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Abstract: It is a known fact that inflammation affects several physiological processes, including
the functioning of the central nervous system. Additionally, impairment of lipid mechanisms/path-
ways have been associated with a number of neurodegenerative disorders and Alzheimer’s Disease
(AD) is  one of them. However,  much attention has been given to the link between tau and be-
ta-amyloid hypothesis in AD pathogenesis/prognosis. Increasing evidences suggest that biological-
ly active lipid molecules could influence the pathophysiology of AD via a different mechanism of
inflammation. This review intends to highlight the role of inflammatory responses in the context of
AD with the emphasis on biochemical pathways of lipid metabolism enzyme, 5-lipoxygenase (5-
LO).
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1. INTRODUCTION
Alzheimer’s Disease (AD) is a destructive neurodegener-

ative disease and a leading cause of dementia in the elderly
population that  declines  memory functions,  decision mak-
ing,  reasoning  ability,  weakens  cognition,  and  causes
changes  in  behavior.  In  2019,  it  was  estimated  by
Alzheimer’s disease international that 50 million people are
living with dementia, a figure which may rise up to 152 mil-
lion by the year 2050 [1].

The two classic major pathological hallmarks of AD in-
clude  amyloid-beta  (Aβ)  accumulation  and  neurofibrillary
tangles  (NFTs)  formation  [2].  Some  new  pathogenic  bio-
markers have shown up which makes it even more challeng-
ing to slow down the progression of AD. Soluble amyloid β
peptide (Aβ) is build up at an early stage that initiates vari-
ous faulty cycles like a decline in synaptic communication,
ruptures  mitochondria,  and  enhances  oxidative  stress  that
causes sustained endoplasmic reticulum (ER) related stress
reaction  [3].  Other  pathological  hallmarks  of  AD,  which
were initially described by Alois Alzheimer, is the higher oc-
currence of ‘lipoid granules’ or ‘adipose inclusions’ suggest-
ing dysregulated lipid metabolism [4]. Inflammation, on the
other hand, is a component of initial innate response that en-
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gages immune cells to the spot of stress mainly through the
chemotactic function of activated chemokines. Furthermore,
the dual involvement of chemokines as pro and anti-inflam-
matory is well evident and must be considered for both clini-
cal  and  immunopathological  approaches  in  AD [5,  6].  Ei-
cosanoids are the signaling molecules and inflammatory me-
diators  that  are  generated  in  the  pathway  of  Arachidonic
Acid  (AA)  metabolism  mediated  by  5  lipoxygenases  (5-
LOs) [7]. These biologically active lipid molecules could ma-
nipulate the working of the central nervous system (CNS) as
well as the pathophysiology of neurodegenerative disorders,
such as AD, via various mechanisms involved in classical in-
flammation and are discussed here.

2. ALZHEIMER’S DISEASE AND AGING
A large number of cases of AD are sporadic, without any

regular genetic expression among different cases. In 2019,
Alzheimer’s Association stated that the signs and symptoms
of AD typically become diagnosable only between the age
of  65-74  years  (3%),  75-84  years  (17%),  and  ≥  85  years
(32%) [1, 2].

Generally,  the  aging  brain  is  correlated  with  the  high
risk of chronic neurodegenerative mechanisms involved in
disease progression [8, 9]. In this view, the biochemical path-
ways suggest that brain aging is associated with the activa-
tion of microglia and persistent brain inflammation results in
neuronal death [10]. Patients with AD go through remark-
able disintegration of neurons, as a result of an extracellular
aggregation of Aβ peptide and intracellular aggregation of
tau protein that leads to the formation of neurofibrillary tan-
gles [11, 12]. Additionally,  it  has  become  evident  by  the
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Fig. (1). Association of 5-Lipoxygenase enzyme (5-LO) in progression of Alzheimer’s disease. FLAP- 5-Lipoxygenase activating protein,
IL- Interleukin, TNFα- Tumour Necrosis Factor alpha, APP- Amyloid Precursor Protein. (A higher resolution / colour version of this figure
is available in the electronic copy of the article).

different  published  studies  that  levels  of  5-lipoxyge-
nase(5-LO)  and  its  metabolites  increase  age  dependently
[13,  14].  Therefore,  aging  and  involvement  of  5-LO have
been considered as potential risk elements for the progres-
sion of AD [15, 16].

3.  MECHANISM  INVOLVED  IN  THE  DEVELOP-
MENT OF ALZHEIMER’S DISEASE

Scientific developments over the past decades have ex-
panded the understanding of cellular and molecular aspects
of AD (Fig. 1). In spite of that, AD remains mainly idiopath-
ic, therefore, treatments and therapies meant to battle the dis-
ease progression successfully are still lacking. Studies under-
standing the  initiation,  progression,  and prevention of  AD
and its  related conditions are limited.  Emerging data indi-
cates that the healthy physiological interactions between neu-
rons, astrocytes, microglia, as well as vascular cells are pre-
requisites for proper brain functioning. Early diagnosis and
therapy can help in protecting neural circuits from damage,
but it may get worse if not treated properly [17].

3.1. Amyloid β Plaques
The irregular breakup of Aβ protein is involved in Aβ re-

lated pathology that gives rise to monomeric form and later
on accumulates to form oligomeric Aβ. These Aβ monomers
combine  with  each  other  and  form Aβ plaques  and  fibrils
[18]. The role of Amyloid precursor protein (APP) is still un-
clear,  but  it  is  expected  to  be  responsible  for  cell  growth
[19].  Generally,  non-amyloidogenic APP proteolysis takes

place with the help of α- secretase or γ-secretase resulting in
the formation of dissoluble fragments [20]. Whenever γ sec-
retase  and  faulty  β-secretase  over-activate  the  cleavage  of
APP, it results in the formation of insoluble peptides of Aβ,
which accumulate to form Aβ plaques in the brain and out-
side  the  neurons  [21-26].  The  exact  function  of  Aβ in  the
pathology of AD is still an unsettled question as plaques of
Aβ may aggregate for up to 10 years without any detectable
symptoms or diagnosis of AD, thus, being the reason for the
development of AD in the aged population.

3.2. Tau Protein and Neurofibrillary Tangles
The presence of NFTs emerges mainly after the tau hy-

perphosphorylation. It is a microtubule linked protein that se-
cures microtubule and its hyperphosphorylation initiated AD
pathology [27,  28].  In the case of AD, phosphorylation of
tau protein takes place at numerous sections leading to the
elimination of tau from the microtubule. This results in the
shrinking  of  microtubule  and  interrupting  various  cellular
functions [29-31]. Moreover, hyper-phosphorylation of tau
results  in  its  accumulation  into  coiled  fragments  that  ulti-
mately give rise to NFTs [32-36]. Tau tangles aggregation
and the weakened cellular actions cause failure in neuronal
structure and nutrient transport, leading to the death of neu-
rons [30]. So far, major approaches were made to target the
inhibition of Aβ plaques and NFTs, which failed in clinical
trials. Therefore, effective treatment modalities targeting the
pathology of AD remain to be resolved and revisited. Thus,
regardless of the broad and dynamic studies, inspecting the
mechanisms  culpable  for  different  pathologies  is  required



Inflammation Drives Alzheimer's Disease Current Neuropharmacology, 2021, Vol. 19, No. 6   887

due  to  the  significant  gap  in  awareness  of  AD  pathology
[37]. The first pathology, as discussed previously based on
the Aβ plaques, may accumulate for up to or more than 10
years without any signs/symptoms of AD before its precise
diagnosis  [38,  39].  NFTs hypothesis  reviewed already ex-
plains, the total load of the tangles is associated with the dec-
line of cognition in AD. Anyhow, the presence of NFTs is
detected before the initiation of AD symptoms in both pre-
clinical studies and non-symptomatic AD cases [40-42].

3.3. Role of Inflammatory Responses
In the past ten years, a third basic pathological element

of  AD has  appeared  that  may be  fruitful  in  understanding
the  pathogenesis  of  AD  and  is  also  associated  with  the
above two basic pathologies. Studies have demonstrated that
in  AD patient’s  brain,  not  only  Aβ  plaques  and  NFTs  are
found, but there is also a constant inflammation led presence
of inflammatory cytokines, such as Interleukin-6 (IL-6), In-
terleukin-1β (IL-1β), and Tumour necrosis factor-α (TNF-α)
[43-45]. Various studies have emerged to investigate the in-
flammatory response in post-mortem tissues of AD patients
and  are  now regularly  looked  at  in  AD-related  preclinical
studies [46, 47].

Anti-inflammatory  cytokines  (IL-4,  IL-10,  and  IL-13)
can activate M2 subtype microglia cells, surrounding amy-
loid neuritic plaques and can also regulate Aβ-induced pro-
duction  of  the  inflammatory  cytokines.  Recent  data  states
that  the  level  of  pro-inflammatory  cytokines  remains  in-
creased in AD brains. IL-1, IL-10, and IL-13, along with TN-
F-α  is  a  potent  inflammatory  cytokine  that  promotes  the
pathophysiological process and triggers signaling pathways
that  can  regulate  various  cellular  mechanism  linked  with
gene  expression,  cell  viability,  synaptic  integrity,  and  ion
homeostasis [6].

Defense mechanism against toxins, infection, and injury
is  well  understood  in  case  of  acute  inflammation  in  the
brain. However, any imbalance between pro-inflammatory
and anti-inflammatory responses leads to chronic inflamma-
tion, which then further activates microglial cells and releas-
es  cytokines  [48-51].  Microglia  are  the  inhabitants  of  im-
mune cells inside the CNS [52]. Microglial cells remain dor-
mant, a ‘relaxing’ state in healthy brains, and are identified
as branched cells with small somas [53, 54]. In this form, th-
ese cell somas remain static. However, these soma cells pre-
pare themselves to expand and retract, inspecting their sur-
roundings and linking with astrocytes and neurons [55-57].
They  serve  as  the  first  line  of  defense  systems  whenever
there  is  a  threat  of  pathogens  or  injury  to  the  brain.  Mi-
croglia get activated in neurodegenerative diseases, tumors,
and stroke,  and these cells  encircle dead or damaged cells
and make area free from cellular debris, a phenotype known
as phagocytic macrophages [58]. In AD, it is predicted that
the  existence  of  Aβ  results  in  the  activation  of  microglial
cells  and  these  microglia  then  move  towards  plaques  and
phagocytose the Aβ [59-61]. The constant activation/reacti-
vation leads to a decline in the microglial  binding and Aβ
phagocytosing activity. In the milieu, the degradation of mi-

croglia  leading  enzyme  activity  conclusively  reduces  the
breakdown  of  Aβ  plaques  [62,  63].  Apart  from  the  mi-
croglia, astrocytes are also considered as one of the most im-
portant  members for  the degradation and clearance of Aβ.
This serves as a trophic aid to neurons and maintains the pro-
tective boundary between neurons and amyloid deposits [64,
65]. In AD, the existence of large numbers of astrocytes cor-
related  with  Aβ  deposits  if  these  would  produce  certain
molecules that help in the recruitment of astrocytes. Howev-
er,  it  is  evidenced  that  engaged  astrocytes  gather  at  Aβ
plaque  vicinity,  leading  to  neuroinflammation  and  subse-
quent neurotoxicity induced by NO in the presence of L-argi-
nine delivering enzyme argininosuccinate synthetase and in-
ducible  nitric  oxide  synthase  (iNOS)  [66].  Another  report
proposed that astrocytes may be responsible as an origin of
Aβ because they reveal an excessive amount of β-site APP
cleaving enzyme 1 (BACE1) as feedback to chronic stress
[65].

4. 5-LIPOXYGENASE AND INFLAMMATION
5-LO  is  a  monomer  protein  comprising  of  673  amino

acids and has been identified in various distinct mammalian
species. Lipoxygenases (LO) are a cluster of iron-enclosed
dioxygenases that catalyse oxidation reaction and add oxy-
gen to AA, docosahexaenoic acid (DHA), and various po-
lyunsaturated fatty acids (PUFA). LO enzymes are found in
different isoforms depending upon the tissue type and their
location,  like epidermis type (LOX-3) or reticulocyte type
(LOX-15). Some LO enzymes catalyze few reactions, such
as the addition of molecular oxygen to AA at carbon 5, 12
and 15 in different ratios in reticulocytes. This results in the
production  of  5-,  12-,  15-  hydroperoxy-  eicosatetraenoic
acid (HPETE) as an end product [67, 68]. Overall, there are
five isoforms of LOs that are expressed in humans/animals:
15-LO, 12-LO, 3-LO, 8-LO, and 5-LO. This naming of the
LOs is based on the position of oxygen added into substrate
like AA [69]. These lipid mediators play an important role
in the oxidative degradation of lipids, converting it into the
peroxide as they exist in animals as well as in vegetal king-
doms [70, 71]. Among all the LOX enzymes, 5-LO is cru-
cial  which  helps  in  the  conversion  of  AA to  5(S)-HPETE
and  leukotrienes  (LTs).  Inflammatory  mediators  like  LTs
and inflammatory eicosanoids act on different receptors and
persuade various responses like leukocytes chemotaxis and
enhanced vascular permeability as well as several effects in
neurons that are even not well known [72-74]. The LTs that
remain present in the brain play a significant role in patho-
logical  alterations  in  brain  tissues  [75,  76].  However,  lag
time is required for the LO enzymes to activate the inactive
ferrous form of the enzyme to the active ferric form. Even
though the analytical performance of the LOs is still argu-
mentative,  its  radical  character  is  generally  determined.
Three  stages  are  involved  in  sequence:  (1)  abstraction  of
stereo-selective  hydrogen  from  a  two  allelic  methylene
group, (2) rearrangement of radicals, and (3) stereo-specific
infusion of the oxygen molecule and decline of hydroperox-
y-radical intermediate to the analogous anion [68].
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Fig.  (2).  Role  of  5-Lipoxygenase  enzyme  (5-LO)  in  inflammation-  Arachidonic  acid  is  the  primary  substrate  which  is  produced  by
metabolism  of  cytosolic  phospholipase  A2  (cPLA2).  5-LO  acts  on  arachidonic  acid  to  releases  5  HPETE  which  metabolizes  to  form
Leukotrienes  (LTA4)  and  5-HETE.  Furthermore,  this  leukotriene  act  on  hydrolase  and  synthase  to  produce  other  leukotrienes  (LTB4,
LTC4). LTB4 bind to their respective receptors which are G-Protein coupled receptors and contributes in inflammation. Leukotrienes LTC4
by incorporating γ Glutamyl transferase-1 pursue to form LTD4 which act on LTD4 dipeptidase to generate LTE4. These leukotrienes collec-
tively called as cysteinyl leukotrienes they bind to their receptors (CysLT1, CysLT2) which are again GPCRs and assist in Chemokine pro-
duction, Immune cell activation and Inflammation. Whereas, 5-HETE which is produced from 5-HPETE in the presence of 5-LO binds to ei-
cosanoid receptors to trigger inflammation. (A higher resolution / colour version of this figure is available in the electronic copy of the arti-
cle).

5.  5-LIPOXYGENASE  AND  CATALYTIC  PATH-
WAYS

Figure 2 illustrates the role of 5-LO and its related cata-
lytic pathways involved in the inflammation. AA is one of
the main free fatty acids (FFA) produced by the metabolism
of  cytosolic  phospholipase  A2  (cPLA2).  In  the  initial  two
steps of biosynthesis, AA is oxidized at Carbon-5 to produce
5-HPETE in the presence of FLAP and 5-LO pursued by suc-
cessive dehydration of hydroperoxide, yielding to an inter-
mediate product LeukotrieneA4 (LTA4) and 5-HETE. Rely-
ing  on  the  accessible  enzymes,  the  extremely  unsteady
epoxide LTA4 either hydrolyzed to LeukotrieneB4 (LTB4) in
the  presence  of  LTA4  hydrolase  or  get  associated  to  glu-
tathione to produce LeukotrieneC4 (LTC4) with the help of
LTC4 synthase. The compound LTC4 is further metabolized
to LeukotrieneD4 (LTD4) and LeukotrieneE4 (LTE4) after suc-
cessful termination of glycine and glutamic acid by glutamyl
transferase and LTD4 dipeptidase [77, 78]. LTB4 receptors in-
clude  Leukotriene  B4  receptor  1  (BLT1)  and  Leukotriene

B4  receptor  2  (BLT2),  Cysteinyl  leukotriene  receptor  1
(CysLT1), and Cysteinyl leukotriene receptor 2 (CysLT2),
which are G-protein coupled receptors and contribute to in-
flammation [79].

On the other hand, inflammatory mediators that are pro-
duced by the 5-LO act on the Oxoeicosanoid receptors. This
includes  eicosanoids  5-HETE  and  5-Oxo-eicosatetraenoic
acid (5-oxo-ETE). The metabolites of 5LO activation pro-
duce  LTs  and  5HETE  that  trigger  chemotaxis  of  immune
cell and are known to be a key player in the pathophysiology
of inflammation in different diseases like asthma and allergy
[80]. Importantly, the expression of 5LO and its metabolic
products increase with an increase in the age of both animals
and humans. The most vulnerable areas like the cortex and
hippocampus are specifically sensitive to neurodegeneration
and are usually found to be rich in 5LO protein levels in AD
[81, 82]. There are numerous elements required by 5LO to
become effective and concurrent to upsurge cellular calcium
ions that  motivate the transfer  of  the enzyme to the mem-
brane from the cytosol. 5LO, in the membrane, is combined
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with  the  integral  membrane  protein,  which  is  commonly
known as FLAP [83, 84]. Apart from oxidation, 5-LO and
its activating protein FLAP play a major role in initiating in-
flammation in AD. Interruption in these pathways lowers the
microglia as well as astrocytes in the animals with AD, as
evident by the immunohistochemical analyses [85]. In addi-
tion, there is a correlated reduction in the levels of pro-in-
flammatory cytokines with the disruption in 5-LO or FLAP.
In the brain ischemia-reperfusion model, it was reported that
the translocation of neuronal 5-LO from the cytosol to the
membrane was followed by the enhanced formation of LTs
[86]. Therefore, inhibition of 5-LO reduces neurodegenera-
tion in the ischemic brain [87].

6. 5-LIPOXYGENASE AND ALZHEIMER’S DISEASE
Various studies strengthen the involvement of 5-LO en-

zymes in the development of AD. This involves a compari-
son between the post-mortem studies of healthy control and
AD brains  and demonstrated  that  the  levels  of  5-LO were
higher in the hippocampus and cortex regions of AD patien-
t’s  brain.  However,  no  significant  change  was  observed
when the assay was carried out between the cerebellum (a re-
gion  lacking  AD pathology)  of  both  the  brains  of  healthy
control and AD [88, 89]. A genetic study conducted on hu-
mans revealed that 5-LO gene polymorphism is linked to ear-
ly and late development of AD. However, large-scale popu-
lace studies are yet to affirm these findings. A separate study
examined the epigenetic flaw of 5-LO in mononuclear pe-
ripheral blood cells of individuals with late development of
AD and age-balanced controls. This demonstrated a remark-
able increase in the expression of the 5-LO gene in AD pa-
tients as compared to the control ones [90-93].

The small protein FLAP triggers the 5-LO enzyme, lead-
ing to a complex formation, which conveniently produces 5-
HPETE from AA that gets converted to LTs. FLAP remains
on the nuclear membrane to behave as a conveyor of LOs
[94]. It seems that both 5-LO and FLAP show a reduction in
the fundamental pathology of AD. At the same time, they re-
duce the oxidative stress and inflammation induced by AD
pathology. The inhibition of the 5-LO pathway in cultured
hippocampal neurons of the rat demonstrated the decrease in
reactive oxygen species (ROS) formation, induced by anti-
bodies and successive calcium dysregulation in the concen-
tration-controlled process [95]. Interruption in the 5-LO path-
way prevented from glutamate-induced excitation toxicity in
rats, particularly in older animals [96]. in vitro studies evi-
denced that over-expression of 5-LO does not result in oxida-
tive stress itself, but when over-expressed in the presence of
Aβ peptides, it lowers the levels of glutathione peroxidase
and catalase enzymes [97]. This was observed that the inhibi-
tion in the pathway of 5-LO by a target inhibitor, pyrazole
CNB-00, prevents the endoplasmic reticulum (ER) abnormal-
ity and toxicity of proteasome, promoted by Aβ peptide pre-
sent in cultured neurons and in-vivo study [98]. Surprisingly,
in in-vitro studies, blockage in FLAP is insufficient to shield
against  oxidative toxicity induced by the peptide Aβ. Evi-
dences suggest that even after the decoupling of 5-LO from
Aβ peptide metabolism, its capability to introduce molecular

oxygen remains protected and preventing pro-oxidative char-
acteristics in a LTs independent manner. However, the fact
is not well understood, and therefore, more research must be
carried  out  to  investigate  this  phenomenon  further.  More-
over, inhibition of LTs is associated with preventing cogni-
tive  loss  provoked by traumatic  injury  of  the  brain  in  rats
due  to  the  genesis  of  oxidative  stress  that  is  a  well-estab-
lished  risk  element  for  AD  [99].  FLAP  protein  targeted
drugs  have  already  been  used  in  humans.  The  agent,
DG-031reduces the risk of myocardial infarction by lower-
ing  the  release  of  LTB4  [100].  An  arthritis  model  showed
that the mice lacking arachidonate 5-lipoxygenase activating
protein (ALOX5ap), a protein-coding gene, does not initiate
antibody accumulation against collagen. Thus, it represents
that 5-LO controls inflammation without disturbing immune
response [101]. Mice lacking ALOXap shows recovered AD
like symptoms [102, 103]. Above evidences indicated that
FLAP and 5-LO are together involved in the LTs pathway in
neurological disorders.

LO  is  not  only  responsible  for  the  synthesis  of  active
lipids but also plays an essential role in oxidizing the lipid
segments in the cell membrane. It produces the activators,
causing structural changes and leading to maturation and dif-
ferentiation of a variety of cells [104]. The mouse has a total
of seven different Los and among these, five different LO
has also been found in humans. This includes 5-LO, 12-LO
(platelet-type and leucocyte-type), and 15-LO, which is di-
vided into subtypes 15-LO-1 (leucocyte-type) and 15-LO-2
(epidermis type) [105, 106].

There  are  various  tissues  in  which  LOs  are  expressed
and involved in different diseases like diabetes (both type1
and  type  2),  kidney  diseases,  atherosclerosis,  and  obesity
[107, 108]. Currently, LOs are expected to play a key role in
the development of neuronal diseases, including AD [90].

Arachidonate 5-Lipoxygenase (ALOX5) has also shown
to play a prominent  role in mediating inflammation in the
brain. Cannabinoid Receptor 2 activation down-regulates 5-
lipoxygenase (Alox5) expression by suppressing the JNK/c-
Jun activation [109, 110].

Besides asthma and inflammatory reactions, the role of
5-LO in the induction or progression of AD is well evident.
In AD, ALOX5 is overexpressed and its importance in neu-
rodegenerative  diseases  needs  to  be  discussed  at  least  in
brief  [111].  Current  research  states  that  ALOX5  lacking
mice show defensive action against anxiety, which may be
due  to  the  modification  in  neuronal  function  by  ALOX5
[112]. Consecutive research was performed on a transgenic
mouse model of AD, which described the efficacy of 5-LO
inhibitor (Zileuton) and predicted that ALOX5 is either in-
volved in the initiation or progression of AD [113].

To  understand  the  role  of  LOs  profoundly,  a  study  in
2004 expressed the very first data that exposed the modified
role of 12-LO in AD using post-mortem autopsy brain analy-
sis [114]. The study highlights that levels of 12/15-LO pro-
tein  are  increased in  the  temporal  and frontal  cortex.  This
rise is a specific hallmark of oxidative degradation of lipids,



890   Current Neuropharmacology, 2021, Vol. 19, No. 6 Siddiqui et al.

isoprostane 8, 12-iso-iPF2aVI, is and conversely associated
with the amount of vitamin E, indicating a notable aspect of
12/15-LO acting as an oxidative stressor. Subsequently, the
excitement  of  12/15-LO leads  to  the  excess  production  of
12/15-HETE in these cortexes, which are parallel with lipid
peroxidation along with the observation of microtubule-asso-
ciated protein tau (MAPT) protein in the cerebrospinal fluid
of patients with AD [115].

Furthermore, the elevated levels of 12/15-HETE were al-
so  observed  in  the  cerebrospinal  fluid  of  the  people  with
mild cognitive defects, stating that 12/15-LO performs a crit-
ical  role  during the progression and in the initial  phase of
AD. In an agreement, the lack of 12/15-LO reduces oxida-
tive stress in the brains of mice deficient with apolipoprotein
E (ApoE) [116].

7.  CURRENT  STATUS  OF  5  LIPOXYGENASE  IN
ALZHEIMER’S DISEASE

The epidemiological  study  indicated  that  patients  with
AD  would  be  a  future  burden  and  an  enormous  national
health threat. In approaching the national health challenge of
AD, currently, narrow options of AD therapy are available.
However,  few  medications  were  made  available  to  the
public after phase II and phase III trials that either inhibit the
enzyme acetylcholinesterase or target N-methyl D-aspartate
(NMDA). But, most of these drugs are used for symptomatic
treatment and are not a promising regimen in the treatment
of AD as their fate is not clear [4, 7]. AD is considered a bur-
den worldwide and there is a shortage of adequate therapeu-
tic agents, therefore, target-oriented research that effectively
acts on AD pathophysiology needs to be prioritized to settle
this  malady.  Many  studies  have  been  performed  to  reveal
the role of LO inhibitors in AD [117, 118]. Selective inhibi-
tion is found to be challenging because of the existence of
many isoforms, and this narrows the successful development
of therapeutic agents. Clinically approved drug-like zileuton
is an anti-asthmatic drug which inhibits 5-LO. The research
has been conducted targeting FLAP for making changes in
5-LO  in  pathophysiological  surroundings.  Fiboflapon  is
another clinically approved FLAP inhibitor that limits LTB4

production  and  other  LTs  [119].  The  curative  effects  of
another drug (NCT01147744) have been confirmed in adults
and juveniles with stubborn asthma [120]. Other FLAP in-
hibitors  like  quiflapon  (MK-  591),  veliflapon  (DG-031),
AZD6642, BRP-7, and BRP-187 are in clinical trials.  The
only FLAP inhibitor,  which successfully  finished phase II
clinical  trials  in  asthma,  to  date,  is  GSK2190918  [121].
Apart from targeting the 5-LO and FLAP, there is another
study  that  focuses  on  NACHT  (NTPase  domain),  LRR
(Leucine-rich repeat), and PYD (Pyrin) domains containing
protein 3, collectively called as cryopyrin. They remain en-
coded by the gene NLRP3 (nucleotide-binding domain like
receptor protein 3). Till now, the discussion has been made
on the role played by Aβ activation that is directly responsi-
ble for the progression of AD. But different studies state that
Aβ ameliorates AD indirectly by activating NLRP3 inflam-
masome, which carries NLRP3, caspase-1, and ASC (Apop-
tosis-associated speck like protein containing a caspase). In

the Aβ plaques of AD models of mice and also in AD pa-
tients,  levels  of  the  cleaved  and  activated  caspase-1  were
found to be elevated [122, 123]. As intracellular deposition
of tau is not a ruling signature of diagnosis, tauopathy is also
considered  to  be  secondary  in  terms  of  AD.  Fundamental
tauopathy, like frontotemporal dementia (FTD), also shows
cognitive defects along with neuroinflammation [124].

8. FUTURE POSSIBILITIES IN ALZHEIMER’S DIS-
EASE

AD is one of the age-related progressive brain illnesses
among the elderly population. The aforementioned report en-
lightened the role of inflammation played in the progression
of AD, apart  from Aβ and tau involvement and also high-
lighted the other elements that contribute to AD pathology.
It  is  evident  through literature  that  LO plays an important
role in AD pathogenesis. Therefore, target-oriented investi-
gation is the need of the hour. Although there are marketed
preparations available for the inhibition of LO enzymes, nat-
ural  compounds  need  more  attention  for  therapy  develop-
ment. The diagnosis of AD is also insufficient and needs to
be addressed to develop biomarker kits that will detect the
early onset of AD. Usually, at the time of diagnosis of AD,
the disease progression to advanced stage is always a con-
cern. There is a need to investigate prognostic biomarkers of
inflammation that will help the researchers in predicting the
disease before it starts which is a greater challenge. Addition-
ally, large scale investigation is required in AD patients and
preclinical animal models to further explore the microglial
signaling pathway and NLRP3 inflammasome activation.

CONCLUSION
In the last decade, understanding of various pathological

changes  in  AD  has  been  greatly  expanded.  However,  tar-
get-based treatment is still lacking and needs to be discussed
thoroughly. The pathological alterations in the brain due to
AD include neurodegeneration,  extracellular  accumulation
of Aβ plaques, and formation of intracellular NFTs of hyper-
phosphorylated protein Tau. The alteration of homeostasis
between inflammatory (IL-1, IL-10, IL-13 and TNF-α) and
anti-inflammatory  cytokines  (IL-4,  IL-10,  and IL-13)  pro-
motes the pathophysiological damages and further triggers
different signaling pathways that can regulate other cellular
mechanisms linked with gene expression, cell viability, sy-
naptic integrity, and ion homeostasis. Along with this, mi-
croglia  (a  glial  cell  type),  that  remain  present  in  the  brain
and spinal cord, act as primary resident immune cell. Inflam-
matory responses due to neurodegeneration further activate
these microglia and clear the debris, including Aβ, by phago-
cytosis.  Also,  astrocytes  gather  at  the  surroundings  of  Aβ
and further produce neuroinflammation and related toxicity.

Importantly, with these pathological changes, 5-LO me-
diated neuroinflammation is a major area of concern in the
development of AD. FLAP is the small protein that triggers
the 5-LO enzyme that produces HPETE and LTs from AA.
Recent evidence undoubtedly suggests that the involvement
of 5-LO promotes both the initiation and progression of dis-
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ease  in  elderly  age.  In  addition,  different  eicosanoids  like
LTs are generated by AA metabolism mediated by 5-LO and
act as inflammatory mediators. This initiates chemotaxis and
enhances vascular permeability in the neuronal cells. The in-
creased expression of 5-LO and its related metabolic prod-
ucts with age are well evident. In a similar context, the inter-
ruption of 5-LO mediated pathways reduces the number of
microglia as well as astrocytes, indicating reduced neuroin-
flammation.

Based  on  these  opportunities,  many  studies  have  been
conducted to develop 5-LO inhibitors in AD. However, se-
lective inhibition is an area of great concern due to the pres-
ence  of  many isoforms of  lipoxygenase.  Undoubtedly,  we
need to explore all the different corners of 5-LO targeted in-
vestigation to add a milestone in the treatment of AD.
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