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ABSTRACT Pseudomonas aeruginosa is a major bacterial pathogen associated with
a rising prevalence of antibiotic resistance. We evaluated the resistance mechanisms
of P. aeruginosa against POL7080, a species-specific, first-in-class antibiotic in clinical
trials that targets the lipopolysaccharide transport protein LptD. We isolated a series
of POL7080-resistant strains with mutations in the two-component sensor gene
pmrB. Transcriptomic and confocal microscopy studies support a resistance mecha-
nism shared with colistin, involving lipopolysaccharide modifications that mitigate
antibiotic cell surface binding.
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Pseudomonas aeruginosa and other Gram-negative bacteria are becoming increas-
ingly resistant to current antibiotics and pose a major threat to patients with

hospital-acquired infections, compromised immune systems, or chronic pulmonary
infections (1–4). Unfortunately, the discovery of new agents targeting Gram-negative
bacteria is especially challenging due to an impermeable, lipopolysaccharide (LPS)-
laden, outer membrane, in addition to porin mutations and efflux pumps limiting
intracellular drug accumulation (5, 6). Among the last-resort antibiotics currently being
used to treat severe multidrug-resistant pseudomonal infections is the polymyxin class
of cationic antimicrobial peptides, including polymyxin B and colistin (polymyxin E).
Recently, the first-in-class antibiotic POL7080, which is currently in phase 3 clinical trials,
was reported to have species-specific activity against P. aeruginosa by inhibiting the LPS
transport protein LptD (7–9). The discovery of POL7080 (and its analogue POL7001)
emerged from extensive chemical modifications of the cationic antimicrobial peptide
protegrin-1 (PG-1), in which a beta-hairpin was introduced to create cyclized peptido-
mimetic analogues (10, 11). The mechanism of action of POL7080 and its analogues
differs from that of other cationic antimicrobial peptides in several key ways. Polymyx-
ins and PG-1 interact with LPS and exhibit broad-spectrum antimicrobial activity
through self-promoted uptake across the outer membrane, followed by cell lysis
through poorly defined mechanisms (12–14). The LptD inhibitors POL7080 and
POL7001, however, have been reported to exhibit a nonlytic mechanism of action
through LptD inhibition in P. aeruginosa exclusively (7–9).

To investigate the mechanisms of resistance to POL7080 and its analogues, we
selected for spontaneously resistant P. aeruginosa PA14 mutants by plating mid-log
cultures on lysogeny broth (LB) agar containing 1.6 �g/ml POL7001 (�4 times the MIC
on LB agar; detailed experimental protocols are outlined in the supplemental material).
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We isolated 6 independent mutants and confirmed their resistance to POL7080,
POL7001, and PG-1 by adapting the broth microdilution method described previously
(15). All clones were highly resistant to POL7080, with 4-fold to 32-fold MIC shifts
relative to PA14 (Table 1), comparable to 4 POL7080-resistant clinical isolates reported
previously (16). Because resistant clones were selected in LB, MIC assays were also
performed in LB, yielding results comparable to those obtained in Mueller-Hinton broth
(MHB) (see Table S1 in the supplemental material). All strains remained susceptible to
conventional antipseudomonal antibiotics (Table S2). Whole-genome sequencing revealed
1 or 2 single-nucleotide polymorphisms (SNPs) in each mutant, relative to the wild-type
(WT) parent PA14, and all 6 isolates carried a mutation in the common gene pmrB (Table
1). PmrB is a histidine kinase and the membrane-bound sensor in the PmrA-PmrB two-
component regulatory system in Gram-negative bacteria. In response to low Mg2� levels
and periplasmic antimicrobial peptides, PmrB undergoes conformational changes in its
histidine kinase and methyl-accepting protein (HAMP) domain, leading to autophosphor-
ylation, phosphoryl group transfer to its cognate response regulator PmrA, and down-
stream activation of transcriptional programs regulating LPS modification (17). Interestingly,
mutations in the PmrA-PmrB system have been implicated in polymyxin resistance through
upregulation of the lipid A deacylase PagL and the arnBCADTEF-ugd operon, resulting in
LPS modifications that reduce polymyxin binding to the cell surface (18–29). Notably, the
mutant PA14-pmrBG188S contained an amino acid substitution at the same site in the HAMP
domain as reported previously for the colistin-resistant clinical strain PA1571-pmrBG188D,
which was isolated from a cystic fibrosis patient and was found to have the PmrB
substitution G188D (22). Therefore, we measured colistin activity against all 6 resistant
mutants and found cross-resistance, with MIC shifts ranging from 4-fold to 32-fold (Table 1).
We also tested the colistin-resistant strain PA1571-pmrBG188D with POL7080 and found that
it had 8-fold cross-resistance, relative to PA14 (Table 1).

To confirm that alterations in pmrB account for the observed resistance to POL7080
and colistin in PA14, we introduced a copy of the wild-type allele pmrBWT and the
resistant alleles pmrBL172del and pmrBG188S, under the control of an arabinose promoter,
into PA14 at the neutral attTn7 chromosomal site using the pUC18-derived mini-Tn7
integration system (30). We also introduced the allele pmrBG188D, which was reported
previously to confer colistin resistance (22), into the wild-type background. MIC assays
in the presence of 0.25% (vol/vol) arabinose demonstrated that all three mutated pmrB
alleles, but not the wild-type allele, conferred POL7080 and colistin resistance (Table 2).
Because the PA14-pmrBG188S mutant was only modestly resistant to POL7080 in MHB,
we also determined MICs in LB, the medium in which the mutants were selected, which
confirmed that all mutant alleles conferred POL7080 and colistin resistance (Table S3).
Conversely, expression of the pmrBWT allele in the resistant PA14-pmrBL172del back-
ground did not restore POL7080 susceptibility, suggesting that resistant pmrB alleles
were largely dominant over the wild-type allele.

TABLE 1 Summary of resistant mutants sequenced after selection with POL7001

Strain PA14 no. Gene SNP(s)
Protein
change(s) Function

MIC (�g/ml) in MHB (fold change)a

POL7001 POL7080 PG-1 Colistin

Wild-type PA14 0.050 0.050 1.3 0.44
PA14-pmrBL172del 63160 pmrB CGCT506C L172delb Two-component system 1.6 (32) 1.6 (32) 43 (32) 14 (32)
PA14-pmrBG188S 63160 pmrB G562A G188S Two-component system 0.40 (8) 0.20 (4) 11 (8) 1.8 (4)

21890 hypoc T932G V311G Putative oxidoreductase
PA14-pmrBV136L 63160 pmrB G406C V136L Two-component system 0.80 (16) 0.40 (8) �43 (�32) 3.5 (8)

43080 vgrG14 C1325A �
C1330G

A442E �
H444D

Type VI secretion

PA14-pmrBT132P 63160 pmrB A394C T132P Two-component system 0.40 (8) 0.40 (8) �43 (�32) 3.5 (8)
PA14-pmrBR155H 63160 pmrB G464A R155H Two-component system 1.6 (32) 1.6 (32) �43 (�32) 7.0 (16)
PA14-pmrBA330P 63160 pmrB G988C A330P Two-component system 0.80 (16) 0.80 (16) �43 (�32) 3.5 (8)
PA1571-pmrBG188D 63160 pmrB G563A G188D Two-component system 0.20 (4) 0.40 (8) 10.8 (8) �56 (�64)
aThe fold change in MIC, relative to PA14, is shown in parentheses.
bIn-frame deletion of L172.
cHypothetical protein.
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We next performed whole transcriptome sequencing to investigate the role of
pmrA-pmrB in response to LptD inhibitors. After extracting total RNA from mid-log PA14
cells treated with 0.2 �g/ml POL7001 (2 times the MIC), we prepared RNA-seq libraries
using the RNA TagSeq protocol (31), sequenced samples on an Illumina NextSeq
instrument, and analyzed the data using Burrows-Wheeler Aligner (32) for alignment
and DESeq2 (33) to determine differential gene expression. We found that LPS mod-
ification genes, including pmrA-pmrB, the lipid A deacylase gene pagL, and the

FIG 1 LPS modification genes upregulated in response to POL7001 and POL7080 treatment and
constitutively expressed in the resistant PA14-pmrBL172del strain. (A) RNA-seq data show log2(fold change)
in sequencing reads for PA14 after treatment at 37°C for 100 min with POL7001, relative to the vehicle
control. Bracketed genes are located within the same operon. Upregulated genes include the pmrA-pmrB
two-component regulatory system genes, the lipid A deacylase gene pagL, and the arnBCADTEF-ugd
operon. (B) After treatment of PA14 and resistant PA14-pmrBL172del cells with POL7080 or dimethyl
sulfoxide (DMSO) (control) at 37°C for 100 min, qRT-PCR data show log2(fold change) in LPS modification
gene transcript levels (normalized to rpoD expression), relative to vehicle-treated PA14 cells. In all
experiments, error bars represent standard errors of the mean of 3 biological replicates (n � 3). The
coefficient of variance of raw triplicate measurements ranged from 0.5 to 8.4%. Asterisks indicate paired
t test P values of �0.03 for POL7080-treated PA14 cells versus vehicle-treated PA14-pmrBL172del cells.

TABLE 2 MICs in MHB with 0.25% arabinose after introduction of second pmrB alleles into
PA14 and pmrBL172del backgrounds

Background strain attTn7 allele

MIC (�g/ml) (fold change)a

POL7080 Colistin MIC

PA14 0.05 0.44
PA14 pmrBWT 0.10 (2) 0.44 (1)
PA14 pmrBL172del 0.80 (16) 1.8 (4)
PA14 pmrBG188S 0.10 (2) 0.88 (2)
PA14 pmrBG188D 0.40 (8) 1.8 (4)
PA14-pmrBL172del 1.6 7.0
PA14-pmrBL172del pmrBWT 0.8 (0.5) 3.5 (0.5)
aThe fold change in MIC, relative to the background strain, is indicated in parentheses.
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entire arnBCADTEF-ugd operon, which is responsible for adding 4-amino-4-deoxy-
L-arabinose (L-Ara4N) to lipid A, were significantly upregulated in response to
POL7001 (Fig. 1A). The aminotransferase gene arnB, coding for the protein that
catalyzes the final step in L-Ara4N addition, was among the most highly upregulated
genes in the entire data set. We confirmed these findings with quantitative reverse
transcription-PCR (qRT-PCR) after treating mid-log PA14 or resistant PA14-
pmrBL172del cells with either POL7080 or DMSO (control) (Fig. 1B). Relative to the
control, POL7080 significantly induced pmrA, arnB, and pagL expression in PA14
cells. Notably, arnB and pmrA transcript levels in untreated PA14-pmrBL172del cells
exceeded those in POL7080-treated PA14 cells. Together, these data reveal that a
signature transcriptional program involving key LPS modification genes is consti-
tutively upregulated in the resistant mutant PA14-pmrBL172del. These results reveal
a cellular response to LptD inhibitors that mirrors the previously reported response
to polymyxins, and they suggest a shared mechanism by which pmrB mutations
confer cross-resistance between POL7080 and colistin.

Mutations in pmrB are known to drive polymyxin resistance by L-Ara4N addition to
LPS, thereby reducing drug binding to the cell surface (18–29). Therefore, we investi-
gated whether pmrB mutations might mitigate POL7080 binding to the cell surface. We
synthesized tetramethylrhodamine (TAMRA)-L27-11 (Fig. S1), a red fluorescent ana-
logue of POL7080 with retained inhibitory activity (Table S4), to probe for differential
uptake in PA14-pmrBL172del cells, relative to PA14 cells, using confocal microscopy. After
treatment of mid-log PA14 or PA14-pmrBL172del cells with 1.4 �g/ml TAMRA-L27-11, the
cells were washed, fixed with 4% paraformaldehyde, and stained with 4=,6-diamidino-
2-phenylindole (DAPI) for nucleic acid visualization. Red-field and blue-field confocal
microscopy showed comparable DAPI staining but �3-fold reduction in TAMRA-L27-11
uptake in PA14-pmrBL172del cells, relative to PA14 cells (Fig. 2), indicating less efficient
drug binding at the cell surface of the resistant mutant.

FIG 2 Differential uptake of TAMRA-L27-11 by PA14 cells versus PA14-pmrBL172del cells. (A) Red-field (left) and blue-field
(right) confocal microscopy images of PA14 cells (top) and PA14-pmrBL172del cells (bottom) show reduced TAMRA-L27-11
uptake in PA14-pmrBL172del cells, relative to PA14 cells. All cells were DAPI stained after treatment with 1.4 �g/ml
TAMRA-L27-11 for 120 min. (B) Average fluorescence intensities of TAMRA (red bars) and DAPI (blue bars) were calculated
for PA14 cells (solid bars) (n � 22 cells) and resistant PA14-pmrBL172del cells (hatched bars) (n � 21 cells) using ImageJ
software. The figure depicts a representative replicate from 3 independent experiments. Error bars represent standard
errors of the mean, and asterisks indicate unpaired t test P values of �0.0001 for PA14 cells versus PA14-pmrBL172del cells
after TAMRA-L27-11 treatment.
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In summary, we report a series of pmrB mutations that confer high-level resistance
to POL7080 and moderate cross-resistance to colistin. Expression analysis and confocal
microscopy data support a resistance mechanism in which pmrB mutations upregulate
the arnBCADTEF-ugd operon. These data align well with known mechanisms of resis-
tance to polymyxins, in which upregulation of the arn operon has been shown to result
in LPS modification with L-Ara4N reducing drug binding to the cell surface (21–23).
Altogether, our findings suggest that preexisting colistin resistance may limit the utility
of POL7080 in a subset of highly resistant P. aeruginosa cases and exposure to POL7080,
if it is successfully developed, could inadvertently drive cross-resistance to colistin and
other polymyxins.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/AAC

.00511-19.
SUPPLEMENTAL FILE 1, PDF file, 0.9 MB.
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