133].
HDAC inhibitors are regularly divided into four differ-

ent groups based on their chemical structure. These are
hydroximates, cyclic peptides, aliphatic acids, and benza-
mides. Within the hydroximate class are two USFDA ap-
proved agents, Vorinostat and the newly approved
Farydak, as well as JNJ-26481585 (Quisinostat) currently
in clinical trials [134–136]. Aliphatic acids contain three
agents currently in clinical trials; valproic acid, phenylbu-
tyrate, and Belinostat. Cyclic peptides contain the USFDA
approved Romidepsin and benzamides contain three
agents in the clinical trial stages; MS-275 (entinostat),
MGCD-0103 (Mocetinostat), CI-994 [131, 135]. The
mechanisms of HDAC inhibitors are not fully understood,
but are thought to alter gene expression via regulation at
both epigenetic and post-translational modification levels
[137, 138]. Evidence also suggests HDAC inhibition may
alter tumor progression by inhibiting tumor angiogenesis
[138]. HDAC inhibitors are well tolerated relative to other
epigenetic chemotherapeutics. However, these drugs still
display poor activity against solid tumors when utilized on

their own. Suggested application is specific timing in
conjunction with current chemotherapeutics [139, 140] 4.
Another novel histone modifier inhibitor in the clinical
trial stage is EPZ-6438 (Epizyme), an inhibitor of histone
methyltransferase DOT1L [141–143]. While still requiring
further study for conclusive data, initial studies suggest its
efficacy and tolerance.
The use of miR’s as potential targets for chemothera-

peutics is still in its infancy. Multiple studies have shown
the significant effects of upregulation and downregula-
tion of specific miRs on cancer. Of note is miR-21 s
direct role in tumorigenesis following upregulation and
reduced tumor survival and progression following its
downregulation [144].

Conclusions
As with other cancers, epigenetics has a fundamental role
in the pathophysiology of OPSCC. HPV positive and
negative OPSCCs have distinct epigenetic profiles, con-
sistent with their pathological and clinical differences.
An understanding of epigenetics in OPSCC provides
opportunities for the discovery and application of novel
biomarkers and treatments.

Table 2 Potential epigenetic chemotherapies for oropharyngeal carcinoma

Chemotherapeutic Agent Status Reference

DNMT inhibitors

Arsenic trioxide Clinical Trials [112]

5- azacytidine (Vidaza, Celgene) USFDA Approved [47]

5-aza-2′-deoxycitidine (Decitabine, Dacogen, SuperGen) USFDA Approved [47]

MG98 Clinical trials [122]

HDAC inhibitors

LAQ-824/LBH 589 (Farydak, panobinostat) USFDA Approved [122]

PXD-101(Belinostat) Clinical trials [122]

Valproic acid (Mg valproate) Clinical trials [122]

Suberoylanilide hydroxamic acid (vorinostat, SAHA) USFDA Approved [122]

FK-228 (romidepsin) USFDA Approved [121]

Phenylbutyrate Clinical trials [122]

MS-275 (entinostat) Clinical trials [150, 151]

CI-994 Clinical trials [90, 120]

MGCD-0103 (Mocetinostat) Clinical trials [145]

JNJ-26481585 (Quisinostat) Clinical trials [146, 147]

HMT inhibitors

EPZ-6438 (E7438, Epizyme) Clinical trials [62, 148]

3-Deazaneplanocin (DZNep) Clinical trials [58]

EPZ-5676 Clinical trials [62]

EPZ-5687 Preclinical [58]

GSK-343 Preclinical [58]

DZNep, 3-deazaneplanocin A; USFDA United States Food and Drug Association
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