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Concepts from mathematical crystallography and group theory are used here to quantize the group of rigid-body motions,
resulting in a “motion alphabet” with which robot motion primitives are expressed. From these primitives it is possible to
develop a dictionary of physical actions. Equipped with an alphabet of the sort developed here, intelligent actions of robots in
the world can be approximated with finite sequences of characters, thereby forming the foundation of a language in which robot
motion is articulated. In particular, we use the discrete handedness-preserving symmetries of macromolecular crystals (known in
mathematical crystallography as Sohncke space groups) to form a coarse discretization of the space SE(3) of rigid-body motions.
This discretization is made finer by subdividing using the concept of double-coset decomposition.More specifically, a very efficient,
equivolumetric quantization of spatial motion can be defined using the group-theoretic concept of a double-coset decomposition
of the form Γ\SE(3)/Δ, where Γ is a Sohncke space group and Δ is a finite group of rotational symmetries such as those of the
icosahedron.The resulting discrete alphabet is based on a very uniform sampling of SE(3) and is a tool for describing the continuous
trajectories of robots and humans. An efficient coarse-to-fine search algorithm is presented to round off any motion sampled from
the continuous group of motions to the nearest element of our alphabet. It is shown that our alphabet and this efficient rounding
algorithm can be used as a geometric data structure to accelerate the performance of other sampling schemes designed for desirable
dispersion or discrepancy properties. Moreover, the general “signals to symbols” problem in artificial intelligence is cast in this
framework for robots moving continuously in the world.

1. Introduction

The aim of this paper is to develop a “motion alphabet” with
which robot motion primitives are expressed. From these
primitives one can develop a dictionary of physical actions.
Two main themes from the theory of Lie groups are used
to construct this alphabet (or quantization) and to efficiently
solve the “signals to symbols” problem in this context: (1)
the decomposition of a Lie group into cosets, double cosets,
and corresponding fundamental domains; (2) the possibility
of constructing such fundamental domains as Voronoi or
Voronoi-like cells.

Equipped with an alphabet of the sort developed in this
paper and the associated algorithms for efficiently rounding
off continuous motions to nearby discrete representatives,
intelligent actions of robots in the world can be approximated
with finite sequences of characters, thereby forming the
foundation of a language inwhich robotmotion is articulated.

At the macroscopic scale, the world can be thought of as
continuous. Coarse descriptions of this continuous world are

used by intelligent systems (e.g., humans and computers) to
classify objects, actions, and scenarios. The classical “signals
to symbols” problem in artificial intelligence (AI) seeks to
bin everything in the continuous world into countable classes
characterized by strings of discrete symbols, such as the
letters in an alphabet. In a sense, this is the inverse problem
of what the genetic code does, since the finite alphabet{A,C,G,T} encodes the morphology and metabolism of
every living creature that moves in the continuous world and
processes information with an analog brain.

Discrete alphabets (including the Roman alphabet, the
radicals that form characters in Asian languages, sign lan-
guage, etc.) form the basis for all human languages [1].
All discrete characters can be reduced to a binary code,
e.g., ASCII or Morse code in the case of western letters.
The efficiency of an alphabet (or a code) depends on how
much information can be conveyed with a given number of
symbols, and how difficult it is to convey those symbols. For
example, since the letter “e” is the most often used symbol
in the English language, it is represented by a single “⋅” in
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Morse code. Perhaps the simplest and most widely occurring
motion of a robot is the “nil motion”, or identity element
of the motion group, describing the “home” pose (position
and orientation), which coincidentally can be denoted simply
as “𝑒”. All other elements of our motion alphabet will be
written as a product of the form 𝛾𝛿 where 𝛾 ∈ Γ, a
crystallographic space group, and 𝛿 ∈ Δ, a finite group of
rotational symmetries.

As an example of how discrete symbols classify the world,
consider how each of the following sentences describes a class
of situations in which there is continuous freedom which
becomes more restricted as the number of discrete symbols
increases:

(1) The cat is on the table.
(2) The black cat is sitting on the table.
(3) The black cat is sitting on the table and looking at you.

In (1), the cat could be of any color and lying down, sitting,
or standing in an infinite variety of postures. The color and
posture of the cat get somewhat restricted as the sentences get
longer, but we still do not know how the cat is sitting, what its
tail is doing, how big it is, its weight, the color of its eyes, etc.
Indeed, the sentence would need to be quite long to hone in
onwhat is actually going on, hence the old saying “one picture
is worth a thousand words.”

The basic problem that must be reconciled by intelligent
robots is to approximate, or round off, continuous objects
and actions within a discrete descriptive framework and then
truncate the discrete description at some finite level given
limitations on computational and sensing resources. This is
true in bothmachine-learning (ML) frameworks such as deep
learning and classical AI. A specific kind of rounding off (of
Euclideanmotions) is the main subject of this paper, which is
about making precise the round-off statement

discrete description = [continuous description] (1)

in the context of motions of objects and intelligent agents in
the world.

A real-world problem that can be addressed using this
discrete description of motions is robot motion planning,
which is one of the fundamental topics in the field of
intelligent robotics. It has a wide range of applications such
as autonomous vehicles [2–4], mechanical parts assembly
[5, 6], space on-orbit manipulations [7], and protein folding
[8]. In general, motion planning seeks to answer the query:
“how to plan a path that guides the robot from a given start
pose to an end pose subject to some geometric or dynamical
constraints”. And a popular way that has been applied for
decades is to build a “roadmap” [9], which is basically a
graph structure consisting of valid vertices and edges. A large
number of efficient algorithms have been proposed such as
visibility graph [10], Voronoi graph [11], cell decomposition
[12], probabilistic roadmap [13], and their variants. For a
given environment and constraints (obstacles, nonholonomic
constraints, etc.), a roadmap provides information with
qualified vertices and connectivity among nearby vertices.
And once a query is submitted, graph searching algorithms

give a valid optimal sequence of motions from the roadmap.
Although a roadmap method is able to answer multiple
searching queries, when the environment is changing, those
vertices or edges information needs to be updated. To some
extent, quantizing a continuous motion of the robot from a
predefined motion alphabet is closely related to the roadmap
concept. However, the advantage lies in the storage and
representation of the motion sequences—once a rich library
of alphabets is built a priori, representing differentmotions in
different environment subject to different constraints is just a
matter of combinations and ordering of the alphabet indices.

Themajor contributions of this paper are listed as follows:
(1) A “signals to symbols” framework for Euclidean

motions based on double-coset decomposition is proposed
and its properties are analyzed.

(2) Concrete formulations of the motion alphabet are
constructed through crystallographic symmetry.

(3) Fast decoding algorithms via coarse-to-fine double-
coset decomposition are proposed and numerically verified.

(4) Comparisons with existing methods for discretizing
the Euclidean group and decoding random motions are
performed.

(5) A fast hybrid search method that incorporates some
existing sampling methods for rotation group with good
dispersion or discrepancy properties has been proposed and
verified.

The remainder of this paper is structured as follows: In
Section 2, a review of the immense literature on machine
intelligence as it applies to intelligent robot action in the
world is provided.This is a rapidly changing field and impos-
sible to capture in full detail, but some classical highlights are
covered. Section 3 reviews some relevant aspects of abstract
group theory. This is made concrete in Section 4 which
focuses on the group of rigid-bodymotions. Section 5 reviews
crystallographic symmetry, which is a source of discrete
symbols from which a motion alphabet is constructed. In
Section 6, we develop a motion alphabet by “dividing up”
the group SE(3) of rigid-body motions via fine double-coset
decomposition based on a crystallographic Sohncke space
group and the subgroup of rotational symmetries of the
icosahedron. Section 7 presents other choices for motion
alphabets and solves the decoding problem efficiently by
introducing a coarse-to-fine search scheme. In Section 8,
comparisons with existing methods for sampling rotations
and Euclidean motions are performed, and it is shown how
our alphabet can be used as a geometric data structure
to enhance the speed of these other motion-approximation
methods.

2. Literature Review

This section reviews two largely disjoint areas of the literature:
(1) the interface between group theory and machine learning
and AI; (2) sampling methods and measures of their quality.

2.1. Lie Groups in Machine Learning and AI. The recog-
nition of human (and humanoid-robot) actions has been
studied from many different perspectives including [14–19].
Probabilistic graphical models [20], generative models [21],



Research 3

and recently “SE3-nets” [22] have been used to describe
motion uncertainty in the context of learning. Works on
vision and reasoning use concepts of quotient operations to
mod out irrelevant information [23–25].

Group-theoretic methods (and abstract algebra more
generally) can be found sprinkled throughout the AI litera-
ture [26–32]. Although group theory has long history [33–35],
it is still a useful and popular tool for solving problems related
to motions [36–40].

Of particular importance in the current context is
the relationship between artificial intelligence and machine
learning. AI arose as a branch of cybernetics, focusing on
artificial aspects of reasoning and cognition, thereby leading
to a redefinition of cybernetics to focus on information
and control. Machine learning (and particularly deep neural
networks) led by Hinton, LeCun, Bengio, and others can be
viewed as an alternative to classical AI [41–45]. Recently,
geometric and algebraic methods are being explored in some
forms of machine learning [46–48].

The goal of this paper is to develop an alphabet of basic
motions from which discrete words that capture the essence
of a continuous motion/action are constructed. Throughout
the literature, discretization of motions has attracted sig-
nificant interest, where the Euclidean group is one of the
popular ones [49]. In particular, the uniform sampling of
rotations, either random or deterministic, has a wide range of
applications [50–56]. This is also one of the applications that
this work will address. The discretization of the continuous
motions will generate part of a dictionary. This dictionary
will, in the future, serve as the knowledge base for an expert
system that will enable the robot to function at first use “right
out of the box.”

2.2. Measurements of Sample Quality: Discrepancy, Disper-
sion, Consistency, and Uniformity. Sampling rotations in an
efficient way play important roles in several fields including
computer graphics [50, 57], protein crystallography [58],
molecular physics [59], materials science [60], and robot
motion planning [53, 55].

Several measures of the quality of a finite sampled set
of rotations have been proposed in the literature. One is
discrepancy as defined and used in [53, 61, 62]:

𝐷 (𝑃,R) fl sup
𝑅∈R

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
|𝑃 ∩ 𝑅||𝑃| − 𝑉𝑜𝑙 (𝑅)𝑉𝑜𝑙 (𝑆𝑂 (3))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 , (2)

whereR is a collection of measurable subsets of SO(3), 𝑃 is a
finite set of sample points in SO(3), and |𝑆| is the number of
elements in the finite set 𝑆.This concept was updated recently
to include products of motion groups [63].

Natural measures of distance between rotations, or
between rigid-body motions, can be computed in a variety
of different ways, as reviewed in detail in [64].

Given any such metric, 𝜌 : SO(3) × SO(3) 󳨀→ R≥0, the
dispersion of the points can be computed as

D (𝑆, 𝜌) fl max
𝑅∈𝑆𝑂(3)

[min
𝑅𝑆∈𝑆

𝜌 (𝑅, 𝑅𝑆)] , (3)

where 𝑆 is a set of the sampled elements in SO(3).

In addition to discrepancy and dispersion, many other
measures of sample quality can be defined. For example, a
sampling can be called consistent if the distribution of the
round-off error for any random rotation is concentrated.
Therefore, we define the consistency of a set of samples on
SO(3) as

C (𝑆, 𝜌) fl 𝜎𝑅∈𝑆 {𝑚 (𝑅)} , (4)

where
𝑚(𝑅) fl min

𝑅𝑆∈𝑆−{𝑅}
𝜌 (𝑅, 𝑅𝑆) (5)

and 𝜎 is the standard deviation of the set of distances between
each sample point and its nearest neighbor. Here a low value
of C(𝑆, 𝜌) indicates high consistency. For example, if C(𝑆, 𝜌)
is zero, then every point in the set has nearest neighbors of
the same distance.Moreover, if each point in the set hasmany
neighbors that achieve theminimal value of distance, then the
set 𝑆 has a high level of uniformity, which can be quantified
as follows. For each 𝑅 ∈ 𝑆 compute the subset 𝐴𝑅 ⊂ 𝑆 as

𝐴𝑅 fl {𝑄 ∈ 𝑆 : 𝜌 (𝑅, 𝑄) = 𝑚 (𝑅)} . (6)

Then the cardinality of this set measures the number of
equally close nearest neighbors to 𝑅, and uniformity weights
this by the spread of this number:

U (𝑆, 𝜌) fl min𝑅∈𝑆
󵄨󵄨󵄨󵄨𝐴𝑅󵄨󵄨󵄨󵄨1 + max𝑅∈𝑆

󵄨󵄨󵄨󵄨𝐴𝑅󵄨󵄨󵄨󵄨 − min𝑅∈𝑆
󵄨󵄨󵄨󵄨𝐴𝑅󵄨󵄨󵄨󵄨 , (7)

where a high value indicates high uniformity. The numerator
reflects the number of nearest neighbors for the worst sample,
and the denominator reflects the spread (with 1 included
since the difference between max and min can be zero).

For example, an integer lattice in 3DEuclidean space has a
high level of uniformity with regard to the Euclidean metric,
with each point having six nearest neighbors, each with the
same minimized value of distance, and so C(𝑆, 𝜌) = 0 and
U(𝑆, 𝜌) = 6. A spherical close-packing can have an even
higher value ofU(𝑆, 𝜌).
3. Some Relevant Aspects of Group Theory

The alphabets constructed in this paper consist of carefully
chosen elements of the group of rigid-body motions, drawn
from fundamental domains of double-coset spaces. Since this
terminology might not be familiar to some readers with an
interest in the topic, the relevant concepts from group theory
are reviewed here.The concept of a group itself is assumed to
be known.

3.1. Definitions and Properties. Let a group 𝐺 and a subgroup𝐻 < 𝐺 be given. For an element 𝑔 ∈ 𝐺, the corresponding left
coset is defined as

𝑔𝐻 fl {𝑔ℎ : ℎ ∈ 𝐻} . (8)

Analogously, the respective right coset is defined as

𝐻𝑔 fl {ℎ𝑔 : ℎ ∈ 𝐻} . (9)
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A subgroup 𝑁 < 𝐺 is called a normal subgroup of 𝐺 if it
is conjugated to itself; 𝑖.𝑒., 𝑔𝑁𝑔−1 = 𝑁 for all 𝑔 ∈ 𝐺. If 𝑁 is
both a normal and a proper subgroup of 𝐺, then it is denoted
as 𝑁 ⊲ 𝐺.

A group can be divided into cosets (left or right), all with
the same number of elements, and the set of all these cosets
is called a coset space. In general, the left-coset space

𝐺/𝐻 fl {𝑔𝐻 : 𝑔 ∈ 𝐺} (10)

and the right-coset space

𝐻\𝐺 fl {𝐻𝑔 : 𝑔 ∈ 𝐺} (11)

are different from each other, except when 𝐻 is normal in G
(𝐻 ⊲ 𝐺), in which case 𝑔𝐻 = 𝐻𝑔 for all 𝑔 ∈ 𝐺. In this special
case 𝐺/𝐻 = 𝐻\𝐺 š 𝐻/𝐺 is a factor (or quotient) group.

Given two subgroups 𝐻,𝐾 < 𝐺, it is also possible to
define double cosets

𝐻𝑔𝐾 fl {ℎ𝑔𝑘 : ℎ ∈ 𝐻, 𝑘 ∈ 𝐾} , 𝑔 ∈ 𝐺, (12)

and the corresponding double-coset space,

𝐻\𝐺/𝐾 fl {𝐻𝑔𝐾 : 𝑔 ∈ 𝐺} . (13)

Given a left-coset decomposition with respect to a sub-
group 𝐻, it is possible to define a (nonunique) fundamental
domain

𝐹𝐺/𝐻 ⊂ 𝐺 (14)

consisting of exactly one element per left coset. Since a group
can be partitioned into disjoint cosets, it is

𝐺 = ⋃
𝑔∈𝐹𝐺/𝐻

𝑔𝐻 (15)

and

𝐺 = ⋃
ℎ∈𝐻

𝐹𝐺/𝐻ℎ (16)

(and analogously in the right-coset case [65]). It is important
to note that we are generally dealing with unions of disjoint
sets in this paper. When𝐻 ⊲ 𝐺, such fundamental domain is
a group with respect to the original group operation modulo𝐻, and this group is isomorphic to 𝐺/𝐻.

Given two subgroups 𝐻,𝐾 < 𝐺, the corresponding
double-coset decomposition is

𝐺 = ⋃
𝑔∈𝐹𝐻\𝐺/𝐾

𝐻𝑔𝐾 (17)

and we further have that

𝐺 = ⋃
ℎ∈𝐻

⋃
𝑘∈𝐾

ℎ𝐹𝐻\𝐺/𝐾𝑘, (18)

where 𝐹𝐻\𝐺/𝐾 is a fundamental domain for the double-
coset space 𝐻\𝐺/𝐾 consisting of exactly one element per
double coset. When 𝐺 is a Lie group (i.e., when 𝐺 has

the structure of a differentiable manifold, and when further
the group operation and inversion are compatible with this
smooth structure) and𝐻,𝐾 are discrete subgroups, then such
fundamental domains 𝐹𝐺/𝐻 and 𝐹𝐻\𝐺/𝐾 will have the same
dimensionality as 𝐺, but smaller volume.

When𝐺 is a Lie group, one way to construct fundamental
domains is as Voronoi-like cells: Since 𝐺 is a smooth mani-
fold, a proper distance function (metric) 𝜌 exists, and we can
define

𝐹∘𝐺/𝐻
fl {𝑔 ∈ 𝐺 : 𝜌 (𝑒, 𝑔) < 𝜌 (𝑒, 𝑔ℎ) for all ℎ ∈ 𝐻\ {𝑒}} ,

𝐹∘𝐻\𝐺
fl {𝑔 ∈ 𝐺 : 𝜌 (𝑒, 𝑔) < 𝜌 (𝑒, ℎ𝑔) for all ℎ ∈ 𝐻\ {𝑒}} ,

(19)

where 𝑒 is the identity element of 𝐺, and when 𝐻 ∩ 𝐾 = {𝑒},
𝐹∘𝐻\𝐺/𝐾 fl {𝑔 ∈ 𝐺 : 𝜌 (𝑒, 𝑔) < 𝜌 (𝑒, ℎ𝑔𝑘) for all (ℎ, 𝑘)

∈ 𝐻 × 𝐾\ {(𝑒, 𝑒)}} . (20)

Above we have defined the interior of fundamental domains.
The union of the corresponding shifts of these open sets
will not in general completely exhaust G (cf. (16) and (18)).
However, a set of measure zero will at most bemissing, which
is not relevant for our practical purposes.

A unimodular Lie group𝐺 is one for which there exists an
integration measure, 𝜇, or equivalently a volume element 𝑑𝑔,
such that for every integrable function 𝑓 : 𝐺 󳨀→ R,

𝜇 (𝑓) fl ∫
𝐺
𝑓 (𝑔) 𝑑𝑔 = ∫

𝐺
𝑓 (𝑔0𝑔) 𝑑𝑔

= ∫
𝐺
𝑓 (𝑔𝑔0) 𝑑𝑔 = ∫

𝐺
𝑓 (𝑔−1) 𝑑𝑔.

(21)

In the case of a compact Lie group such as 𝐺 = 𝑆𝑂(3), 𝜇(1) =𝑉𝑜𝑙(𝐺).
In terms of 𝑍𝑋𝑍 Euler angles (𝛼, 𝛽, 𝛾), it is well known

that the volume element for SO(3) is [64]

𝑑𝑔 = sin𝛽𝑑𝛼𝑑𝛽𝑑𝛾. (22)

Consequently, sampling uniformly in Euler angles leads to
clumping of samples around𝛽 = 0 and𝜋, and under sampling
near 𝛽 = 𝜋/2.

Some authors therefore sample 𝛽 nonuniformly, by
making a change of coordinates as 𝛽 = cos−1(𝑥). Then
sin𝛽 = √1 − 𝑥2, and |𝑑𝛽/𝑑𝑥| = 1/√1 − 𝑥2. This results
in equivolumetric portioning of 𝑆𝑂(3) in the coordinates(𝛼, 𝑥, 𝛾) with volume element 𝑑𝑔 = 𝑑𝛼 𝑑𝑥 𝑑𝛾.

However, equipartitioning into units of equal volume is
not the same as equipartitioning into units of equal shape.
One attempt to partition based on shape arose nearly 50
years ago in the context of protein crystallography, where
Lattman [58] realized that the metric tensor for SO(3) as
expressed in Euler angles (𝛼, 𝛽, 𝛾) could be diagonalized by
changing to (𝛼󸀠, 𝛽󸀠, 𝛾󸀠) fl (𝛼+𝛾, 𝛽, 𝛼−𝛾).This diagonalization
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does not change the volume element, which remains 𝑑𝑔 =
sin𝛽󸀠 𝑑𝛼󸀠 𝑑𝛽󸀠 𝑑𝛾󸀠.

Group theory has been a cornerstone in all areas of
the physical sciences including crystallography, classical
mechanics, quantum mechanics, chemistry, and particle
physics. Moreover, in classical works on finite automata
theory, attempts were made to incorporate the theory of
finite groups [26–28]. Many roboticists and computer vision
researchers know about the special Euclidean group SE(3),
which is a Lie group that describes rigid-body motions. This
will be discussed later, after first reviewing the group of pure
rotations.

3.2. A Concrete Example: The Rotation Group. In the follow-
ing, the abstract definitions are illustrated with a concrete
example. The set of 3 × 3 rotation matrices is called the
special orthogonal group and is denoted as SO(3). That is,

SO (3) fl {𝑅 ∈ R
3×3 : 𝑅T𝑅 = I and det𝑅 = 1} , (23)

where I is the identity matrix. Here the group operation is
simply matrix multiplication. It is not difficult to show that
I is the group identity, given any two 𝑅1, 𝑅2 ∈ SO(3) that
the matrix product 𝑅1𝑅2 ∈ SO(3), and that 𝑅−1 = 𝑅T is the
inverse of 𝑅 ∈ SO(3).

Explicitly for SO(3), elements of the associated Lie algebra
so(3), which correspond to infinitesimal rotations, are skew-
symmetric matrices

𝑋 = [[
[

0 −𝑥3 𝑥2𝑥3 0 −𝑥1−𝑥2 𝑥1 0
]]
]

, (24)

and thematrix exponential (or exponential)map gives

𝑅 (𝑥) = exp (𝑋) = I + sin ‖𝑥‖2‖𝑥‖2 𝑋 + 1 − cos ‖𝑥‖2‖𝑥‖22 𝑋2, (25)

where 𝑥 = (𝑥1, 𝑥2, 𝑥3)T š 𝑋∨ is the dual vector correspond-
ing to𝑋.The opposite operation gives 𝑥̂ fl 𝑋.The parameters𝑥1, 𝑥2, and 𝑥3 can be thought of as Cartesian coordinates
in the Lie algebra so(3), and when these coordinates are
restricted to the range ‖𝑥‖2 ≤ 𝜋, they can be used to
parameterize all of SO(3) through the exponential map.
When ‖𝑥‖2 = 𝜋 the point is at the boundary. In such a case
𝑥 and −𝑥 describe the same rotation, and so one model for
SO(3) is that of a solid ball of radius𝜋 in Euclidean space, with
antipodal points identified as being equivalent, or “glued.”

The inverse map for each is the matrix logarithm. This
degenerates when the rotation angle 𝜃 fl ‖𝑥‖2 is 𝜋. By
restricting the discussion to the case when 𝜃 < 𝜋, the
logarithm is uniquely defined on a subset of SO(3) depleted
by the set of measure zero defined by 𝜃 = 𝜋. This depletion
will have no effect on our formulation. Indeed, we can define
the metric

𝜌 (𝑅1, 𝑅2) fl 󵄩󵄩󵄩󵄩󵄩log∨ (𝑅T
1𝑅2)󵄩󵄩󵄩󵄩󵄩2 (26)

when 𝑅T
1𝑅2 is not a rotation by 𝜋, and otherwise 𝜌(𝑅1, 𝑅2) fl𝜋.

It is interesting to note that the above distance function 𝜌
for SO(3) is bi-invariant; i.e.,
𝜌 (𝑅1, 𝑅2) = 𝜌 (𝑅𝑅1, 𝑅𝑅2) = 𝜌 (𝑅1𝑅, 𝑅2𝑅) ,

𝑅 ∈ SO (3) . (27)

Using this particular metric 𝜌 it is possible to construct
Voronoi cells (in the classical sense) in SO(3) for fundamental
domains 𝐹𝐻\SO(3) and 𝐹𝐻\SO(3)/𝐾, because then (19) and (20)
become

𝐹∘SO(3)/𝐻 = 𝐹∘𝐻\SO(3)
= {𝑅 ∈ SO (3) : 𝜌 (𝑅, I) < 𝜌 (𝑅, ℎ) for all ℎ ∈ 𝐻\ {I}} (28)

and

𝐹∘𝐻\SO(3)/𝐾 = {𝑅 ∈ SO (3) : 𝜌 (𝑅, I)
< 𝜌 (𝑅, ℎ𝑘) for all (ℎ, 𝑘) ∈ 𝐻 × 𝐾\ {(I, I)}} , (29)

respectively.
Of particular interest to us are the cases where 𝐻 is

one of the finite groups of rotational symmetries of the
Platonic solids. This is shown in Figure 1 (see also [54]). In
this figure the fundamental domains 𝐹𝐻\SO(3) are depicted
in exponential coordinates in so(3) (identified with a ball of
radius 𝜋, as explained above). Note that this is a conceptual
plot, since actually the edges and faces of these Voronoi cells
are slightly bent.Thenumber |𝐻| of elements in𝐻 is 12 for the
group of tetrahedral, 24 for the group of octahedral, and 60
for the group of icosahedral rotational symmetries. By the left
(or right) action of𝐻 on the respective fundamental domain,
it is possible to (almost completely) cover SO(3); cf. (16).

The coset spaces resulting from quotienting the rotation
group by discrete subgroups have been studied in the pure
mathematics literature under the names “spherical space
forms” [66] and Poincaré homology 3-spheres [67]. The
geometric and topological properties of these manifolds are
related to how the opposing faces of our tiles can be glued
together.

If𝐻 is the group of rotational symmetry operations of the
icosahedron, then |𝐻| = 60 and 𝐹𝐻\SO(3) can be viewed as
a dodecahedral cell centered at the origin of the Lie algebra
so(3) (see Figure 1, right). If we choose the second subgroup𝐾 to be a conjugated group of the tetrahedral, octahedral,
or icosahedral symmetries (i.e., 𝐾 fl 𝑔𝑃𝑔−1, where 𝑃 is the
group of the rotational symmetries of the respective Platonic
solid and 𝑔 ∈ SO(3) is chosen such that 𝐻 ∩ 𝐾 = {I}),
then the Voronoi cell 𝐹𝐻\SO(3)/𝐾 takes a shape as exemplarily
shown in Figure 2. On the other hand, if we choose 𝐾 fl 𝐻,
then 𝐹𝐻\SO(3)/𝐻 cannot be constructed as a Voronoi cell, but
it can be chosen as an irregular tetrahedron (the ruby region
in Figure 3), yielding a subdivision of the dodecahedral cell𝐹𝐻\SO(3) by conjugation of the tetrahedron with the elements
in 𝐻. Note that such conjugation has the effect of rotation
in so(3) since log∨(𝑔𝑅𝑔−1) = 𝑔 log∨𝑅. Similarly, if 𝐾 <𝐻, then a |𝐾|-fold division of 𝐹𝐻\SO(3) can be computed to
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Figure 1: Fundamental domain 𝐹𝐻\SO(3) with 𝐻 as the group of (from left to right) tetrahedral, octahedral, and icosahedral symmetries,
constructed as Voronoi cells, viewed in exponential coordinates.
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Figure 2: Center Voronoi cell 𝐹𝐻\SO(3) in coset space (emerald region) with 𝐻 as the group of icosahedral symmetries, and center Voronoi
cell 𝐹𝐻\SO(3)/𝐾 in double-coset space (ruby region) with 𝐻 as the group of icosahedral symmetries for all cases and 𝐾 as a conjugated group
of (from left to right) tetrahedral, octahedral, and icosahedral symmetries, respectively.

represent 𝐹𝐻\SO(3)/𝐾, and 𝐹𝐻\SO(3) can be reconstructed from
these pieces, again by conjugation.

When choosing 𝐻 to be icosahedral and 𝐾 = 𝐻 or 𝐾 =𝑔𝐻𝑔−1, this means that we can divide SO(3) into 3600 pieces
of equal size. The 3600 respective barycentric or Voronoi
centers of these cells can be taken as a discretization of SO(3),
and any of these centers can be written in a unique way as𝑅𝑖𝑗 = ℎ𝑖𝑘𝑗 where (ℎ𝑖, 𝑘𝑗) ∈ 𝐻 × 𝐾 with 𝑖, 𝑗 ∈ {1, 2, . . . , 60}.
This means that any one of the 3600 points 𝑅𝑖𝑗 corresponds
to a two-letter word (ℎ𝑖, 𝑘𝑗).

A natural question to ask is then, for 𝑅 ∈ SO(3), how
do we find the closest word (ℎ𝑖, 𝑘𝑗) to approximate it? This
decoding or “signals to symbols” problem is addressed in
Section 7.1.

4. Rigid-Body Motions as a Group Used for
Framing Robots

Given any rigid object or multi-rigid-body actor (such as a
human, robot, self-driving car, or smart house), the behavior

and use of this item involve the time evolution of its confor-
mation and its overall position and orientation, or “pose”.
A common descriptive framework for both the internal
(conformational) degrees of freedom and their relative pose
(configuration) is to attach reference frames on each rigid
component.

Let 𝑔 = (𝑅, 𝑡) denote a rigid-body motion relative to
a reference frame fixed in space, where 𝑅 ∈ SO(3) is a
rotation matrix and 𝑡 ∈ R3 is a translation vector. The set
of all such motions forms a six-dimensional Lie group, the
special Euclidean group 𝑆E(3). This is a group because the
composition operation

𝑔1𝑔2 = (𝑅1, 𝑡1) (𝑅2, 𝑡2) fl (𝑅1𝑅2, 𝑅1𝑡2 + 𝑡1) (30)

satisfies the properties of closure and associativity, the iden-
tity exists and is simply 𝑒 = (I, 0) (with zero translation), and
the inverse of 𝑔 is 𝑔−1 = (𝑅T, −𝑅T

𝑡). Note that SE(3) is not
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Figure 3: Dodecahedral cell 𝐹𝐻\SO(3) (emerald region) and tetra-
hedral wedge 𝐹𝐻\SO(3)/𝐻 (ruby region), with 𝐻 as the group of
icosahedral symmetry. The dodecahedral cell can be decomposed
into 60 identical tetrahedral wedges, with five packed on each
pentagonal face.

commutative (Abelian). The group operation is the same as
multiplying homogeneous transformation matrices; i.e.,

𝐻(𝑔1𝑔2) = 𝐻 (𝑔1)𝐻 (𝑔2) ,
where 𝐻(𝑔) fl [ 𝑅 𝑡

0T 1 ] . (31)

In the case of planar motions, we deal with the special
Euclidean group SE(2), where 𝑅 ∈ SO(2) is parameterized by
a single angle 𝜃, and 𝑡 ∈ R2 has components (𝑥, 𝑦), totalling
three degrees of freedom. SO(2) is the group of rotations
in R2, defined analogously to (23). In general, SE(𝑑) is an
example of an outer (or external) semidirect product which
combines the two groups (R𝑑, +) and SO(𝑑) into the new
group

SE (𝑑) fl SO (𝑑) ⋉ R
𝑑. (32)

The underlying set of this group is the Cartesian product
SO(𝑑) × R𝑑, but the symbol ⋉ reflects the fact that the group
operation is not simply (𝑅1, 𝑡1)(𝑅2, 𝑡2) = (𝑅1𝑅2, 𝑡1 + 𝑡2),
which is also a group (called the direct product), but does not
reflect the way that rigid-body motions work.

The next section reviews the handedness-preserving
(Sohncke) crystallographic space groups, which are discrete
subgroups of SE(3) and which form an important component
of the motion alphabets developed in this paper.

5. Crystallographic Groups

A crystallographic group is a discrete (and also cocompact)
subgroup of the Euclidean group E(𝑑) fl O(𝑑) ⋉ R𝑑, where
O(𝑑) is the orthogonal group consisting of all orthogonal real-
valued 𝑑 × 𝑑 matrices (defined as in (23) for 𝑑 = 3, but also

allowing det𝑅 = −1 there). In addition to rotations, the group
O(𝑑) also contains reflections and rotoreflections (improper
rotations). If 𝑑 = 3, a crystallographic group is commonly
called a space group, for 𝑑 = 2, it is referred to as a wallpaper
group. The literature on mathematical crystallography is
immense and spans many decades. Some notable introduc-
tions include [68–71]. The relationship between torsion-free
crystallographic groups (i.e., Bieberbach groups; see below)
and flat manifolds has been studied extensively [72–76].

Elements of a crystallographic group Γ can be expressed
as pairs

𝛾 = (𝑅𝛾, 𝑡𝛾 + 𝑣 (𝑅𝛾)) , (33)

where𝑅𝛾 ∈ P (a discrete point group, i.e., a subgroup ofO(𝑑)),
𝑡𝛾 ∈ L (a lattice inR𝑑), and 𝑣 : P 󳨀→ R𝑑. In particular, 𝑣 is the
translational part of a glide-reflection or screw-displacement
lattice motion. In general 𝑣 will satisfy the cocycle identities

𝑣 (I) = 0,
𝑣 (𝑅𝛾1𝑅𝛾2) = (𝑅𝛾1𝑣 (𝑅𝛾2) + 𝑣 (𝑅𝛾1))mod𝑇, (34)

where 𝑇 fl {I} ⋉ L is the subgroup of pure (or primitive)
translations in Γ, which is always normal (𝑇 ⊲ Γ). The
“mod𝑇” removes components in the sum that are in 𝑇, in
analogy with, for example, (1 + 5)mod 4 = 2 in modulo-4
arithmetic.

If an element 𝛾 ∈ Γ\{𝑒} is of finite order (i.e., if there exists
an 𝑛 ∈ N such that 𝛾𝑛 = 𝑒), it is called a torsion element. The
group Γ is called torsion-free (or aBieberbach group) if it is free
of torsion elements.This is equivalent to the property that no
element 𝛾 ∈ Γ other than the identity 𝑒 has a fixed point (i.e.,
a point 𝑝 ∈ R𝑑 with 𝛾𝑝 = 𝑝). If 𝑣 ≡ 0 in (33), then Γ can be
written as the semidirect product Γ = P ⋉ L and the group is
called symmorphic. Of the 230 possible types of space groups,
73 can be decomposed in this way. These are the symmorphic
space groups. Bieberbach groups are not symmorphic.

In the theory of crystallographic groups, a well-known
isomorphism is due to the above-mentioned fact that the
translation subgroup 𝑇 of Γ is normal:

Γ𝑇 ≅ P. (35)

Moreover, it can be shown thatP is not only discrete, butmust
be finite. In the case 𝑑 = 3 the point group P will belong to
one of 32 discrete crystallographic point groups that constitute
the so-called crystal classes.

In the context of space groups, we can distinguish
between Bieberbach (i.e., torsion-free) groups as one
extreme, and groups which contain only the identity and
torsion elements (rotations, reflections, and improper
rotations) as the other extreme, with all other space groups
lying somewhat “in between.” For a symmorphic space
group Γ, a Bieberbach subgroup ΓB < Γ with minimum index
in Γ is the subgroup 𝑇 of primitive translations; for many
nonsymmorphic space groups, on the other hand, there is
a Bieberbach subgroup ΓB with index [Γ : ΓB] < [Γ : 𝑇]
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allowing for a decomposition of Γ as a group product [77, p.
719]

Γ = ΓB𝑆 fl {𝛾B𝑠 : 𝛾B ∈ ΓB, 𝑠 ∈ 𝑆} , (36)

where 𝑆 < Γ is a proper subgroup of P ⋉ {0} < E(3), and
thus ΓB ∩ 𝑆 = {𝑒}. If ΓB ⊲ Γ, then (36) is an inner (or
internal) semidirect product (Γ = ΓB ⋊ 𝑆). In this case, the
decomposition 𝛾 = 𝛾B𝑠 is unique for each 𝛾 ∈ Γ. Another
useful property is that each of the 65 Sohncke space groups
(i.e., handedness-preserving space groups Γ < SE(3)) can be
written as a product

Γ = ΓBΓS fl {𝛾B𝛾S : 𝛾B ∈ ΓB, 𝛾S ∈ ΓS} , (37)

where ΓB and ΓS are, respectively, Bieberbach and symmor-
phic subgroups (see [77, Thm. 3]). If ΓB ∩ ΓS = {𝑒} and ΓB orΓS is normal, then (37) is an inner semidirect product, and for
every 𝛾 ∈ Γ there exist unique 𝛾B ∈ ΓB and 𝛾S ∈ ΓS such that𝛾 = 𝛾B𝛾S. If both ΓB and ΓS are normal, then Γ is decomposed
into the inner direct product Γ = ΓB × ΓS.
6. A Motion Alphabet Based on a Fine
Double-Coset Decomposition

Theessence of language is communicating information about
the continuous world using a finite number of symbols,
characters, or patterns. In the same spirit, in classical AI, a
fundamental goal is to convert perceptual information from
the continuous world to strings of symbols drawn from a
finite alphabet, so that the machinery of finite-state automata
reasoning can be applied. Every action of a robot in the
physical world can be described as a sequence of paths in
SE(3). Such paths are continuous mathematical trajectories
which can be viewed as “signals”.

A fundamental problem in AI and sensory perception
is the so-called “signals to symbols” problem [78–80], in
which observations in the continuous world are converted
to coarsified representations (i.e., symbols), on which AI
systems can execute logical reasoning algorithms. A natural
way to discretize the space of paths is to first discretize time,
thereby reducing the infinite dimensions of the path space
to a finite number of dimensions, and then to replace each
sampled pose on the path with a rounded-off version in a
discrete set (the alphabet of maneuvers). Because SE(3) does
not have dense subgroups, a clever discretization needs to be
constructed.

In the three-dimensional case, one of the finest space
groups is Γ = P432which has a total of 24 rotational elements
corresponding to the rotational symmetry operations of a
cube (cf. [69, p. 634f]).Therefore, if wewant to quantize rigid-
body motions with a resolution that is reasonable for real-
world tasks, something finer than rounding off to the nearest
element of Γ is necessary.

Building on ideas introduced in the context of protein-
packing models in X-ray crystallography [55, 65, 77, 81, 82],
we can augment Γ by an auxiliary discrete rotation group. For
example, let Δ denote the group of rotational symmetries of
the icosahedron (as a discrete subgroup of SE(3)). Δ has 60

elements, and there is no lattice of discrete translations that
corresponds to it. In particular, Γ, Δ < SE(3) and Γ ∩ Δ ={𝑒}, the identity element. This means that the double-coset
space Γ\SE(3)/Δ is a compact Riemannian manifold. It is
possible to define a compact fundamental domain𝐹Γ\SE(3)/Δ ⊂
SE(3) using (20). Restricting the quotient map from SE(3)
to Γ\SE(3)/Δ to the fundamental domain 𝐹Γ\SE(3)/Δ then
gives a bijective (i.e., one-to-one) mapping from 𝐹Γ\SE(3)/Δ toΓ\SE(3)/Δ. Moreover, the action of Γ (from the left) and Δ
(from the right) gives a way to tile SE(3) with disjoint shifts
of 𝐹Γ\SE(3)/Δ, because (cf. (18))

SE (3) = ⋃
𝛾∈Γ

⋃
𝛿∈Δ

𝛾𝐹Γ\SE(3)/Δ𝛿. (38)

Intensive study of the fundamental domains 𝐹Γ\SE(3) and𝐹Γ\SE(3)/Δ has been conducted (ibid.).
When the fundamental domain 𝐹Γ\SE(3)/Δ is constructed

using (20), it has the identity element 𝑒 at its center, and
so the tiling in (38) has the effect of sampling each center
point by moving from 𝑒 to 𝛾𝛿 where 𝛾 ∈ Γ and 𝛿 ∈ Δ.
In other words, the product Γ × Δ < SE(3)2 can be used
as a quantized version of SE(3). The number of rotational
elements will be 24 × 60 = 1440 which is sufficiently
fine to capture the essence of any frame along a trajectory
during a robot task. The alphabet defined by Γ × Δ is infinite,
but by limiting the extent of translations to be contained
in a bounded region, it becomes finite. This means that
continuous trajectories can be translated into a finite string of
alphabet characters (Figure 4). This opens up the possibility
of mapping these quantized trajectories into words expressed
in a natural language.

An important advantage of the quantization scheme (38)
is that the shifted fundamental domains 𝛾𝐹Γ\SE(3)/Δ𝛿 will all
have the same volume; i.e.,

𝜇 (𝛾𝐹Γ\SE(3)/Δ𝛿) = 𝜇 (𝐹Γ\SE(3)/Δ)
for all (𝛾, 𝛿) ∈ Γ × Δ, (39)

where 𝜇 is the (left- and right-invariant) Haar measure on the
(unimodular) Lie group SE(3).Thismeans that the centers 𝛾𝛿
of these shifted fundamental domains used for quantization
at the same time also allow for a very uniform sampling of the
group SE(3).
7. More Alphabets and Coarse-to-Fine
Decoding Algorithms

As explained above, after wisely designing a pair of discrete
subgroups Γ, Δ < SE(3) with Γ ∩ Δ = {𝑒}, we can construct
a fundamental domain as in (20) and decompose SE(3) as
in (38). There are many other ways to choose 𝐹Γ\SE(3) and𝐹Γ\SE(3)/Δ, as explained in [65]. A particularly simple choice
is the Cartesian product

𝐹Γ\SE(3)/Δ fl 𝐹P\SO(3)/Δ × 𝐹L\R3 , (40)
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Figure 4: Discretizing a continuous motion trajectory 𝑔 at times 𝜏1, . . . , 𝜏7 using the alphabet Γ × Δ (conceptual plot). After discretization
the continuous motion can be expressed as the sentence (𝛾2, 𝛿3), (𝛾3, 𝛿3), (𝛾1, 𝛿4), (𝛾4, 𝛿4), (𝛾4, 𝛿4), (𝛾4, 𝛿1), (𝛾4, 𝛿1).

where P ≅ Γ/𝑇 is the point group of Γ and L the lattice
of primitive translations. Alternatively, given decomposition
(36), another natural choice is

𝐹Γ\SE(3)/Δ fl 𝐹𝑆\SO(3)/Δ × 𝐹Γ𝐵\R3 . (41)

Here 𝑆\SO(3)/Δ and Γ𝐵\R3 are not (double-)coset
spaces—because 𝑆 ̸< SO(3) and ΓB ̸< R3—but are orbit spaces
consisting, respectively, of orbits 𝑆𝑅Δ fl {𝑠𝑅𝛿 : 𝑠 ∈ 𝑆, 𝛿 ∈ Δ}
and Γ𝐵𝑥 fl {𝛾B𝑥 : 𝛾B ∈ ΓB} (𝑅 ∈ SO(3), 𝑥 ∈ R3). The
fundamental domains 𝐹𝑆\SO(3)/Δ and 𝐹Γ𝐵\R3 above can be
constructed by choosing exactly one point per orbit, which
is consistent with the definitions in Section 3. Different
fundamental domains 𝐹Γ\SE(3)/Δ such as those above can be
used to express different quantizations via (38).

7.1. The Purely Rotational Case. The choice for 𝐹Γ\SE(3)/Δ in
(40) allows us to bootstrap off of the fundamental domains
for double-coset spaces for SO(3) discussed earlier. In fact, we
can go even further and describe an SE(3) motion trajectory𝑔(𝜏) = (𝑅(𝜏), 𝑡(𝜏)) in SO(3) × R3 (as a direct product rather
than a semidirect product).This is not merely to make things
easier—viewing pose change trajectories in this way has some
advantages, as described in [40], where the direct product
SO(3) × R3 is called the pose change group and is denoted as
PCG(3). Therefore, below we describe in some detail how the
“signals to symbols” problem can be solved efficiently in the
purely rotational case.

Since (40) is a set rather than a group, we can view it as
a subset of either SE(3) or PCG(3). Either way, the general
decoding problem reduces to this: Given 𝐻,𝐾 < SO(3),

and 𝑅 ∈ SO(3), how can we efficiently find the unique pair(ℎ𝑖, 𝑘𝑗) ∈ 𝐻 × 𝐾 such that

𝑅 = ℎ𝑖𝑄𝑘𝑗 (42)

with 𝑄 ∈ 𝐹𝐻\SO(3)/𝐾? In particular, if the Voronoi choice is
made for 𝐹𝐻\SO(3)/𝐾, solving (42) allows for simply rounding
off 𝑅 to ℎ𝑖𝑘𝑗, as indicated in Section 3.2.

The question then becomes how to do this. With the
crystallographic constraint, in SE(3) it is possible to define𝐻 such that |𝐻| = 24 (octahedral symmetry) and |𝐾| =60 (icosahedral symmetry), leading to 24 × 60 = 1440
combinations. In PCG(3), on the other hand, subgroups need
not be restricted to the crystallographic constraint, and we
can have more rotational elements (see below). The question
is, is there a better way to test for ℎ𝑖 and 𝑘𝑗 than two nested for
loops over 𝑖 and 𝑗 resulting in a large number of evaluations
to find where 𝜌(𝑅, ℎ𝑖𝑘𝑗) is minimized, which is equivalent to
solving (42) when the Voronoi choice is made for 𝐹𝐻\SO(3)/𝐾?

The answer is positive, and we shall now present a
technique to achieve this. Consider the double-coset space𝐻\SO(3)/𝐾, where 𝐻 is the group of rotational symmetries
of the icosahedron and 𝐾 = 𝑔𝐻𝑔T is a conjugated group,
with 𝑔 being chosen so that 𝐻 ∩ 𝐾 = {I}. It is thus|𝐻\SO(3)/𝐾| = |𝐻| × |𝐾| = 602 = 3600. We can construct
a fundamental domain 𝐹𝐻\SO(3) for the coset space 𝐻\SO(3)
as a dodecahedral Voronoi cell (cf. (28) and Figure 1, right).
Due to the Voronoi property, we can find the shifted tileℎ𝑖𝐹𝐻\SO(3) containing the rotation 𝑅 of interest by computing
the distance 𝜌(𝑅, ℎ𝑖) of 𝑅 to the 60 tile centers ℎ𝑖 ∈ 𝐻. We
then know that ℎT𝑖 𝑅 lies in the identity-centered tile 𝐹𝐻\SO(3).
We can construct the fundamental domain 𝐹𝐻\SO(3)/𝐾 for the
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double-coset space as aVoronoi cell, too (cf. (29) andFigure 2,
right). Since the shifts ℎ𝑖𝐹𝐻\SO(3)/𝐾𝑘𝑗 of this identity-centered
fundamental domain will cover SO(3), they will also cover𝐹𝐻\SO(3). However, the number of required shiftswill bemuch
smaller than 3600. Indeed, we found that approximately 180
shifted fundamental domains ℎ𝑖𝐹𝐻\SO(3)/𝐾𝑘𝑗 are sufficient
when the conjugation element 𝑔 is empirically chosen, for
example, to minimize the extent

sup
𝑅∈𝐹𝐻\𝑆𝑂(3)/𝐾

𝜌 (𝑅, I) (43)

of 𝐹𝐻\SO(3)/𝐾. We chose 𝑔 in this particular way so as to
minimize the round-off error in the quantization scheme.
We can now quickly find the shifted fundamental domainℎ𝑖󸀠𝐹𝐻\SO(3)/𝐾𝑘𝑗 containing the above ℎT𝑖 𝑅 by exploiting the
Voronoi property of these shifted domains. We then have
that 𝑅 ∈ (ℎ𝑖ℎ𝑖󸀠)𝐹𝐻\SO(3)/𝐾𝑘𝑗, and so the decomposition
(42) is found. Instead of the 3600 distances on SO(3), in
the above technique, we have to compute only about 60 +180 = 240 distances, resulting in a potential speedup of
approximately 3600/240 = 15. We further exploited the
fact that 𝜌(𝑅1, 𝑅2) = arccos((1/2)[tr(𝑅T

1𝑅2) − 1]), the trace
wherein can be computed efficiently as

tr (𝑅T
1𝑅2) = 3∑

𝑖=1

3∑
𝑗=1

[𝑅1]𝑖𝑗 [𝑅2]𝑖𝑗 , (44)

as well as the fact that arccos 𝑥 < arccos𝑦 if and only if 𝑥 > 𝑦.
An even more efficient decoding algorithm can

be obtained when considering the double-coset space𝐻\SO(3)/𝐻, where 𝐻 is the group of rotational icosahedral
symmetry. Here again we can use the dodecahedral Voronoi
fundamental domain 𝐹𝐻\SO(3) for the coset space 𝐻\SO(3)
and find the shifted tile ℎ𝑖𝐹𝐻\SO(3) containing the rotation𝑅 easily as described above. As a fundamental domain𝐹𝐻\SO(3)/𝐻 for the double-coset space, we can choose the
tetrahedral wedge shown in Figure 3. We can find the
conjugated wedge ℎ𝑗𝐹𝐻\SO(3)/𝐻ℎT𝑗 containing the “pulled-
back” rotation ℎT𝑖 𝑅 by using one of the standard query
methods. We then know that 𝑅 ∈ (ℎ𝑖ℎ𝑗)𝐹𝐻\SO(3)/𝐻ℎT𝑗 , and so
(42) is solved.

We note that as is the case in Section 6 (cf. (39)), the shifts
of the fundamental domains 𝐹𝐻\SO(3)/𝐾 and 𝐹𝐻\SO(3)/𝐻 above
all have the same volume, which is an important advantage of
the double-coset approach presented in this paper.

7.2. Planar-Motion Alphabets Based onWallpaper Groups. As
mentioned in Section 5, crystallographic groups are called
wallpaper groups in the two-dimensional setting. Figure 5
shows fundamental domains 𝐹p𝑖\SE(2) constructed using (19)
for instances of the well-known wallpaper groups (cf. [69,
Chap. 6]) p1, p2, p4, p3, and p6 (see also [55]), all of which
are symmorphic. Here SE(2) is identified withR2 × (−𝜋, 𝜋) ⊂
R3, with the 𝑥 and 𝑦 axes representing translations in 𝑥
and 𝑦 direction and the 𝑧 axis representing the rotation
angle 𝜃. These fundamental domains are generated using
the Euclidean metric ‖ ⋅ − ⋅ ‖2 on R3, adapted so as to

take into account the 2𝜋-periodicity in the rotation angle𝜃. It is important to note that this metric is left- but not
right-invariant (there is no bi-invariant metric on SE(2)).
Therefore, the fundamental domains shown in Figure 5 are
actually Voronoi rather than Voronoi-like cells (as is the case
for SO(3), cf. (28)).

The group p1 consists solely of translations, constituting a
parallelogrammatic lattice in the translational 𝑥-𝑦 plane.This
results in a box with (irregular) hexagonal shape in the 𝑥-𝑦
plane and height 2𝜋 as the fundamental domain 𝐹p1\SE(2). In
addition to the translations in p1, the wallpaper group p2 also
contains a rotation of order two (i.e., with angle𝜋).Therefore,
the fundamental domain 𝐹p2\SE(2) also has a hexagonal shape
in the translational plane, but the height is only 𝜋 (from−𝜋/2 to 𝜋/2) instead of 2𝜋. The group p4 is a group with
rotations of order four (i.e., with angles 𝜋/2, 𝜋, and 3𝜋/2), as
well as translations in a square lattice. Thus the fundamental
domain 𝐹p4\SE(2) has the shape of a square in the translational
plane, with its height being 𝜋/2 (from −𝜋/4 to 𝜋/4). The
groups p3 and p6 both have a hexagonal translation lattice. In
addition to these translations, p3 contains rotations of order
three (rotation angles 2𝜋/3 and 4𝜋/3), while p6 contains
rotations of order six (rotation angles 𝜋/3, 2𝜋/3, 𝜋, 4𝜋/3, and5𝜋/3). Both fundamental domains 𝐹p3\SE(2) and 𝐹p6\SE(2) have
a regular hexagonal shape in the translational plane, with a
height of 2𝜋/3 (from −𝜋/3 to 𝜋/3) and 𝜋/3 (from −𝜋/6 to𝜋/6), respectively.

As an example of a planar-motion alphabet similar to the
one described in Section 6, let us consider the double-coset
space Γ\SE(2)/Δ with Γ fl p4 and Δ fl C2𝑛−1 ⋉ {0} < SE(2),
where

C2𝑛−1 fl {[cos 𝜃𝑗 −sin 𝜃𝑗
sin 𝜃𝑗 cos 𝜃𝑗 ] : 𝜃𝑗 = 2𝜋𝑗2𝑛 − 1 , 𝑗

= 0, . . . , 2 (𝑛 − 1)} < SO (2)
(45)

is the group of rotations of order 2𝑛−1 (𝑛 ∈ N). It is Γ∩Δ = {𝑒}
and so we can construct a fundamental domain 𝐹Γ\SE(2)/Δ as
a Voronoi-like cell using (20). This is shown in Figure 6 for𝑛 = 3. In fact, because the left-invariant metric used here is
also invariant under purely rotational actions from the right,
the fundamental domain 𝐹Γ\SE(2)/Δ is a classical Voronoi cell
here, too (again as in the case of SO(3), cf. (29)). Analogously
as in Section 6, we can use the alphabet Γ × Δ < SE(2)2 for
an equivolumetric quantization of SE(2), which at the same
time allows for a very uniform sampling of the group. Because
the scaling of the translational lattice in the wallpaper groups
is arbitrary, we can make the alphabet Γ × Δ arbitrarily fine
by reducing the translational scaling in p4 and increasing the
parameter 𝑛 above.

To illustrate the use of the planar-motion alphabets
constructed above, let us consider the SE(2) trajectory 𝑔(𝜏) fl(𝑅(𝜏), 𝑡(𝜏)), 𝜏 ∈ [0, 2𝜋), where 𝑅(𝜏) is a rotation by an angle
of 𝜏 and

𝑡 (𝜏) fl [4 cos 𝜏, 6 ( 𝜏2𝜋) − 3]T . (46)
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Figure 5: Center Voronoi cell 𝐹p𝑖\SE(2) for certain instances of the wallpaper groups (left to right, top to bottom) p1, p2, p4, p3, and p6.

We may discretize 𝑔 at the five equidistant time points 𝜋(1 +2𝑘/5), 𝑘 = −2, . . . , 2. As a motion alphabet for SE(2), let us
use Γ × Δ = p4 × C5. We can denote the elements of C5 by𝛿𝑗 with the index 𝑗 as in (45). Let us denote the elements of
p4 as 𝛾𝑙𝑚𝑛, where 𝑚 ∈ Z and 𝑛 ∈ Z denote the translation
in 𝑥 and 𝑦 direction, respectively, while 𝑙 ∈ {0, 1, 2, 3}
indicates a rotation by an angle of 𝑙𝜋/2. The continuous
motion trajectory 𝑔 can now be expressed as the sentence(𝛾2,3,−2, 𝛿3), (𝛾2,−1,−1, 𝛿4), (𝛾2,−4,0, 𝛿0), (𝛾2,−1,1, 𝛿1), (𝛾2,3,2, 𝛿2).

To close this section, we shall discuss how such decoding
problem can be solved efficiently.We can use the same coarse-
to-fine search scheme that we used in the purely rotational
case in the previous section: In a first step, for a given element𝑔 ∈ SE(2), we find 𝛾 ∈ p4 such that 𝑔 ∈ 𝛾𝐹Γ\SE(2). This step is
particularly easy in the case of p4 when compared with, e.g.,
the group p1 (with anisotropic translational lattice). In fact,
as implied by Figure 7, in the case of p4 the above step can be
realized by appropriately rounding off (in the decimal sense)
the translational components of 𝑔, as well as the rotation
angle. In the case of p1, on the other hand, we would have
to compute the distances of 𝑔 to the Voronoi centers. In a
second step, we search for the shifted fundamental domain

𝛾󸀠𝐹Γ\SE(2)/Δ𝛿 containing the pulled-back element 𝛾−1𝑔 by a
purely rotational search. The decomposition of 𝑔 then reads(𝛾𝛾󸀠)𝑄𝛿 with 𝑄 = (𝛾𝛾󸀠)−1𝑔𝛿−1 ∈ 𝐹Γ\SE(2)/Δ. Of course it is
also possible to first treat the translational part of 𝑔 and then,
say, the rotational part. With appropriate modifications, the
above coarse-to-fine decoding scheme can also be used with
the fine alphabet for SE(3) developed in Section 6.

8. Comparisons and Applications

To clearly demonstrate the advantageous potential of our
proposed discretization and decoding algorithms, we provide
comparisons of performance with existing methods and
introduce a hybrid sampling method to take advantage of the
speed and low dispersion properties.

8.1. The Accuracy and Speed of Rounding Off Motions

8.1.1. Uniformity of Sampling on SO(3). Discretization on
SO(3) is an important application of this work, which gives
equivolumetric decomposition of the group in the sense
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Figure 6: Center Voronoi cell 𝐹Γ\SE(2) in single-coset space (emerald
region) based on an instance of the wallpaper group Γ = p4, and
center Voronoi cell 𝐹Γ\SE(2)/Δ in double-coset space (ruby region)
with Δ = C5 ⋉ {0} as the group of rotations of order five.

that any rotation is located inside an identical Voronoi
cell. The uniformity is essential to evaluate how good a
sampling method is, and can be measured by dispersion,
discrepancy, consistency, etc., as introduced in Section 2.2. For
the computations of dispersion and consistency in this work,𝜌(𝑅, 𝑅𝑠) fl ‖log∨(𝑅𝑇𝑅𝑆)‖2 is the distance metric defined in
Section 3.2.

We compare the dispersion (3), consistency (4), and
uniformity (7) of our method in sampling from SO(3) with
uniform Euler angles and uniform sampling using Hopf
fibration [53]. For the dispersion comparison, we randomly
generate 10000 rotations and compute the distance with the
nearest sample. The maximum value of these 10000 resulting
distances approximates the dispersion. For the consistency,
on the other hand, for each sample, we compute the distance
to its nearest sample and take the standard deviation. And for
the uniformity measure, we compute the number of nearest
neighbors of each sample.

For our method, we decompose SO(3) using the double-
coset space 𝐻\SO(3)/𝐾, where 𝐻 is the group of rotational
symmetries of the icosahedron and 𝐾 = 𝑔𝐻𝑔−1, where 𝑔 is
chosen such that

log∨𝑔 fl [0.4359, −0.07692, −0.1282]T . (47)

We found that the 181 shifted fundamental domainsℎ𝑖𝐹𝐻\SO(3)/𝐾𝑘𝑗 with center ℎ𝑖𝑘𝑗 closest to the identity are
sufficient to cover 𝐹𝐻\SO(3). And for the Euler angle, we
choose 𝑍𝑌𝑍 parameterization and uniformly generate 𝛼 and𝛾 within their range [−𝜋, 𝜋] and 𝛽 such that cos𝛽 ∈ [−1, 1].

In terms of the dispersion, our method is higher than
the other two methods: the dispersion of ours is 0.4291,
Hopf fibration method is 0.2690, and Euler angle method
is 0.3401. However, for the consistency, ours can achieve 0

deviation, whileHopf is 0.0264 and Euler angle is 0.0865.This
consistency result is a significant advantage of our method
in the sense that the sampling grid always has equi-distance
edges. Also since the number of nearest neighbors with
minimumdistance for ourmethod is always 2, the uniformity
is 2. This also outperforms the other two methods, where
Hopf fibration has a uniformity of 0.25, and Euler angle is
only 0.0303. The results show that our method can be used
in uniformly sampling rotations from SO(3).

8.1.2. Computational Time of SO(3) Nearest Neighbor Search.
Another key factor for performance evaluation is the running
time when searching for the nearest sample for a random
rotation. A common and efficient way is using the Euler
angle parameterization. Suppose we are given a set of sample
points constructed using Euler angles (either with or without
cos−1 sampling, or Lattman’s diagonalization of the metric
tensor, as discussed in the Introduction). Then given an
arbitrary rotation, 𝑅, one can compute its Euler angles(𝛼𝑅, 𝛽𝑅, 𝛾𝑅) and attempt to round off to the nearest Euler
angles in the sample set as ([𝛼𝑅], [𝛽𝑅], [𝛾𝑅]). This is simple
and fast to compute, but because Euler angles are not an
equi-metric spacing, the resulting rounded rotation matrix[𝑅] = 𝑅3([𝛼𝑅])𝑅1([𝛽𝑅])𝑅3([𝛾𝑅])may not be the closest of the
sampled rotations to 𝑅. In contrast, our method is both fast
and accurate in the sense of metric round-off.

To illustrate this, we perform a comparison here at an
Intel Core i7-4790 CPU at 3.60 GHz × 8 and with Matlab
R2018b. For our method, we use the double-coset space𝐻\SO(3)/𝐻, where we have a faster version of the decoding
algorithm. Comparisons are performed with the Euler angle
searching method (described above). 1000 random rotations
are generated and localized to the nearest sample from
the sampling list. The accuracy of computing the nearest
neighbor is evaluated using the brute-force nearest neighbor
search (i.e., minimization of the distance 𝜌(𝑅, ℎ𝑖ℎ𝑗) with
respect to both 𝑖 and 𝑗).

The result shows that the proposed decoding algorithm
yields an average runtime for each search at around 55.9𝜇𝑠 in
our method, while the Euler angle method runs 53.6𝜇𝑠 per
rotation. Both methods are at the same level of efficiency, but
ours outperforms in terms of round-off accuracy. Figure 8
shows the minimum distance between the queried rotations
(50 of all the testing rotations are shown for a clearer plot)
to the set of samples. Ours can always find the true nearest
neighbor, while Euler angle sometimes returns the sample
which is not the nearest to the queried rotation.

8.2. Combining the Benefits of Speed and Good Dispersion
Properties. Sampling methods such as those based on the
Hopf fibration were designed for good performance in terms
of minimal dispersion and consequently outperform both
Euler angles and our sampling scheme in terms ofminimizing
dispersion. Ours was designed for rapid query. However, if
one wants both, it is possible to simply combine them in a
natural way as follows:

(1) Partition any given set of sample rotations with
desirable properties (such as dispersion and discrepancy) by
determining in which shard each sample point belongs.
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Figure 7: Tessellation of SE(2) illustrated in R2 × (−𝜋, 𝜋), based on the fundamental domain (left) 𝐹p1\SE(2) and (right) 𝐹p4\SE(2) (conceptual
plot).
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the brute-force nearest neighbor search, which is shown in blue curve. The Euler angle search (left figure) sometimes returns higher values
of distance, but ours (right figure) can always give the correct answer.

(2) Given an arbitrary rotation, determine to which
double-coset fundamental domain it belongs.

(3) Compute the distance between the arbitrary given
rotation and all sample points in the same shard, and those
in the nearest surrounding shards.

In this scheme the number of sample points could be in
the same order or even much higher than the number of
shards.

We perform a numerical experiment to verify this
proposed hybrid searching method using the 𝐻\SO(3)/𝐻
decomposition. As a preprocessing step, we first compute
the nearest neighbors for each of the 60 elements in 𝐻, and
we find that each rotation is surrounded by 12 neighbors.
This step is to construct a connectivity map for the single-
coset space or, in other words, for each icosahedron cell.
Then we uniformly sample 10000 rotations using Hopf
fibration, which is known to have low dispersion and
discrepancy. For each sample, we decompose the rotation

group via our proposed fast decoding algorithm and pre-
compute a list of index pair, which locates the cell and
shard of those samples. Afterwards, we randomly generate
1000 rotations and the goal is to find their closest sampling
rotations. For each of the random rotations, we decompose
it, locate the cell (determined by the first index), and
then calculate the minimum distance with all the samples
located in the same cell and the 12 neighboring cells. By
using this hybrid method, the running time is around 5
times faster than the brute-force searching method, and
the resulting minimum distance is verified to be 100%
correct.

Another experiment has also been performed using the𝐻\SO(3)/𝐾 decomposition.The difference with the previous
test is the preprocess, where here we precompute the nearest
neighbors for the 3600 elements, 𝑖.𝑒., ℎ𝑖𝑘𝑗 ∈ 𝐻 × 𝐾 where𝑖, 𝑗 = 1, 2, . . . , 60. This is equivalent to finding the neighbors
of each shard in the double-coset space. The same sampling
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and testing sets are input into the hybrid algorithm and we
achieve a speedup of around 20 times than the brute-force
method. Also, the resulting minimum distance is verified as100% accurate.

9. Conclusion

Robot tasks involve continuous motions in space. The quan-
tization of these motions by introducing a class of motion
alphabets has been established in this paper. With such an
alphabet, continuous motion trajectories can be captured
with finite words/sentences. It was demonstrated in some
examples how the possibility of constructing fundamental
domains for coset and double-coset spaces as Voronoi or
Voronoi-like cells can be used to solve this decoding or
“signals to symbols” problem efficiently via a coarse-to-fine
search scheme. The performance, such as uniformity, of the
proposed group discretization method and the fast decoding
algorithms are compared with other existing methods. The
alphabets developedherewill be used in the future to facilitate
the connection between advances in artificial intelligence
(such as the use of artificial neural networks) and physical
robots acting in the world.
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