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ABSTRACT
Rocky shore microbial diversity presents an excellent system to test for microbial
habitat specificity or generality, enabling us to decipher how common macrobiota
shape microbial community structure. At two coastal locations in the northeast Pa-
cific Ocean, we show that microbial composition was significantly different between
inert surfaces, the biogenic surfaces that included rocky shore animals and an alga,
and the water column plankton. While all sampled entities had a core of common
OTUs, rare OTUs drove differences among biotic and abiotic substrates. For the mus-
sel Mytilus californianus, the shell surface harbored greater alpha diversity compared
to internal tissues of the gill and siphon. Strikingly, a 7-year experimental removal
of this mussel from tidepools did not significantly alter the microbial community
structure of microbes associated with inert surfaces when compared with unma-
nipulated tidepools. However, bacterial taxa associated with nitrate reduction had
greater relative abundance with mussels present, suggesting an impact of increased
animal-derived nitrogen on a subset of microbial metabolism. Because the presence
of mussels did not affect the structure and diversity of the microbial community on
adjacent inert substrates, microbes in this rocky shore environment may be predomi-
nantly affected through direct physical association with macrobiota.

Subjects Ecology, Marine Biology, Microbiology
Keywords 16S, Rocky intertidal, Mytilus californianus, Nitrogen cycling, Tatoosh Island,
Nitrification, Animal excretion, Tidepool, Ammonium, Host-microbe

INTRODUCTION
The dynamics and interactions of the macroscopic species on rocky shores of the northeast

Pacific Ocean have been well-characterized and thus have contributed significantly to our

understanding of coastal ecological processes (e.g., Paine, 1966; Wootton, 1994; Estes &

Duggins, 1995). Although some specialized symbiotic associations have been described in

rocky shore species (Secord & Augustine, 2000; Bergschneider & Muller-Parker, 2008), we

know little about multi-taxa microbial associations. There is increasing evidence that many

marine macrobiota have surface biofilms (Grossart et al., 2005; Kvennefors et al., 2012) or

endosymbionts (Zurel et al., 2011; Wegner et al., 2013) or both (e.g., Qian et al., 2006; Taylor

et al., 2007). However, our understanding of the specificity of these associations and their

functional significance remain nascent with some notable exceptions (Webster & Taylor,
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2012; Fan et al., 2013; Heisterkamp et al., 2013). The shelf waters of the California Current

Large Marine Ecosystem (CCLME) maintain diverse and unique microbial communities

across upwelling areas (Bertagnolli et al., 2011). The relatively high productivity of this

system has been attributed to the seasonal upwelling of nitrate (Barber & Smith, 1981),

which can lead to significant levels of carbon fixation. The diversity of potential plant and

animal ‘host’ species in the CCLME, their relatively large geographic range, their longevity

and the provision of key resources suggest they provide unique microniches capable of

increasing the diversity and function of microbial communities.

If macrobiota directly provide habitat for intertidal microbes (e.g., mussels Pfister,

Meyer & Antonopoulos, 2010; algae, Miranda et al., 2013) or indirectly provide resources

such as nitrogen, in the form of animal-regenerated ammonium, then our understanding

of coastal biogeochemistry is incomplete without considering the contribution of

macrobiota. In the northeast Pacific, Tatoosh Island, WA shows persistent shoreward

peaks of ammonium (Pfister, Wootton & Neufeld, 2007), while the tidepools at Second

Beach, WA have animal-regenerated ammonium from the California mussel with locally

enhanced algal productivity, and microbial nitrification (Pfister, 2007). We employed

16S rRNA V4 amplicon sequencing to test whether microbes associated with macrobiota

differ from those in the water column and on inert surfaces. We further compared the

identified microbial taxa with those found when using shotgun metagenomics in a subset

of samples for mussel shell biofilms. Finally, we used a manipulative field experiment of

mussel presence or absence in tidepools to ask whether the increased rates of nitrogen

remineralization and uptake demonstrated with mussels by tracer ammonium addition

(Pather et al., 2014) resulted in changed bacterial communities on inert surfaces.

MATERIALS AND METHODS
We asked whether microbial diversity and abundance were distributed differentially

among intertidal microhabitats by (1) sampling distinct microhabitat types including

artificial and natural surfaces at Tatoosh Island (48.32◦N,124.74◦W), and (2) sampling

artificial and natural substrates in the context of an animal removal experiment at nearby

Second Beach (48◦,23′N,124,40′W). Tatoosh Island is 0.7 km off the northwestern tip

of Washington State, USA and has been well studied ecologically. Previous metagenomic

analysis of biofilms associated with the shells of mussels at Tatoosh Island demonstrated

a rich microbial assemblage, with the genetic capacity for nitrogen cycling (Pfister, Meyer

& Antonopoulos, 2010). On 6 Aug 2009, we sampled both inert and biogenic substrates in

situ, as well as artificial substrates. Biogenic substrates sampled included the surface of the

red alga Prionitis sternbergii (n = 2), the anemone Anthopleura elegantissima (n = 2), and

gill tissue (n = 3) and siphon tissue (n = 1) of the California mussel Mytilus californianus.

These biogenic hosts were chosen because they are persistent members of the community

and have relatively long-lived and sessile tissues that might provide a predictable substrate.

In addition to the biogenic surfaces, rocks were chipped off of bench adjacent to mussel

beds. Artificial substrates (glass crucible covers, 3 cm diam, www.leco.com) were attached

with epoxy on rock adjacent to mussel beds (n = 4) and in tidepools (n = 5) on 10 Jun
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2009 and left in situ for 2 months. We chose glass crucible covers because they provided

heterogeneous surface, yet an inert substance. Immediately after a late morning collection

at low tide, samples were frozen and sent to −80 ◦C storage at the University of Chicago

prior to extraction. Environmental characteristics of the seawater, including nutrient

concentrations, were recorded as part of a regular sampling program (Wootton & Pfister,

2012) and are reported in Table S1. The Upwelling Index for this latitude (48◦N) was, on

average, positive (www.pfeg.noaa.gov).

We tested whether the presence of mussels had entrained different microbial assem-

blages by sampling natural and artificial substrates in tidepools where mussels had been

removed or unmanipulated since 2002 at Second Beach (Pfister, 2007), a north-facing

complex of rocks 2 km east of Neah Bay, WA, USA within the Makah Tribal Reservation.

For seven years prior to our microbial sample collection, mussels have been excluded

from 6 tidepools that previously contained mussels by pulling them out by hand at an

approximately monthly intervals during the spring and summer months. Other tidepools

that naturally had mussels served as controls. The biogeochemistry of these experimental

and control tidepools have been characterized multiple times, allowing us to test for mussel

effects on tidepool nutrient concentrations (nitrate, nitrite, ammonium, and phosphorus),

and seawater pH and oxygen and how it related to microbial community structure. These

parameters were measured 9 times in each tidepool during Aug 2009 and 12 times in Jul

and Aug of 2010. We also estimated ammonium remineralization and removal rates with

a tracer experiment with enriched 15NH+

4 in 2010 (Pather et al., 2014). A ∼2 cm2 piece

of rock was chiseled from 5 pools with and 5 without mussels during morning hours on

24 Aug 2009. We also sampled from glass cover slips that had incubated for 3 months in

these pools (n = 7 controls, n = 6 mussel removal pools) with a copper paint barrier to

exclude molluscan grazers. To compare this benthic microbial assemblage to microbes in

the water column, we collected 3 plankton samples on 25 mm GF/F filters by pumping 300

mL of seawater on an incoming tide (1100–1130 h). Due to the 0.7 um pore size, we likely

excluded many free-living microbes, though high species richness still resulted (see below).

All samples were frozen and sent to storage at −80 ◦C at the University of Chicago prior to

extraction.

For DNA extraction, we used the Power Soil DNA Extraction Kit (MoBio). The

rock, crucible cover substrates, and mussel shells were both swabbed with sterile cotton

applicators and brushed with sterile spiral dental brushes that were placed in the extraction

solution. Coverslips, filters, excised mussel gill or mussel siphon, anemones, and algae were

placed into the beadbeater vial and pulverized. Thus, our sampling of biogenic substrata

included the potential that microbes were part of the host tissue. The PCR amplification

protocol followed Caporaso et al. (2010b) for multiplexing 16S rRNA samples. The PCR

products were cleaned with MoBioTMUltraClean htp PCR Clean-up kit. We amplified the

V4 variable region of the 16S rRNA gene from community DNA using bar-coded primers

according to Earth Microbiome Project standard protocols (www.earthmicrobiome.org).
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Sequence analysis
We used QIIME (v. 1.7.0, Quantitative Insights into Microbial Ecology; www.qiime.org)

to filter reads and determine OTUs as described in Caporaso et al. (2010b). Briefly, we

used the open reference OTU picking workflow, where sequences were first clustered

with the Greengenes (Dec 2012) reference database (McDonald et al., 2012); we then

allowed OTUs that did not cluster with known taxa (at 97% identity) in the database

to cluster de novo. Singleton and chloroplast-derived sequences were removed prior to

downstream analyses. Representative sequences for each OTU were aligned using PyNast,

with a minimum alignment overlap of 75 bp (Caporaso et al., 2010a). Alignments were

used to build a phylogenetic tree (FastTree; Price, Dehal & Arkin, 2009). We computed

alpha diversity metrics among substrates using the alpha diversity.py script in QIIME

(chao1, phylogenetic diversity and equitability), using the same sequence depth for all

samples (50,000 sequences per sample). We used the beta diversity through plots.py

script to compute beta diversity distances between samples (weighted UniFrac), and to

construct principal component (PCoA) plots, thus accounting for both the phylogenetic

composition (Lozupone et al., 2011) and the relative abundance of taxa. To test for

significant sample groupings based on these distance metrics, we employed PERMANOVA

and PERMDISP using the compare categories.py script in QIIME. We tested whether

the abundance of particular OTUs differed significantly among different substrates using

ANOVA analyses (Bonferonni corrected) with the otu category significance.py script.

OTU networks were constructed using the make otu network.py script in QIIME. We

further visualized the extent to which OTUs were shared or unique among samples using

Cytoscape network layouts (www.cytoscape.org). Finally, we tested for patterns in species

co-occurrence as a function of mussels with a checkerboard score (c-score) analysis using

the oecosimu function (Vegan package) with the ‘quasiswap’ method (99 simulations) for

null model construction (Barberán et al., 2012).

Because nitrogen metabolism in association with animals was demonstrated in these

locales (Pather et al., 2014; Pfister, Altabet & Post, in press), we tested whether taxa known

to be involved in nitrogen metabolic pathways were present using 3 methodologies.

We first examined the taxa identified (down to the level of genus) with the Greengenes

database and 16S data in each sample. From literature reports, we assigned taxa to one of 4

transformations: nitrification (either ammonia oxidation or nitrite oxidation), anammox,

or nitrate reduction via DNRA or denitrification based on genera associated with each

metabolism (Table 1), comparing categories in R (version 2.15, www.R-project.org).

Our second analysis of potential nitrogen cycling used PICRUSt to predict the percent

of sequences associated with nitrogen metabolism in our 16s data (Langille et al., 2013).

Briefly, all OTUs not assigned to the Greengenes database were removed from the OTU

table (closed reference), abundance was normalized by 16s rRNA read number, and

PICRUSt metagenome predictions were calculated (Greengenes May 2013 release). By

inferring the gene families present in our 16s data, we compared whether the different

living and inert substrates on Tatoosh Island differed in the amount of OTUs associated
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Table 1 The genera associated with different microbial nitrogen transformations. The genera as-
sociated with different microbial nitrogen transformations that were searched in all samples via the
Greengenes database. For nitrification, any taxa associated with ammonium or nitrite oxidation are
included, while nitrate reduction includes taxa for denitrification and DNRA. For anammox, we searched
for taxa with “Candidatus” status.

Nitrification Nitrate reduction Anammox

Alcaligenes Azospirillum “Candidatus”

Nitrobacter Campylobacter

Nitrococcus Desulforvibrio

Nitrolancetus Nitratifractor

Nitrosococcus Nitratiruptor

Nitrosolobos Paracoccus

Nitrosomonas Rhodobacter

Nitrosopumilis Sulfospirillum

Nitrosovibrio Wolinella

Nitrospina Vibrioa

Nitrospira

Nitrotoga

Paracoccus

Notes.
a Due to the abundance and functional diversity of the Vibrio genus and the possibility that many Vibrio species are not

involved in nitrate reduction, we did not include Vibrio OTUs in Tables 2 and 3.

with nitrogen metabolism or whether inert substrates in tidepools with or without mussels

differed in the abundance of taxa related to nitrogen metabolism.

The discovery of nitrogen metabolizing taxa with 16S rRNA data require that those

taxa are described and identical or analogous sequences are available. In contrast, shotgun

metagenomics directly identifies the sequence associated with metabolic function. Two of

our samples of M. californianus shells were also shotgun pyrosequenced (Pfister, Meyer &

Antonopoulos, 2010), which allowed us to compare nitrogen metabolisms detected with

shotgun metagenomics with 16S OTU reads and PICRUSt predictions.. We sequenced

the 16S rRNA V4 amplicons using the Illumina platform described above from DNA

archived from a previous extraction from Tatoosh Island, where microbial community

biofilms associated with mussel shell surfaces were extracted and metagenomes sequenced

using 454 GS-flx pyrosequencing (Pfister, Meyer & Antonopoulos, 2010). Briefly, 6 mussels

were collected on 10 April 2008 from 6 tidepools and 6 additional mussels approximately

5 m apart on an adjacent exposed rocky bench. All shells were immediately cleaned

of all soft tissue. Mean shell length was 4.47 cm and 4.42 cm for tidepool and bench

mussels, respectively. We thus compared the 16S rRNA V4 amplicon Illumina sequences

to the shotgun metagenomic pyrosequencing to determine overlaps in key taxa. The

two metagenomes from Pfister, Meyer & Antonopoulos (2010) were reanalyzed using

MG-RAST for all taxonomic matches and using the SEED Subsystems database for

nitrogen metabolism with maximum e-value of e < 10−5 (Meyer et al., 2008 http://

metagenomics.anl.gov/).
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Figure 1 The proportional representation of OTUs and the mean observed OTU richness among
substrates sampled. The proportional representation of OTUs among the major microbial groups
(colored bars), with the overall mean observed OTU richness (+SE) among all substrate types at (A)
Tatoosh Island, and (B) in tidepools where natural rock substrate and coverslips were sampled in the
context of an experimental removal of mussels. The substrates in (A) showed significant differences in
observed richness (ANOVA, F7,16 = 4.968, p = 0.004) with rocks (n = 3), crucible lids (n = 9) and filtered
plankton (n = 3) showing the greatest richness while the lowest observed richness was associated with
mussel gill (n = 3) and siphon (n = 1) tissue. OTU richness of mussel shell (n = 2), anemone (n = 2),
and red algae (n = 2) was intermediate to the others. In (B) Tidepools with mussels removed had greater
OTU richness than those with mussels (Two-Way ANOVA, F1,18 = 12.759, p = 0.002) while rock had
over twice the OTU richness of coverslips (F1,18 = 140.59,p < 0.001); there was no interaction between
substrate and mussel presence.

RESULTS
Some distinction exists among microbial assemblages associated
with different substrates at Tatoosh Island
Between 54,490 and 250,432 sequences per sample were generated for 26 samples from

a range of materials including inert surfaces (rock and glass crucible lids) as well as

mussel shells and tissues, algal fronds, sea anemones, and the filtered plankton. All

samples were rarified to 50,000 sequences per sample. OTU richness (total diversity)

estimates were greatest for inert substrates and the water column, while the lowest

richness was associated with mussel gill and siphon tissue (ANOVA, F7,16 = 4.968,

p = 0.004). Species richness was highly correlated with other metrics of diversity including

chao1 and phylogenetic diversity (r = 0.98 to 0.99, p < 0.001), as was equitability (or

evenness, r = 0.780, p < 0.001). Alphaproteobacteria, including Rhodobacteraceae and

Hyphomonadaceae, dominated the algal Prionitis tissue and the inert substrates, while

Gammaproteobacteria, especially Vibrionaceae, dominated mussel gill and siphon tissue

(Fig. 1). The communities associated with mussel shells, anemones, and filtered plankton

samples were similarly dominated by Gammaproteobacteria. Mussel shells and anemones

similarly had many Vibrionaceae OTUs, with shells also harboring Moritellaceae. OTUs in
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Figure 2 A PCoA of the OTU beta diversity of substrates on Tatoosh Island. A PCoA of the OTU beta
diversity of substrates on Tatoosh Island, demonstrating the clustering among the different microbial
assemblages associated with each substrate. The weighted UniFrac metric was used to incorporate
relative abundance; the first axis explained 40.2% of the variance, while the second explained 14.8%.
Differences among substrates were significant (PERMANOVA, F5,18 = 6.570, p < 0.001), and groupings
that included anemone, Prionitis, mussel shell, mussel tissue, and inert substrates were differentiated
while plankton were indistinguishable from all.

the Psychromonadaceae were prominent in the plankton. Given our use of a 0.7 µM filter,

the OTU richness may be underestimated if the smallest bacteria were not retained.

In addition to differences in alpha diversity, the microbial community composition

and structure on different biotic and inert substrates showed differences in beta diversity.

First, the same substrates clustered in a PCoA analysis based on weighted UniFrac distances

(Fig. 2), e.g., rock substrates clustered with the glass crucibles, while mussel gill and siphon

tissue clustered together. The filtered plankton samples were highly similar to each other,

while the anemone and Prionitis tissues suggest greater differences among individual hosts.

Substrate differences were significant with a permuted ANOVA (F5,18 = 6.570,p < 0.001)

when we grouped substrates into 6 categories (anemone, red alga, plankton, mussel shell,

mussel internal tissue, and inert substrates). Analysis of the differences among those 6

categories showed that each differed significantly from one or several others, except for

filtered POM, which did not statistically differ from any other group.

A second test indicating beta diversity differences among substrates was revealed in an

ANOVA on OTU abundance. There were 10 OTUs that differed significantly in abundance

(Bonferroni corrected ANOVA, p < 0.05, Fig. 3) and these distinctions came primarily

from their abundance in association with macrobiota. For example, Moritella and

Aliivibrio were found on mussel shell and gill tissue, while Cyanobacteria were primarily

associated with algal fronds.
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Figure 3 The relative abundance of the 10 OTUs that differed among the Tatoosh Island sub-
strates. (Boniferroni-corrected ANOVA, p < 0.05).

Further, the beta diversity differences we detected among substrates were a function of

the abundance of OTUs among samples. By comparing OTUs shared between substrates

in a network plot, it was evident that the abundant OTUs that were detected at least 5,000

times were generally common to all substrates (Fig. 4A). In contrast, when we examined

shared diversity among rare OTUs (those detected only 5 to 10 times across the dataset,

Fig. 4B), there was strong differentiation among substrates, indicating that the rare OTUs
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Figure 4 Shared OTU diversity among microbes sampled from the substrate groupings at Tatoosh
Island and portrayed as a spring-embedded layout. Shared OTU diversity among microbes sampled
from the substrate groupings as in Figs. 1–3 at Tatoosh Island and portrayed as a spring-embedded layout,
where OTUs that are in common bring nodes or samples together and OTUs that are distinct repel nodes.
In (A) only common OTUs detected more than 5,000 times are included, while (B) shows only rare OTUs
that were present 5–10 times across the entire dataset.

were responsible for the majority of the compositional differences between the microbial

communities associated with different substrates.

The presence of mussels has little impact on microbial
assemblages in tide pools at Second Beach
In experiments performed at Second Beach, the biogeochemical parameters of tidepools

were affected by the presence or absence of mussels (Table S1). A principal components

analysis that included the ammonium regeneration and removal rates (Pather et al.,

2014), the maximum seawater pH and dissolved oxygen, ammonium, nitrate, nitrite

and phosphorus measured in the tidepools over both daytime and nighttime low tides

indicated that the first principal component explained 81.7% of the variance and differed

among mussel versus no mussel tidepools (p = 0.049, Fig. S1). Rock had more than twice

the microbial diversity of coverslips (Rock = 3,727 OTUs, Coverslips = 1,750 OTUs;

F1,18 = 140.59, p < 0.001), perhaps reflecting greater time in the environment. Both types

of substrata maintained more diverse and equitable community profiles in tidepools where

mussels were removed, than in those with mussels present (Rock = 3,282 OTUs; coverslips

= 1,343 OTUs; Fig. 1B, Two-way ANOVA, F1,18 = 12.759, p = 0.002). However, there

was no interaction between substrate and mussel presence (F1,18 = 0.013,p = 0.909),

indicating that the distinction between microbial communities associated with natural

rock and glass coverslip communities did not depend upon the presence of mussels. The

equitability with which diversity was distributed was strongly correlated with total diversity

(r = 0.920,p < 0.001), indicating that when mussels are removed, the equitability of taxa

also increases. Further, the microbial communities associated with the rock substrate in

tidepools at Second Beach were similar in OTU composition with rock substrate at Tatoosh

Island (Fig. 1A vs. 1B).
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Figure 5 A PCoA of the OTU diversity of tidepool rock versus coverslip substrates at Second Beach,
WA. A PCoA of the OTU diversity of tidepool rock (n = 10) versus coverslip (n = 12) substrates at Second
Beach, demonstrating strong clustering among the microbial assemblages from the two substrates, while
the presence of mussels (filled symbols) versus removal of mussels (open symbols) were not a factor for
explaining beta diversity. Using weighted UniFrac, the first axis explained 46.5% of the variance, while
the second explained 20.3%.

A high degree of OTU sharing and community structure similarity were observed

between microbial communities associated with rock surface or coverslip samples

regardless of whether mussels were present (Figs. 5 and 6); this was supported by the

absence of OTUs with significantly different relative abundances between tidepools with

or without mussels based on Bonferroni-corrected ANOVAs. However, there were fewer

shared OTUs among rock samples when OTUs that were rare were considered against

OTUs that were common (26.7% versus 96.9% shared). There was no relationship in

the degree of OTU sharing with mussel presence or absence. Indeed, in contrast to our

comparison of Tatoosh Island substrates, both rock and coverslip samples showed no

differentiation between common or rare OTUs as a function of mussels, and the clustering

of nodes was highly similar. Further, the presence of mussels was not associated with any

changes in the relative weight of deterministic and stochastic forces governing community

assembly. OTU co-occurrence was significantly non-random on rock surfaces (c-score

analysis; p < 0.01), and this pattern did not change with mussels.

Patterns in the distribution of a subset of taxa involved in nitrogen
metabolism do show responses to the presence of mussels in tide
pools on Second Beach
Nitrifying taxa were at low incidence throughout our samples, while taxa related to

nitrate reduction were found in almost every sample (Table 2). Filtered plankton had

the highest incidence of nitrifying OTUs as a result of the genus Paracoccus. The relatively
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Figure 6 Shared OTU diversity among microbes sampled from tidepool rock versus coverslip sub-
strates in tidepools at Second Beach, WA. Shared OTU diversity among (A) microbes sampled from
tidepool rock versus coverslip (lighter green) substrates and (B) samples distinguished by whether
mussels were present (blue) or absent (red) from tidepools at Second Beach. The spring-embedded layout
shows OTUs that are in common bring nodes or samples together and OTUs that are distinct repel nodes.
Only common OTUs greater than >5,000 are included. Analyses of relatively rare OTUs did not change
the network pattern.

Table 2 The OTUs discovered in each substrate type at Tatoosh Island associated with 3 broad nitrogen transformations. The mean percent of
OTUs discovered in each substrate type that is associated with each of the 3 broad nitrogen transformations (taxa listed in Table 1) or overall nitrogen
metabolism (PICRUSt) at Tatoosh Island. No “Candidatus” were found in the 16S; the anammox category contains Planctomycetes as an estimate
of anammox potential only. Mussel shell samples were analyzed with both the V4 region of the 16S rRNA as well as through shotgun metagenomics.

Nitrification Nitrate reduction Anammox N metabolism

Substrate Substrate type 16s Metagenome 16s Metagenome 16s Metagenome PICRUSt

Mussel siphon biogenic 0.0000 0.0326 0.0008 0.8811

Mussel gill biogenic 0.0000 0.4159 0.0009 0.9295

Mussel shell biogenic 0.0000 0.4604 0.0049 0.9882 0.0043 0.1711 0.8344

filtered plankton biogenic 0.0102 0.1851 0.0391 0.7636

A. elegantissima
(anemone)

biogenic 0.0000 1.8961 0.0804 0.8658

Prionitis (red alga) biogenic 0.0000 0.4278 0.0399 0.6638

rock inert 0.0048 0.0551 0.0390 0.7119

crucible lid artificial 0.0094 0.2120 0.0218 0.6325

high incidence of denitrifying taxa in the anemone Anthopleura was primarily driven by

matches in the Camplyobacteraceae, the group including Campylobacter, a taxon that

harbors nrf genes (Pittman & Kelly, 2005). Although most samples also had genera in

the Planctomycetes, only some are known to perform anammox (Fuerst & Sagulenko,

2011), and these genera were either absent from our samples or characterized as “other

Planctomycetes”. We tallied these OTUs for Table 2, but did not perform statistical analyses

and interpret these with caution. OTUs associated with nitrogen metabolism, as inferred

from PICRUSt, were found across all Tatoosh substrates (Table 2).
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Table 3 OTUs discovered on inert substrates in experimental Second Beach tidepools associated with
3 broad nitrogen transformations. The mean percent of OTUs discovered on inert substrates in exper-
imental Second Beach tidepools that were associated with each of the 3 broad nitrogen transformations
(taxa listed in Table 1) or overall nitrogen metabolism (PICRUSt). p-values are listed for t-tests for a
significant difference on each substrate as a function of mussel presence. The only significant contrast was
the greater incidence of OTUs associated with nitrate reduction on natural rock substrate in tidepools
with mussels.

Tidepool substrates Nitrification Nitrate reduction N metabolism

16s T-test 16s T-test PICRUSt T-test

Natural rock substrate with
mussels (n = 5)

0.0001 0.1890 0.7433

Natural rock substrate
without mussels (n = 5)

0.0011
p = 0.284

0.0151
p = 0.043*

0.7422
p = 0.952

Coverslip with mussels
(n = 6)

0.0004 0.0737 0.7421

Coverslip without mussels
(n = 6)

0.0019
p = 0.456

0.1785
p = 0.471

0.7084
p = 0.218

Notes.
* indicates p < 0.05.

The percentage of taxa associated with nitrogen transformations and residing on

mussel shells was compared between the 16s rRNA amplicon data and existing shotgun

metagenomic data (Pfister, Meyer & Antonopoulos, 2010). The metagenomic data revealed a

greater proportion of nitrogen metabolizing taxa, including taxa that were not observed in

the amplicon data (Table 2). An analysis of SEED Subsystem functions for the two mussel

shell metagenomes yielded estimates of 1.4% and 1.3% of the 68,676 and 63,950 proteins

with functions known to be related to nitrogen metabolism that were discovered in each

sample. The PICRUSt analysis, which inferred functional gene presence, indicated that

0.83% of the OTUs discovered were related to nitrogen function (Table 2), a value closer to

the metagenome discovery rate than our discovery analyzing only the taxa in Table 1 with

16S rRNA data, and likely larger due to the inclusion of many nitrogen-metabolizing taxa

in addition to those in Table 1.

When we compared the presence of OTUs with taxa associated with certain nitrogen

metabolisms (e.g., Table 1) in our experimental tidepools, we found that the presence

of mussels increased the incidence of putative nitrate reducing taxa on rock substrate,

but mussels had no effect on putative nitrifiers (Table 3). The nitrogen metabolisms on

inert substrates that were inferred through PICRUSt also did not differ between tidepools

with or without mussels (Table 3). The maximum dissolved inorganic nitrogen in each

tidepool did not correlate with the observed diversity (r = −0.318,p = 0.371). Over all

46 samples from Tatoosh and Second Beach that we analyzed, the discovery rate of OTUs

with known nitrogen transformations (Table 1) was unrelated to the observed diversity

(r = −0.127,p = 0.399,n = 46).
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DISCUSSION
All sampled substrates had microbial assemblages, which showed variation in important

taxonomic and functional properties. Differences in diversity and OTU composition

may reflect differences in colonization preference, temporal dynamics, the duration in

the environment to accrue microbes, and host-specific interactions on the longer-lived

macrobiota. The red alga, the anemone and the mussels are all long-lived and could

have been present for years prior to our sampling and had ample time to accumulate a

microbial assemblage. The clonal nature of the anemone Anthopleura elegantissima might

even provide nearly immortal tissue for microbial proliferation. Relatively high diversity

on rocks and crucible lids may indicate a number of micro-niches, perhaps as a result of

surface irregularities on these substrates. The biotic substrates we sampled are especially

likely to have a number of microbial niches, including microtopography and strong oxygen

gradients (Heisterkamp et al., 2013).

Similarities between the filtered plankton and the animal tissue may have resulted

from mussel and anemone tissue harboring planktonic microbiota, due to their feeding

activities. Although increased sample size will be needed to quantify the extent of

within-host heterogeneity, the animals we examined were dominated by Gammapro-

teobacteria, including the symbiont-bearing anemone. In contrast, coral reef invertebrates

with eukaryotic photosynthetic symbionts are have been shown to be dominated by

Alphaproteobacteria (e.g., Bourne et al., 2013), suggesting differential colonization drivers

in different symbiont-bearing invertebrates. Nevertheless, many specialized symbionts

of marine bivalves fall within the Gammaproteobacteria (Stewart & Cavanaugh, 2006;

Newton, Girguis & Cavanaugh, 2008).

The great similarity in microbial community structure on inert substrates in tidepools

regardless of the presence or absence of mussels (Figs. 1B, 3, 5 and 6), suggests that the

enhanced nitrogen regeneration and uptake that has been demonstrated with mussels

(Pather et al., 2014) could be due to the microbes on the mussels themselves. The only

important functional difference that we found was a greater incidence of nitrate reducing

taxa on rocks in the presence of mussels (Table 3), a result likely explained by the ability

of mussels to temporarily reduce oxygen levels to the point where reducing processes

are favored. OTUs associated with nitrification did not differ. Although mussel presence

was associated with a decreased alpha diversity on inert substrates (Fig. 1), this did not

lead to significant differences in the network of OTUs that were shared across tidepools

with and without mussels and thus did not affect beta diversity (Fig. 6). Hence, the

macrobiota did not drive any shifts in community structure on nearby inert substrates,

even though tissue-associated microbial communities were significantly differentiated.

Both 16S rRNA and shotgun metagenomic analyses (Table 2) suggest that macrobiota

host OTUs that are important for nitrogen cycling. This corroborates work by Welsh &

Castaldelli (2004) that showed nitrogen metabolism was hosted within a related mussel

species. Similarly, deep-sea mussels are known to host nitrogen-utilizing symbionts (Lee

& Childress, 1995). In contrast with the shell surface microbes, those with mussel gill and

siphon were less diverse (Fig. 1). Thus, the elevated nitrite concentrations in tidepools
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with mussels, suggesting increased nitrification (Pfister, 2007), may be the result of a

direct effect of habitat provisioning for microbes by the macrobiota, rather than simply a

microbial community shift on other substrates due to nutrient provisioning. Alternatively,

the nitrogen increase due to mussels may not be enough to drive microbial community

differences. Indeed, neither microbial community composition nor the expression of

several functional genes in coastal sediments showed major changes in response to

nutrient perturbations (Bowen et al., 2011). Thus, further exploration of macrobiota as the

repository of microbial function, not just as providers of nutrient resources, is warranted.

We note that nitrogen-transforming taxa were found with a higher incidence in the

metagenomic data than the 16S rRNA V4 amplicon sequencing of mussel shells. Although

there are technical differences between the two sequencing methodologies that could lead

to detection differences, such as GC bias (Ross et al., 2013), metagenomic data directly

identify genes for nitrogen transformations that are relatively conserved and identifiable

(independent of host phylogeny), even if the taxa hosting these genes are uncharacterized.

Many of the taxa identified in the amplicon survey are not closely related to cultured

isolates, and their N-cycling status is unknown. Although this limits our ability to infer

function from phylogeny, it nevertheless is an analysis that may become increasingly

insightful as our knowledge of sequence-based diversity increases. While we recognize that

OTU analysis using 16S rRNA data predictions may not yet be the strongest lens to detect

function, the increased characterization of taxa involved in nitrogen metabolisms (Ward,

Arp & Klotz, 2011; Munn, 2011), and the analyses of 16S data with PICRUSt (Table 2)

suggests that functional inference is possible.

Marine microbial community structure has been shown to be composed of a multitude

of rare taxa that have deep phylogenetic differences; the extent to which this ‘rare

biosphere’ (Sogin et al., 2006) drives community function is unknown, though deep

sequencing efforts have revealed that there could be the equivalent of a ‘seed bank’ of

rare taxa that are persistent with only relative abundance changing through time and space

(Lennon & Jones, 2011; Caporaso et al., 2012; Gibbons et al., 2013). In some ecosystems,

rare taxa have also been shown to be as metabolically active as common species (Hamasaki

et al., 2007), suggesting that rarity does not preclude functional importance. Although

seawater and rock had the highest OTU diversity, the differences among filtered plankton

and inert substrates versus biogenic substrates (mussels, seaweed, anemone) sampled in

situ demonstrated that macrobiota enhance beta diversity by hosting unique OTUs (Figs. 3

and 4B), presumably via the provisioning of unique habitats or resources. It is possible

that particular microbial taxa end up in association only with intertidal macrobiota,

though the selectivity of these associations requires further temporal and spatial sampling.

Our results with these benthic macrobiota are, however, in direct contrast to analyses of

seawater where the patterns of beta diversity did not differ among abundant and rare taxa

(Amaral-Zettler et al., 2010).

The demonstration that macrobiota host a unique microbial community compared

to the water around them is supported by this study and other recent work with tadpoles

(McKenzie et al., 2012) and marine algae (Michelou et al., 2013). Although it has been
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recognized for several decades that benthic invertebrates in deep sea environments host

unique taxa e.g., DeChaine & Cavanaugh (2006), it may be that benthic macrobiota

common to large parts of the ocean are also repositories for unique microorganisms

(Grossart et al., 2005; Lee et al., 2011; Bengtsson et al., 2012; Jackson et al., 2012) and loci

for important biogeochemistry (Mart́ınez-Garćıa et al., 2008; Heisterkamp et al., 2013).

The rocky intertidal flora and fauna, though relatively well-understood in terms of the

interactions among macrobiota, likely also interact and mediate productivity via a rich

microbial community that we are just beginning to describe. These intertidal macrobiota

may also harbor a unique set of taxa adapted to host-associated niches, thereby promoting

microbial community diversity in the coastal ocean.
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