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Predicting whether a chronic stroke patient is likely to benefit from a specific intervention can help patients establish reasonable

expectations. It also provides the basis for candidates selecting for the intervention. Recent convergent evidence supports the value

of network-based approach for understanding the relationship between dysfunctional neural activity and motor deficits after

stroke. In this study, we applied resting-state brain connectivity networks to investigate intervention-specific predictive biomarkers

of motor improvement in 22 chronic stroke participants who received either combined action observation with EEG-guided robot-

hand training (Neural Guided-Action Observation Group, n¼12, age: 34–68 years) or robot-hand training without action observa-

tion and EEG guidance (non-Neural Guided-text group, n¼10, age: 42–57 years). The robot hand in Neural Guided-Action

Observation training was activated only when significant mu suppression (8–12 Hz) was detected from participant’s EEG signals in

ipsilesional hemisphere while it was randomly activated in non-Neural Guided-text training. Only the Neural Guided-Action

Observation group showed a significant long-term improvement in their upper-limb motor functions (P< 0.5). In contrast, no sig-

nificant training effect on the paretic motor functions was found in the non-Neural Guided-text group (P>0.5). The results of

brain connectivity estimated via EEG coherence showed that the pre-training interhemispheric connectivity of delta, theta, alpha

and contralesional connectivity of beta were motor improvement related in the Neural Guided-Action Observation group. They

can not only differentiate participants with good and poor recovery (interhemispheric delta: P¼ 0.047, Hedges’ g¼ 1.409; interhe-

mispheric theta: P¼ 0.046, Hedges’ g¼ 1.333; interhemispheric alpha: P¼ 0.038, Hedges’ g¼1.536; contralesional beta:

P¼ 0.027, Hedges’ g¼ 1.613) but also significantly correlated with post-training intervention gains (interhemispheric delta: r ¼
�0.901, P< 0.05; interhemispheric theta: r ¼ �0.702, P<0.05; interhemispheric alpha: r ¼ �0.641, P<0.05; contralesional beta:

r ¼ �0.729, P< 0.05). In contrast, no EEG coherence was significantly correlated with intervention gains in the non-Neural

Guided-text group (all Ps > 0:05). Partial least square regression showed that the combination of pre-training interhemispheric and

contralesional local connectivity could precisely predict intervention gains in the Neural Guided-Action Observation group with a

strong correlation between predicted and observed intervention gains (r ¼ 0.82r ¼ 0:82) and between predicted and observed inter-

vention outcomes (r ¼ 0.90r ¼ 0:90). In summary, EEG-based resting-state brain connectivity networks may serve clinical deci-

sion-making by offering an approach to predicting Neural Guided-Action Observation training-induced motor improvement.
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Introduction
Stroke is one of the leading causes of long-term disability

in the United States, especially in the elderly population,

in which stroke incidence is highest. Of the 795 000 new

sufferers of stroke, 26% remain disabled in necessary

daily living activities, and 50% have reduced mobility

due to hemiparesis.1,2 Effective rehabilitation strategies

can improve the quality of daily life and help them re-

gain their independence and return to society, which

reduces the burden on themselves, their families and soci-

ety. In chronic stroke rehabilitation, different types of in-

tensive intervention training have been validated for their

clinical benefits at the group level in our previous re-

search.3–5 However, the patients’ response to an interven-

tion is highly subject-specific at the individual level.6 So,

is there a biomarker that can predict the intervention-

induced motor improvement before rehabilitation train-

ing? The answer to this question can provide a basis for

selecting candidates who are more likely to benefit from

a specific intervention. Besides, making accurate predic-

tions of rehabilitation gain could allow clinical teams,

patients and families to establish reasonable expectation,

optimize rehabilitation plan with realistic goals and ap-

propriately allocate time and resources.7

Regarding stroke prognosis, clinical measurements8–14

can be used to explain long-term motor impairment out-

comes. However, they are less likely to explain functional

outcomes because these outcomes can be improved by

movement strategies that compensate for motor impair-

ments. Furthermore, although some patients with severe

initial motor impairments have a proportional recovery,

others do not in which clinical measurement cannot reli-

ably discriminate.7 Currently, interest in biomarkers,

including neurophysiological and neuroimaging markers,

for predicting motor recovery and motor outcomes in

clinical research is growing. Among these biomarkers,

EEG reflects brain activity from the perspective of electro-

physiology, and it is a low cost, high safety and conveni-

ent tool with a high temporal resolution to monitor
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neurological activity. EEG has been applied to the prog-

nosis of motor impairment and recovery in acute15,16 and

subacute17–19 stroke.

Convergent evidence supports the network-based ap-

proach for understanding the relationship between dys-

functional neural activity and motor deficits after

stroke.20–36 EEG coherence is a mathematical method

used to determine whether two or more sensors or brain

regions have similar neuronal oscillatory activity.37 It can

investigate functional brain connectivity and describe

brain networks based on this connectivity. Wu et al.36

found that EEG coherence between ipsilesional primary

motor cortex (M1) and ipsilesional premotor cortex (PM)

was strongly related to motor deficits and improvements

with virtual reality- and computer game-assisted recovery

after stroke. The analysis was conducted on beta coher-

ence between a seed region over the ipsilesional M1 and

other brain regions. Information transmission in the brain

occurs through a complex network instead of a single

pathway. After stroke occurs, the brain networks respon-

sible for transmitting information will be modulated.

Some of the pathways in the brain network are discon-

nected or weakened due to neuronal and fibre cell death,

while some of the pathways are enhanced due to weak-

ened inhibitory function, which varies from person to

person. Systematically defining what kind of brain con-

nectivity network pattern is linked to a good recovery

not only provides us with a biomarker for predicting

intervention-induced motor improvement of chronic

stroke patients in clinical trials, it also serves as an ap-

proach to understanding the neurological mechanisms of

chronic stroke rehabilitation. In this study, brain connect-

ivity was estimated via EEG coherence between electrodes

overlying the motor and motor connected regions,38

including the M1, PM, somatosensory cortex (SI) and

supplementary motor area (SMA). Brain connectivity was

used to predict intervention-induced motor improvement

with robot-assisted training combined with a neural

guided strategy.

Compared to prognostic biomarkers, which provide in-

formation about the natural course of a disease, an inter-

vention-specific predictive biomarker in chronic stroke

predicts a patient’s response to treatment. It has signifi-

cant potential for selecting the most appropriate partici-

pants for clinical training by predicting whether a patient

is likely to benefit from a specific intervention in a clinic-

al trial. For example, Mane et al.6 investigated interven-

tion-specific predictive biomarkers of motor function

improvements using EEG features in chronic stroke

patients following two different upper-extremity rehabili-

tative interventions. Trujillo et al.39 assessed the relation-

ship between resting EEG measures and motor outcomes

in chronic stroke patients who underwent a robot-assisted

rehabilitation programme to evaluate the utility of EEG

to predict motor recovery. Here, we propose the existence

of the intervention-specific predictive biomarkers for a

robot-assisted training combined with a neural guided

strategy. We hypothesize that brain connectivity at pre-

training can predict the intervention gain of the robot-

assisted training combined with a neural guided strategy.

Furthermore, since the mechanisms of neuronal recovery

elicited by different interventions are not identical, we hy-

pothesize that the pre-training brain connectivity only

uniquely can predict intervention gain in the robot-

assisted training while it cannot be applied to control

training. Investigating these intervention-specific predictive

biomarkers can be further pursued to predict the

expected response of the given interventions for chronic

stroke patients. The patients with high predicted gains

may then recommended being recruited. This research

also provides systematic insight into the mechanisms of

using EEG for predicting intervention-induced motor

improvement.

Materials and methods

Participants

Twenty-four chronic stroke participants (age 34–68 years;

20 males/4 females) were recruited from the local com-

munity, as shown in Table 1. The inclusion criteria were

as follows: (i) sufficient cognition to follow experimental

instructions with Mini-Mental State Examination

(MMSE) score> 21; (ii) moderate to severe motor impair-

ments of the paretic upper limb [Fugl-Meyer Assessment

for Upper Extremity (FMA-UE) < 47]40,41; and (iii) hemi-

paresis resulting from a single unilateral brain lesion with

stroke onset more than 6 months before data collection.

The exclusion criteria were as follows: (i) severe hand

spasticity (spasticity during extension of the finger joints

was more than 3 as assessed by the Modified Ashworth

Scale)42; (ii) open hand wound or hand deformity; (iii)

visual field deficits; (iv) aphasia, neglect and apraxia; (v)

participation in any therapeutic treatment (‘outside ther-

apy’) performed with the affected upper limb during the

course of the study; (vi) history of alcohol, drug abuse or

epilepsy; and (vii) bilateral infarcts, uncontrolled medical

problems and severe cognitive deficits. All participants

signed written informed consent according to the

Declaration of Helsinki. The Joint Chinese University of

Hong Kong-New Territories East Cluster Clinical

Research Ethics Committee (CUHK-NTEC CREC)

approved the experimental protocol (agreement

#2014.705-T). This study was registered at www.clinical

trials.gov, with the study identifier NCT02323061.

Participants were screened by excluding the abnormal dif-

ferences between post-training and 6-month follow-up

FMA-UE (if it is 1.5 times the interquartile range larger

than the third quartile or 1.5 times the interquartile range

smaller than the first quartile) which may cause by violat-

ing the exclusion criteria (5). Two outlier participants

(S13 and S22 in Table 1) were excluded.
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Intervention

The training was completed at the Biomedical Engineering

Laboratory of The Chinese University of Hong Kong,

Biomedical Engineering Laboratory of The Hong Kong

Polytechnic University and the Chow Yuk Ho Technology

Centre for Innovative Medicine. Stroke participants were

required to come to the laboratory more than once before

participating in the project to be familiar with the experi-

mental environment and data collection procedure. The ex-

perimenter explained the purpose and process of the

experiment, taught participants how to perform the motor

imagery and motor observation tasks and answered the

participants’ questions until they understood the design of

the whole experiment. All participants received 20 sessions

of robot-assisted hand training (Fig. 1A and B) with an in-

tensity of 3–5 sessions per week that was completed within

5–7 weeks. The detailed structural information of the brain–

computer interface (BCI)-based neural guided experimental

platform can be found in the Supplementary material and

in Sun et al.5 The participants were randomly assigned to

one of two groups: (i) Neural Guided-Action Observation

Group (NG-AO group): Action observation and motor im-

agery during playback of video of hand open/grasp with

real-time EEG guidance to trigger the robot hand. (ii) non-

Neural Guided-text group (nNG-text group): Motor im-

agery during display of text instruction of movement with-

out EEG guidance, and the robot hand was randomly

triggered. Each session of both groups was completed with-

in 1.5 h. The details of the intervention procedure can be

found in the Supplementary material and Wang et al.43

The FMA-UE (range: 0–66) was used to assess the im-

provement in motor performance at three time points

(Fig. 1C): (i) FMA-UE(t0): data collected in the week be-

fore the intervention start date; (ii) FMA-UE(tpost): data

collected the week after finishing the intervention; and

(iii) FMA-UE (t6M): data collected at the 6-month follow-

up after the intervention. The intervention-induced motor

gain was calculated as the difference in FMA-UE scores

between t0 and tpost, i.e. DFMA-UE(t0, tpost), and as the

difference between t0 and t6M, i.e. DFMA-UE(t0, t6M).

FMA-UE was conducted by trained clinical assessors who

were blinded to the experiment.

Figure 1 Illustration of the intervention setup. (A) An overview of the BCI-based neural guided training platform. (B) A photo taken in

a real hand training session. (C) The experimental timeline shows that the intervention training started from the second week and lasted for

2 or 3 months. � marks the timepoint of collecting FMA-UE scores, EEG data and MRI data.
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EEG acquisition and MRI

Three minutes of awake, eyes-open, resting-state brain ac-

tivity was captured by surface EEG using active electro-

des (g.LADYbird, g. Tec Medical Engineering GmbH,

Austria) and an amplifier (g.USBamp, g. Tec Medical

Engineering GmbH, Austria) at the periods of one week

before and one week after the intervention as well as at

the beginning of each training session (Fig. 1C).

Therefore, twenty-two sets of EEG data were recorded in

total for each participant. Sixteen active electrodes were

placed over the motor and motor connected regions in

the central area according to the international 10–20 sys-

tem (C1, C2, C3, C4, C5, C6, Cz, FC1, FC2, FC3, FC4,

FCz, CP1, CP2, CP3 and CP4). EEG signals were refer-

enced to a unilateral earlobe, grounded at a frontal pos-

ition (Fpz), and sampled at 256 Hz. EEG signals were

also processed in real-time using a bandpass filter (2–

60 Hz) and a notch filter (48–52 Hz) to remove artefacts

and power line interference, respectively. All electrodes

were appropriately filled with a conductive gel to ensure

that the transmission impedance remained below 1

kOhm.

Sixteen subjects who had no MRI contraindications

(e.g. metallic implants, claustrophobia, pacemakers or un-

willing to do MRI scan) had MRI scans at one week be-

fore the intervention (Fig. 1C), with eight subjects in each

group. A 3 T Philips MR scanner (Achieva TX, Philips

Medical System, Best, Netherlands) with an 8-channel

head coil was used to acquire high-resolution T1-weighted

anatomical images [repetition time (TR)/echo time (TE) ¼
7.47/3.45 ms, flip angle ¼ 8�, 308 slices, voxel size ¼
0.6� 1.042� 1.042 mm3] using a T1-turbo field echo

(TFE) sequence (ultrafast spoiled gradient echo pulse se-

quence). We used MRI imaging to find the lesion loca-

tion (see Table 1), which should be provided because it

affected EEG data due to the lesion.

Coherence

Functional connectivity between brain regions was esti-

mated from EEG coherence between electrodes overlying

the corresponding regions.38 Coherence is one mathemat-

ical method used to determine if two or more sensors, or

brain regions, have similar neuronal oscillatory activity.37

Coherence ranges from zero to one, with a value near

one indicating that EEG signals have similar phase and

amplitude differences at all time points and a value near

zero indicating that signals have a random difference in

phase and amplitude.37 The EEG coherence calculation

details can be found in the Supplementary material. In

this study, mean coherences in four frequency bands,

delta (1–4 Hz), theta (4–8 Hz), alpha (8–14 Hz) and beta

(14–30 Hz), were calculated for each pair of eight electro-

des (C3, C4, FC3, FC4, CP3, CP4, FCz and Cz), which

overlying areas responsible for the planning, control and

execution of voluntary movements. The primary motor

area was defined as either C4 or C3 (ipsilesional or con-

tralesional M1), which control voluntary movements. The

SMA was defined as Cz and associated with the function

of cortical organization of movement. The premotor area

was defined as either FC4 or FC3 (ipsilesional or con-

tralesional PM), which plays a role in planning move-

ment, in the spatial guidance of movement and in the

sensory guidance of movement. The somatosensory area

was defined as either CP4 or CP3 (ipsilesional or con-

tralesional SI), which receives and processes sensory infor-

mation from the entire body.44 The functional

connectivity can be summarized as interhemispheric con-

nectivity (InterHemi: C3-C4, C3-FC4, C3-CP4, FC3-C4,

FC3-FC4, FC3-CP4, CP3-C4, CP3-FC4 and CP3-CP4),

ipsilesional local connectivity (IpsiLHemi: C3-FC3, C3-

CP3 and FC3-CP3), contralesional local connectivity

(ContraLHemi: C4-FC4, C4-CP4 and FC4-CP4), ipsile-

sional to SMA connectivity (IpsiL-SMA: C3-Cz, FC3-Cz

and CP3-Cz) and contralesional to SMA connectivity

(ContraL-SMA: C4-Cz, FC4-Cz and CP4-Cz). Electrode

arrays from individuals with infarcts in the left hemi-

sphere were flipped across the midline for subsequent

analyses.

Statistical analysis

Statistical analysis was performed using IBM SPSS 22

software (SPSS Inc., Chicago, IL, USA). The missing data

(6-month follow-up FMA-UE for 2 out of 22 partici-

pants) were inferred by the last observation (post FMA-

UE) carried forward. Statistical analysis of the outcome

measure, including FMA-UE (each item is scored on a 3-

point ordinal scale), was conducted using the non-para-

metric tests while outcome measure of EEG coherence

was conducted using the parametric tests. The Friedman

test was applied to verify the statistical significance of

changes between FMA-UE(t0), FMA-UE(tpost), and FMA-

UE(t6M) for each group separately. The Wilcoxon signed-

rank test was used as a post hoc test to examine signifi-

cant changes in different combinations of the three time

points for FMA-UE scores.

In each of the NG-AO and nNG-text group, the partic-

ipants were categorized as having good recovery [whose

DFMA-UE(t0, tpost) or DFMA-UE(t0, t6M) exceed minimal

clinically important difference (MCID) which is 4 for

FMA-UE] or poor recovery (remaining participants) as

shown in Table 1 eleventh column. Permutation t-tests

were applied to compare InterHemi, IpsiLHemi,

ContraLHemi, IpsiL-SMA and ContraL-SMA connectivity

between the participants with good recovery and with

poor recovery. In permutation test, all possible combina-

tions are considered. False Discovery Rate (FDR) was

used deal with the multiple comparison correction, which

adjusts P-values in a way that controls the family-wise

error rate.45

Spearman correlation analysis was used to investigate

the correlations between resting EEG coherence of each
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electrode pair at pre-training (t0) and intervention gains

at post-training [FMA-UE(t0, tpost)] and 6-month follow-

up [FMA-UE(t0, t6M)] for each group separately.

Permutation testing was used to further validate the sig-

nificant results generated by Spearman correlations.

Changes in FMA-UE scores [FMA-UE(t0, tpost), FMA-

UE(t0, t6M)] were randomly shuffled 5000 times to obtain

a null distribution and the correlation coefficient of each

arrangement was recalculated. The calculated P-values

represent a distribution of the null hypothesis that there

is no relationship between the two variables. This proced-

ure provides a robust estimation of statistical significance

reducing the Type-I errors, at the same time preserves the

power of the study limiting Type-II errors.6 Finally,

assuming Spearman’s rank correlation coefficient of 0.6,

the sample size of both NG-AO group (N¼ 12) and

nNG-text group (N¼ 10) satisfy the minimum require-

ment (N� 9) to achieve a statistical power of 80% with

a significance level of a¼ 0.05.6

To investigate the effect of the functional connectivity

network on predicting intervention gains in the partici-

pants receiving the neural guided intervention, partial

least squares (PLS) regression46 was applied to investigate

the fundamental relationship between EEG coherence at

pre-training (t0) and changes in FMA-UE at the post-

training [FMA-UE(t0, tpost)] and 6-month follow-up

[FMA-UE(t0, t6M)] in the NG-AO group. The inputs of

PLS model (pre-training EEG coherences) should not only

have a strong correlation with intervention gains but also

be able to discriminate good and poor recovery. PLS re-

gression is particularly suitable when the matrix of pre-

dictors (number of EEG coherences ¼ 20) has more

variables than observations (sample size ¼ 12) and when

there is multicollinearity among predictors. The signifi-

cance level for all statistical analyses was set at P< 0.05.

Data availability statement

The EEG and MRI data that support the findings of this

study are available on request from the corresponding au-

thor for the research purposes. The data are not publicly

available due to their containing information that could

compromise the privacy of research participants.

Results

Participants

The demographics and clinical characteristics of the par-

ticipants in both groups are shown in Table 1. All partic-

ipants completed the target number of training sessions.

The training intensity was 1436.83 6 159.94 repetitions

in NG-AO group while 1600 repetitions in nNG-text

group in which the ‘success rate’ of triggering the robot

hand was set as 80% (see Supplementary material:

Intervention Procedure). No significant difference was

observed between the NG-AO and nNG-text groups in

terms of age (P¼ 0.226), stroke onset time (P¼ 0.856),

and FMA-UE(t0) (P¼ 0.724). Besides, training intensity,

age, stroke onset time, FMA-UE(t0) shows no significant

correlation with the clinical motor improvements at the

post-training [DFMA-UE(t0, tpost)] and 6-month follow-up

[DFMA-UE(t0, t6M)] in each group separately (Ps > 0:05).

Clinical outcomes

In the NG-AO group, the mean FMA-UE scores signifi-

cantly differed between each time point

½v2 2ð Þ ¼ 8:512; P ¼ 0:014�, as shown in Fig. 2. Post hoc

analysis with Wilcoxon signed-rank tests was conducted

with a Bonferroni correction applied, resulting in signifi-

cant improvements in FMA-UE scores at the post-training

(Z ¼ �2:004; P ¼ 0:045) and at the 6-month follow-up

(Z ¼ �2:634; P ¼ 0:008). There was no significant differ-

ence in FMA-UE scores between the post-training and 6-

month follow-up assessments (Z ¼ �1:355; P ¼ 0:176).

These results indicate long-term sustainable upper-limb

functional recovery of participants in NG-AO group

where neural guided strategy was applied. In the nNG-

text group, there was no significant intervention effect on

FMA-UE scores across the pre-training, post-training and

6-month follow-up assessments ½v2 2ð Þ ¼ 5:568;

P ¼ 0:062�. In each group separately, the clinical motor

improvements at the post-training [DFMA-UE(t0, tpost)]

and 6-month follow-up [DFMA-UE(t0, t6M)] assessments

showed no significant correlations with the pre-training

FMA-UE scores (all Ps > 0:05), indicating no predictive

effect of baseline FMA-UE score for intervention gains.

Figure 2 Two groups of FMA-UE scores (mean 6 standard

deviation) from the pre-training, post-training and 6-

month follow-up assessments. The scores in the NG-AO group

showed significant gains ½v2 2ð Þ ¼ 8:512; P ¼ 0:014� in upper-

extremity motor function at both the post-training

(Z ¼ �2:004; P ¼ 0:045) and 6-month follow-up

(Z ¼ �2:634; P ¼ 0:008) assessments, while the scores in the

nNG-text group showed no significant gains

½v2 2ð Þ ¼ 5:568; P ¼ 0:062]. * indicates P< 0.05 and ** indicates

P< 0.01.
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Brain functional connectivity

In the NG-AO group, the InterHemi of delta, theta and

alpha was significantly different between the participants

with good recovery and the participants with poor recov-

ery (Fig. 3A, C and E; delta: P¼ 0.047, Hedges’

g¼ 1.409; theta: P¼ 0.046, Hedges’ g¼ 1.333; alpha:

P¼ 0.038, Hedges’ g¼ 1.536). Contralesional local con-

nectivity of beta was significantly different between par-

ticipants with good recovery and poor recovery (Fig. 3G;

beta: P¼ 0.027, Hedges’ g¼ 1.613). There were no sig-

nificant differences between participants with good and

poor recovery on EEG coherences for the remaining elec-

trode pairs (Ps > 0:05). In the nNG-text group, there was

no EEG coherence that significantly differentiated partici-

pants with good and poor recovery (Fig. 3B, D, F and

H; all Ps > 0:05).

Figure 4 demonstrates the correlations between EEG

coherence for each electrode pair and motor gains at the

post-training and 6-month follow-up assessments [DFMA-

UE(t0, tpost), DFMA-UE(t0, t6M)]. The colour of the line

linking each electrode pair is tuned by the correlation co-

efficient. Supplementary Tables 1–4 summarize the correl-

ation coefficients between EEG coherences of delta, theta,

alpha, and beta and DFMA-UE(t0, tpost) and DFMA-

UE(t0, t6M) in both the NG-AO and nNG-text groups.

For the nNG-text group, no EEG coherence in any fre-

Figure 3 Characterizing participants with good and poor recovery by pre-training EEG coherence of four frequency ranges

(delta, theta, alpha and beta) and five brain connectivity networks (interhemispheric, ipsilesional local, contralesional local,

ipsilesional-SMA and contralesional-SMA) in two groups. (ACEG) Interhemispheric connectivity (delta, theta and alpha) and

contralesional connectivity (beta) at pre-training can significantly differentiate participants with good (N¼ 7) and poor recovery (N¼ 5) in the

NG-AO group. (BDFH) No brain connectivity showed a significant difference between participants with good (N¼ 5) and poor recovery

(N¼ 5) in the nNG-text group. * indicates P< 0.05.
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quency band had a significant correlation with DFMA-

UE(t0, tpost) or DFMA-UE(t0, t6M) (Fig. 5B and D; all Ps

> 0.05). For the NG-AO group, InterHemi of delta (C3-

C4, C3-FC4, C3-CP4, C4-FC3, C4-CP3, FC3-FC4, FC3-

CP4, FC4-CP3 and CP3-CP4, all P< 0.05; Supplementary

Table 1), theta (C3-C4, C3-CP4, C4-CP3, FC4-CP3 and

CP3-CP4, all P< 0.05; Supplementary Table 2), and

alpha (C3-CP4, C4-CP3 and CP3-CP4, all P< 0.05;

Supplementary Table 3), contralesional local connectivity

of theta (C3-CP3, P< 0.05; Supplementary Table 2),

alpha (C3-FC3, C3-CP3 and FC3-CP3, all P< 0.05;

Supplementary Table 3), and beta (C3-FC3, C3-CP3,

FC3-CP3, all P< 0.05; Supplementary Table 4), and ipsi-

lesional-SMA connectivity of delta (C4-Cz, P< 0.05;

Supplementary Table 1) have significant correlations with

DFMA-UE(t0, tpost) (Fig. 5A). Contralesional local con-

nectivity of alpha (FC3-CP3, P< 0.05, in Supplementary

Table 3) has a significant correlation with DFMA-UE(t0,

t6M) (Fig. 5C), indicating its potential for predicting long-

term motor improvement.

Combining the results of the permutation t-tests and

correlation analyses, the resting EEG InterHemi of

delta, theta, alpha and contralesional connectivity of

beta at pre-training not only can discriminate between

participants with good and poor recovery in the NG-

AO group but also have significant correlations with

post-training motor improvement, indicating their po-

tential as predictive biomarkers of intervention-induced

motor improvement.

Brain connectivity for intervention
prognosis

To further explore the relationship between brain func-

tional connectivity and intervention gains in NG-AO

group, PLS was applied with motor improvement-related

EEG coherences as independent variables and DFMA-

UE(t0, tpost) as dependent variables. The fitted PLS model

shows that 3 components were required to explain 90%

of variance in the dependent variable, as shown in

Fig. 6A. In the fitted PLS model, the variable importance

in the projection score estimates the importance of each

variable in the projection used in a PLS model.47 There

is no consensus about the cut-off threshold on variable

importance in the projection scores for variable selection,

and a proper threshold between 0.83 and 1.21 can yield

more relevant variables according to the performance of

some variable selection methods when multicollinearity is

present.48 In this study, Fig. 6B demonstrates the import-

ance of each recovery-related pre-training resting EEG

Figure 4 Coherence network map associated with intervention gains in the two groups. The colour of the lines indicates the

correlation coefficient between EEG coherences in delta, theta, alpha, and beta and intervention gains at the post-training and 6-month

follow-up assessments.
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coherences for predicting intervention gains, and a rela-

tively prevalent cut-off (1.0) was applied as the threshold

for predictive biomarker selection.47 Interhemispheric

delta (C3-C4, C3-FC4, C3-CP4, C4-FC3, C4-CP3), and

theta (C3-CP4 and FC4-CP3) coherence and contrale-

sional beta (C3-FC3, C3-CP3, FC3-CP3) coherence were

selected as intervention predictive biomarker. Leave-one-

out cross-validation was used to estimate the prediction

error of the PLS model. Since there are 12 participants in

NG-AO group, 12 regression models can be established

with 11 observations for model training and 1 observa-

tion left for model testing in each model (Fig. 6C). The

predicted, observed DFMA-UE(t0, tpost) and predicted,

observed FMA-UE(tpost) for each participant (P1, P2, . . .,

P12) are also listed in Fig. 6C. The coefficient of each

biomarker in the 12 regression models can be refer to

Supplementary Table 5. The results show that the fitted

model is accurate, with a strong correlation between the

predicted DFMA-UE(t0, tpost) and observed DFMA-UE (t0,

tpost) (Fig. 6D; r ¼ 0:82) and between the predicted FMA-

UE(tpost) and observed FMA-UE(tpost) (Fig. 6E; r ¼ 0:90).

The root mean square error (RMSE) of prediction is 3.24

across all participants. The PLS regression analysis was

not applied to nNG-text group since pre-training EEG

coherences from participants in nNG-text group neither

have a strong correlation with intervention gain (Fig. 5B

and D) nor be able to discriminate between good and

poor recovery participants (Fig. 3B, D, F and H).

Discussion
This work provides an EEG-based brain connectivity bio-

marker for potentially predicting intervention gains of

chronic strokes in a neural guided action observation

training. By evaluating combined Interhemispheric delta

(C3-C4, C3-FC4, C3-CP4, C4-FC3, C4-CP3), theta (C3-

CP4 and FC4-CP3) coherence and Contralesional beta

(C3-FC3, C3-CP3, FC3-CP3) coherence of EEG signal at

pre-training, we can accurately predict the intervention

gain for each participant in the NG-AO group. However,

the results show that it cannot be applied in the nNG-

text group indicating the brain connectivity biomarker is

intervention specific for NG-AO training. This study’s

findings can help stroke patients establish reasonable

expectations and provide a basis for selecting candidates

who are more likely to be benefitted from the NG-AO

training.

Figure 5 Brain connectivity at pre-training associated with intervention gains in the two groups. (A) Interhemispheric,

contralesional local and ipsilesional-SMA connectivity at pre-training were significantly correlated with intervention gains at the post-training

assessment in the NG-AO group (all Ps < 0.01). (B) No brain connectivity had a significant correlation with intervention gains at the post-

training assessment in the nNG-text group (N¼ 12; all Ps > 0.05). (C) Contralesional local connectivity at pre-training was significantly

correlated with intervention gains at the 6-month follow-up in the NG-AO group (N¼ 10; P< 0.05). (D) No brain connectivity was

significantly correlated with intervention gains at the 6-month follow-up assessment in the nNG-text group (all Ps > 0.05). * indicates P< 0.05

and ** indicates P< 0.01.
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Intervention-specific prognosis

Most previous investigations of predictive biomarkers for

stroke rehabilitation have been conducted with stroke

patients in acute or subacute phases. For example, an ipsi-

lesional loss of power in the alpha frequency band and an

increase in the delta frequency band detected within

2 weeks of stroke has been linked to a poor outcome.49

Coherence in the beta frequency band between the ipsile-

sional M1 and the rest of the cortex had a positive linear

relationship with upper-limb motor improvement during

the first 3 months after stroke.50 Few studies have investi-

gated predictive biomarkers after the chronic phase since

spontaneous motor recovery tends to be slow during this

period. At this time point, rehabilitation intervention could

help chronic stroke patients show ongoing motor function

improvements, making intervention-specific prognosis an

essential issue for selecting candidates who are more likely

to be benefitted. Several EEG-related intervention bio-

markers have been discussed in previous studies.6,30,51

With these biomarkers, connectivity-based analyses of neu-

roimaging data allowed new insights into the pathophysi-

ology underlying stroke-induced deficits, as they provided

an in vivo systems-level perspective of the specific out-

comes that a lesion has on neural networks.26 This study

demonstrated that the EEG coherence network is inform-

ative in the chronic stage, pointing to its potential use as a

predictive biomarker for a robot-assisted training com-

bined with a neural guided strategy. In the NG-AO group,

Figure 6 Coherence-based biomarker for predicting intervention gains in participants in the NG-AO group. (A) The change in

percentage variance explained in intervention gains by EEG coherence with the increase in PLS components. Three components are needed

to achieve more than 90% of the variance explained in intervention gains. (B) Variable importance in projection score for recovery-related

EEG coherences. Nine pre-training coherences (delta: C3-C4, C3-FC4, C3-CP4, C4-FC3, C4-CP3; theta: C3-CP4, FC4-CP3; and beta: C3-

FC3, C3-CP3, FC3-CP3) belonging to interhemispheric and contralesional local connectivity were selected as biomarkers for predicting

intervention gains. (C) Leave-one-out cross-validation algorithm was used to predict DFMA-UE(t0, tpost) and FMA-UE(tpost) for each

participant (P1, P2, . . ., P12) by establishing regression model with 11 observations for model training and 1 observation left for model

testing. The grey block indicates the datasets for modelling and the green block indicates the datasets for testing. (D) The significant

correlation between the predicted DFMA-UE(t0, tpost) and observed DFMA-UE(t0, tpost) (r ¼ 0:82) and (E) between the predicted FMA-

UE(tpost) and observed FMA-UE(tpost) (r ¼ 0:90).
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which involved neural guided strategy, the combination of

interhemispheric delta and theta connectivity and contrale-

sional beta connectivity at pre-training precisely predicted

the intervention gains shown at the post-training assess-

ment with a small prediction error (RMSE ¼ 3.24) and a

strong correlation between the predicted DFMA-UE(t0,

tpost) and observed DFMA-UE (t0, tpost) (Fig. 6D; r ¼ 0:82)

and between the predicted FMA-UE(tpost) and observed

FMA-UE(tpost) (Fig. 6E; r ¼ 0:90). Among them, contrale-

sional alpha connectivity was also significantly correlated

with intervention gains at the 6-month follow-up, indicat-

ing its sensitivity to long-term motor improvements

(r ¼ �0:614; P < 0:05Þ. For the nNG-text group, in

which participants underwent non-neural guided training,

no brain connectivity had significant predictive effects for

intervention gains (all P > 0:05). In summary, brain con-

nectivity networks may be sensitive for predicting closed-

loop training effects, such as neural guided training, since

closed-loop learning, in which online feedback of neural

activation is provided to the participant for self-regulation,

tends to affect behaviourally relevant functional network

reorganization.52–56 Besides, this study also indicated that

predictive biomarkers for one intervention may not applic-

able for another type of intervention.

Interhemispheric and contralesional
functional connectivity for
predicting recovery

Connectivity-based approaches provide great insight into

network reorganization in the acute and chronic phases

after stroke and contribute to improving prognostic abilities

and the development of therapeutic interventions, as dis-

cussed in many fMRI and EEG studies.15,20,21,25–29,36,57–59

As shown in Supplementary Figs. 1–4, interhemispheric and

contralesional functional connectivity at pre-training had a

significant correlation with motor improvement in the train-

ing group with neural guidance. Contralesional functional

connectivity has been proven to be a useful biomarker

related to motor impairment and recovery after stroke in a

previous EEG study; i.e. Riahi et al.60 reported a negative

regression coefficient associated with higher contralesional

functional connectivity between motor areas and FMA

scores, which is consistent with our research results.

Dubovik et al.61 and Westlak et al.34 also reported a nega-

tive relationship between functional connectivity of contrale-

sional areas and motor performance. With fMRI, a

consistent finding has been a reduction in interhemispheric

functional connectivity between cortical sensory and motor

regions that correlates with sensorimotor dysfunc-

tion;20,24,29,31,57 e.g. Carter et al.20 found that interhemi-

spheric functional connectivity indicating disruption of the

somatomotor network had a significant positive correlation

with upper-extremity impairments. Van Meer et al.57

showed that restoration of resting interhemispheric function-

al connectivity positively correlated with recovery of

sensorimotor function. Puig et al.31 reported that stroke

patients with good recovery outcomes had greater interhe-

mispheric functional connectivity than patients with poor

outcomes in a resting-state fMRI study. In this study, we

also found a significant relationship between interhemi-

spheric EEG coherence at pre-training and intervention

gains after neural guided training (Supplementary Figs. 1–

4). Interestingly, the negative relationship seemed to contrast

with the above-mentioned findings from the results from

resting fMRI. These contrasting results between EEG and

fMRI, which were also reported in Dijkhuizen et al.,23 may

be caused by different experimental setups, analysis algo-

rithms or participants’ stroke periods. The more likely pos-

sibility may lie in the different imaging mechanisms of EEG

(electrophysiological activity) and fMRI (cerebral blood

flow). It requires further research to resolve the underlying

methodological or biological causes of dissimilarities be-

tween fMRI- and EEG-based connectivity measurements. In

contrast to previous research, this was the first study to

apply the EEG-based brain connectivity network for inter-

vention-specific prognosis for chronic stroke. The recovery

of motor function after stroke is not only related to the lo-

cation and volume of the damaged tissue but also related

to the neural pathways affected by the damaged tissue.

It worth to note that there are two pathways signifi-

cantly correlate to interventional gains [DFMA-UE(t0,

tpost)] in NG-AO group. The first one is between ipsile-

sional motor/motor connected cortex (including PM: FC4,

M1: C4 and SI: CP4) and contralesional motor/motor

connected cortex (including FC3, C3 and CP3), it may be

served by abundant white-matter fibres in the human cor-

pus callosum. The second one is in contralesional motor/

motor connected cortex (among FC3, C3 and CP3)

which may be served by local neural circuits. However,

we tend not to make strong conclusions about the inter-

pretation at anatomical level due to poor spatial reso-

lution of EEG signal. Although it is difficult to precisely

speculate motor improvement related internal neural

pathways from EEG due to its low spatial resolution, it

can still be inferred that the integrity of the interhemi-

spheric and contralesional brain connectivity network

plays an essential role in recovery during rehabilitation

training. This may be because the contralesional network

partially compensates for the function of the lesion-

induced disruption of neural networks in ipsilesional

hemisphere.

Significant coherence frequency
band

The results of the PLS regression (Fig. 6C) showed that the

interhemispheric delta coherences (C3-C4, CP3-C4) and the

contralesional beta coherence (FC3-CP3) were the top 3

contributors for predicting intervention gains in the NG-AO

group. Recent literature has shown that cortical connectivity

measured by the small world index in these two frequencies

is related to motor impairments32,62,63 and recovery33 in
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acute stroke patients, which is consistent with our results al-

though our data were collected from participants in the

chronic phase. However, alpha connectivity has also been

reported as a biomarker of network function that is linearly

associated with motor performance in other studies.61 Also,

resting delta and alpha coherence was found to be signifi-

cantly decreased after motor imagery training.64 Although

beta coherence had a larger contribution index than alpha

coherence, alpha coherence also had a significant correlation

coefficient with intervention gains [Supplementary Table 3;

Coh(FC3, CP3), r ¼ �0:696; P < 0:05] in our results. We

guess that there might be two frequency bands in the brain

network that strongly correlate with intervention gains.

Delta is a widely agreed upon and robust relevant fre-

quency, while the other may be located in the alpha and

beta range and perhaps slightly varies from person to per-

son. The two different frequency bands may be responsible

for conveying different kinds of information.

The utility of EEG coherence for
clinical application

The potential for translating EEG biomarkers into clinical

practice remains positive because EEG has been widely

used in medical research with the advantage of offering

high-resolution temporal information and became a

standard practice nowadays. Besides, the method of this

study is straightforward, since the resting tasks can be

performed easily, and the EEG coherence is easy to be

calculated. More importantly, there is no discomfort for

the participants. The EEG coherence network has clinical

potential for predicting the effectiveness of neural guided

interventions. It could also be utilized to select suitable

candidates for NG-AO intervention.

Limitation and future work

Firstly, the small sample size might be a limitation of this

study. The main reason for raising this issue is the length

of rehabilitation training which was comparatively long

(2–3 months per participant). However, compared with

the other published studies6,65 in the same field, the sam-

ple size of this study would be acceptable. Another round

of recruitment and experiments might be needed to fur-

ther validate the findings of this study. Secondly, the par-

ticipants’ genders were imbalanced (18 out of 22

participants are male). Thus, the applicability of the find-

ings of this study on female might be questionable.

Furthermore, prior work66 shows that patients with a

functionally intact corticospinal tract experience a better

recovery of upper limb function at the sub-acute stage,

and a better response to further treatment at the chronic

stage. Not knowing the motor evoked potentials of

patients in this study is another limitation.

Future work will be focussed on applying this study in

the clinical training, e.g. the criteria for selecting suitable

patients for NG-AO training. A connectivity threshold as

introduced in similar research in Hordacre et al.67 may

be applied to select chronic stroke participants who are

likely to respond based on the predicted intervention

gains which may benefit therapists and stroke partici-

pants by providing information for selecting participants

before conducting the intervention. Besides, the influence

of patients’ handedness laterality on the prediction accur-

acy of intervention gain can also be considered in future

work.

Supplementary material
Supplementary material is available at Brain

Communications online.
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