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Abstract: Light is a key factor that affects phytochemical synthesis and accumulation in plants. Due to
limitations of the environment or cultivated land, there is an urgent need to develop indoor cultivation
systems to obtain higher yields with increased phytochemical concentrations using convenient light
sources. Light-emitting diodes (LEDs) have several advantages, including consumption of lesser
power, longer half-life, higher efficacy, and wider variation in the spectral wavelength than traditional
light sources; therefore, these devices are preferred for in vitro culture and indoor plant growth.
Moreover, LED irradiation of seedlings enhances plant biomass, nutrient and secondary metabolite
levels, and antioxidant properties. Specifically, red and blue LED irradiation exerts strong effects
on photosynthesis, stomatal functioning, phototropism, photomorphogenesis, and photosynthetic
pigment levels. Additionally, ex vitro plantlet development and acclimatization can be enhanced
by regulating the spectral properties of LEDs. Applying an appropriate LED spectral wavelength
significantly increases antioxidant enzyme activity in plants, thereby enhancing the cell defense
system and providing protection from oxidative damage. Since different plant species respond
differently to lighting in the cultivation environment, it is necessary to evaluate specific wavebands
before large-scale LED application for controlled in vitro plant growth. This review focuses on the
most recent advances and applications of LEDs for in vitro culture organogenesis. The mechanisms
underlying the production of different phytochemicals, including phenolics, flavonoids, carotenoids,
anthocyanins, and antioxidant enzymes, have also been discussed.

Keywords: light emitting diodes; anthocyanins; antioxidant enzymes; organogenesis; phenolic acid;
carotenoid; tocopherol

1. Introduction

Among the different environmental factors, light is the most important factor that
affects plant gene expression, enzyme activity, growth, development, and nutritional com-
position [1–3]. Recent studies have reported the effects of light quality (spectral specificity)
on phytochemical accumulation in plants [4–9]. Several studies on light-emitting diodes
(LEDs) have reported improvement in the nutritional quality of plants grown under LED
irradiation. For example, increased accumulation of primary secondary metabolites, starch,
simple sugars, proteins, vitamin C, and phenolic compounds including anthocyanins has
been observed in plants grown under LED irradiation [10–12]. Recently, LEDs have been
increasingly applied in agro-farming and in vitro culture owing to their advantages over
conventional light sources. For example, LEDs are more energy-efficient, have a longer
life span, and exhibit higher spectral specificity than standard lamps (fluorescent [FL]
lamps) [13]. Moreover, the application of monochromatic light is important in research cen-
ters [14]. FL light encompasses a wide range of wavelengths (350–750 nm) and is suitable
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as a light source for several plant species; however, it has certain disadvantages, including
higher electricity consumption, more heat emission, and greater variation in radiation
wavelengths than LEDs [15]. Comparatively, LEDs demonstrate lower heat emission and
higher energy conversion efficiency than other conventional artificial light sources [13,16].
Another desirable characteristic of LEDs over other light systems is that they can be posi-
tioned close to plants and controlled to emit specific wavelengths [13]. Thus, the beneficial
aspects of LEDs over FL lamps have recently led to their wide application in the field of
agriculture for post-harvest uses, preservation, disease resistance, and development of
in vitro culture systems [17].

Light is a primary factor that affects plant development, physiology, and cellular
differentiation [18]. Environmental factors, including light spectrum types, are important
signaling components of plant physiology and metabolite synthesis [19,20]. Photoreceptors
present in plants and matching spectral attributes are the main factors that regulate plant
morphogenesis and metabolite synthesis [21]. The application of artificial light in different
plant species has been investigated in several previous studies to determine its effects on
the stimulation of plant metabolite production and photosynthesis [22]. LED irradiation
has been found to be effective in stimulating plant metabolite production after harvest and
during development [23]. Previous studies have demonstrated the effective use of LEDs
in in vitro growth and organogenesis of plants, including banana [24], strawberry [25],
chrysanthemum [26], and potato [27].

Plants perceive light through photoreceptors, such as red light-sensitive phytochromes,
blue light-sensitive phototropins, and cryptochromes, which regulate several specific phys-
iological responses, including organogenesis and metabolite synthesis [28,29]. The success
of in vitro plant regeneration and metabolite synthesis relies greatly on the spectral quality
of light and photon efficiency of the light source [21]. According to Samuolienė et al. [5],
a considerable challenge associated with tissue culture is to provide high quality light
of controlled intensities in sufficient quantity for plant development. Numerous studies
have reported the successful application of LEDs in in vitro shoot organogenesis and plant
growth. For example, significantly improved biomass yield, increased shoot regeneration,
and improved adaptability and survival rate of regenerated plants have been reported
[30–33]. Improved secondary metabolite accumulation and in vitro root growth have
been reported by Xu et al. [34] in Cunninghamia lanceolata and Nadeem et al. [35] in
Ocimum basilicum under LED irradiation. Plant growth, development, and metabolite
production are strongly affected by the light spectrum of the LEDs. A previous study
suggested that the blue light spectrum was involved in morphogenesis, phototropism, the
leaf photosynthetic process, and stomatal opening [36]. Red LEDs emit a spectrum very
close to the maximum absorbance for both chlorophyll and phytochromes. The effects of
light spectra on plant physiology vary among species, thereby causing significant variation
in biomass yield and plant production.

The present review highlights the variation in in vitro organogenesis and somatic em-
bryogenesis among different plant species grown under LED irradiation. Additionally, this
review elucidates the effects of LED irradiation on secondary metabolite accumulation and
antioxidant properties of plants. Finally, the effects of LED irradiation on the expression of
genes related to the production of phenolic acids, flavonoids, carotenoids, and chlorophyll
have been discussed.

2. Results
2.1. Effects of LED Irradiation on Antioxidant Enzymes

Light is an important factor that affects several biochemical pathways in plants during
their growth and development. Antioxidant compounds, such as phenolic acids, vitamins,
anthocyanins, carotenoids, and α-tocopherol, are widely affected by the duration of light
exposure and spectral wavelength of light sources [37–39]. Spectral quality affects the
antioxidant enzyme activity and antioxidant properties of plants [40]. A previous study
reported the importance of light in antioxidant enzyme metabolism [41]. For instance, the
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combination of red and blue light at a ratio of 1:1 enhanced the activity of antioxidant
enzymes, including catalase (CAT), peroxidase (POD), superoxide dismutase (SOD), and
ascorbate peroxidase (APX), in Carpesium triste Maxim [42]. Increase in the activity of
antioxidant enzymes, such as CAT, was found to be related to the delay in the onset of
leaf senescence in C. triste [42], wheat [43], pea [44], and banana [45] (Table 1). Numerous
previous studies have shown the differential responses of antioxidant enzymes in plants
grown in vitro under different light conditions. For instance, callus cultures of Cynoglossum
officinale grown under dark conditions showed increased CAT activity, whereas those
grown under blue and white light conditions showed reduced CAT activity [46]. According
to Causin et al. [43], blue light plays an important role in preventing cell senescence and
decreasing cellular oxidative damage by enhancing CAT activity in wheat plants. In
another study, blue light strongly activated catalase isozyme 1 (CAT-1) in rye plants [47].
CAT-1 is known to eliminate photorespiratory H2O2 [47], indicating its positive association
with plant antioxidant defense mechanisms. Differential effects of LED irradiation on
in vitro shoot organogenesis and antioxidant enzyme activities and variations in reactive
oxygen species (ROS) levels have been reported in different plant species [48]. A significant
decrease in SOD activity has been observed during the initial stage of organogenesis
in Curculigo orchioides grown under combined red and blue LED irradiation [49]. The
highest SOD activity was observed after two weeks of red LED irradiation. Moreover,
Franck et al. [50] demonstrated a close association between shoot bud formation and
enhanced SOD activity during in vitro organogenesis of Prunus avium and strawberries
grown under blue LED irradiation. In similar studies, enhanced SOD and CAT activities
were observed during adventitious shoot formation in Gladiolus hybridus [51] and Albizia
adorratissima [52] grown under blue LED irradiation. It has been reported that CAT plays
an important role in shoot organogenesis, and enhanced CAT activity is associated with
increased adventitious shoot formation in plants [52]. High CAT activity during shoot
initiation is associated with H2O2 dismutation [53]. Additionally, Causin et al. [43] observed
increased CAT activity and reduced cell senescence in wheat plants exposed to blue light.

Table 1. Effect of light emitting diodes on secondary metabolites compositions and biological activity.

Plant Species Type of LED
Secondary
Metabolites/
Enzyme/Gene

Biological Activity References

Lactuca sativa var. crispa
“Green Oak Leaf” Blue LED Carotenoid and

chlorophylls
Bioactive compound
production Chen et al. [8]

Lactuca sativa L. cv.
Butterhead

Red, Blue and Green
(4:1:1) LED LHCb, PsbA Gene expression Bian et al. [54]

Perilla frutescens var. crispa Red LED Rosmarinic acid, caffeic
acid

Bioactive compound
production,
biomass increase

Nguyen and Oh [55]

Lactuca sativa L. cv. Banchu
Red Fire BlueLED Polyphenol and

carotenoid

Bioactive compound
production, Johkan et al. [56]

Pisum sativum L. Blue LED Chlorogenic acid Antioxidation Liu et al. [57]
Lactuca sativa L.
var Lollo rosso Red and Blue(1:5) LED Chlorogenic acid Bioactive compound

production Azad et al. [58]

Abelmoschus esculentus L. Blue LED PAL Gene expression Wilawan et al. [59]
Brassica alboglabra Bailey. cv.
Lvbao Red and Blue (2:1) LED Amino acids Bioactive compound

production Zhang et al. [56]

Pachyrhizus erosus L. Blue LED l-phenylalanine Antioxidation Chung et al. [4]

Anoectochilus roxburghii Red and Blue(8:2) LED PAL, CHS, CHI, and
FLS, Gene expression Gam et al. [60]

Brassica juncea Blue LED 4-hydroxybenzoic acid Bioactive compound
production Park et al. [61]
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Table 1. Cont.

Plant Species Type of LED
Secondary
Metabolites/
Enzyme/Gene

Biological Activity References

Camellia sinensis (L.) O.
Kuntze ‘Zhonghuang 3′ Blue LED

Anthocyanins,
catechins,
CRY2/3, SPA, HY5

Bioactive compound
production,
Gene expression

Zheng et al. [62]

Coriandrum sativum L. Red, Blue and Far red
(81.5:12.5:6) LED Ascorbic acid

Biomass increase,
Bioactive compound
production

Nguyen et al. [55]

Stevia rebaudiana Red:Far red: Blue
(5:6.1), LED UGT85C2 Gene expression Yoneda et al. [63]

Perovskia atriplicifolia Blue LED δ-3-Carene Bioactive compound
production Ghaffari et al. [64]

Momordica charantia Red LED
Charantin, AACT,
MVD, IDI,
FPS1, FPS2, CAS2

Bioactive compound
production,
gene expression

Cuong et al. [65]

Brassica napus sprouts Blue LED Caffeic acid Bioactive compound
production Park et al. [66]

Lactuca sativa L. Red and Blue (1:3) LED Ascorbate, GMP, GME,
GGP, GGP, GLDH

Bioactive compound
production,
gene expression

Zha et al. [67]

Fagopyrum esculentum Blue LED Rutin, orientin Antioxidation Nam et al. [68]

Hypericum perforatum Red LED Hypericin Bioactive compound
production

Sobhani Najafabadi
et al. [69]

Oryza sativa cv. Dongjin Red LED PPO1 Gene expression Tran and Jung [70]

Cordyceps militaris Red and Blue (1:1) LED Cordycepin Bioactive compound
production Chiang et al. [71]

Agastache rugosa White LED Rosmarinic acid, C4H,
TAT, CHI

Bioactive compound
production,
gene expression

Park et al. [72]

Ocimum basilicum purple
varieties ‘Ardestan’ Red LED α-pinene Bioactive compound

production Hosseini et al. [73]

Artemisia annua L. Blue LED ADS, artemisinin
Bioactive compound
production,
gene expression

Lopes et al. [74]

Lactuca sativa ‘Sunmang’ Red, Blue and Far red
(2:8:1.4) LED Chlorogenic acid Antioxidation Lee et al. [75]

Mesembryanthemum
crystallinum L. Red and Blue (1:9) LED Myo-inositiol, pinitol Bioactive compound

production Kim et al. [76]

Polygonum tinctorium
cv. senbon Blue LED IGS, BGL Gene expression Nakai et al. [77]

Paecilomyces japonica Red:Blue (3:7) LED Cordycepin Bioactive compound
production Ha et al. [78]

Carpesium triste Maxim Red and Blue (1:1) LED CAT, POD, SOD and
APX Enzyme activity Zhao et al. [42]

Cnidium officinale Blue and White LED CAT Enzyme activity Adila et al. [46]
Wheat Blue-light CAT Enzyme activity Causin et al. [43]
Rye Blue-light CAT Enzyme activity Schmidt et al. [47]

Prunus avium, Strawberry Blue-LED SOD Enzyme activity Franck et al. [50],
Tian et al. [79]

Gladiolus hybridus Blue LED SOD and CAT Enzyme activity Gupta Dutta and
Datta [80]

Albizia adorratissima Blue LED SOD and CAT Enzyme activity Rajeswari and
Paliwal [52]

Barley Red-LED È-tocopherol Bioactive compound
production Koga et al. [81]

Apple Yellow-LED Tocopherol Bioactive compound
production Kokaji et al. [82]
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Table 1. Cont.

Plant Species Type of LED Secondary Metabolites/
Enzyme/Gene Biological Activity References

Basil Red-LED α-tocopherol Bioactive compound
production Samuoliene et al. [53]

Beet and parsley Blue-LED Tocopherol Bioactive compound
production Samuoliene et al. [83]

Pea Red-LED b-caretene Bioactive compound
production Wu et al. [84]

Citrus fruit Red-LED b-cryptoxanthin Bioactive compound
production Ma et al. [85]

Tomato Red-LED Lycopene Bioactive compound
production Liu et al. [86]

Buckwheat White-LED Carotenoid Bioactive compound
production Tuan et al. [87]

Citrus Blue-LED CitPSY, CitZDS, CitPDS,
CitLCY, Gene expression Zhang et al. [88]

Broccoli Short duration of
Blue-LED BC and VIO Bioactive compound

production
Kopsell and Sams
[89]

Grape Blue-LED Anthocyanin Bioactive compound
production Rodyoung et al. [90]

Buckwheat Blue-LED Anthocyanin Bioactive compound
production Thwe et al. [91]

Wheat sprout Blue-LED p-coumaric acid, epicatechin Bioactive compound
production Cuong et al. [49],

Lettuce Red-LED Anthocyanin Bioactive compound
production

Li and Kubota [92];
Stutte et al. [93]

Mustard Red-LED Anthocyanin Bioactive compound
production Brazaityte et al. [94]

Cabbage Red-LED Anthocyanin Bioactive compound
production Qian et al. [95]

Apples Red-LED Anthocyanin Bioactive compound
production Lekkham et al. [96]

Grape Blue LED and Red LED MYB transcription factor
genes Gene expression Koes et al. [97]

Grape Blue-LED V1MYBA1-2, VIMYBA2 and
VvUFGT increased Gene expression Rodyoung et al. [90]

Basil RED-LED TPC Bioactive compound
production Samueliene et al. [53]

Chinese kale
sprouts Blue-LED TPC Bioactive compound

production Qian et al. [95]

Chinese cabbage
and lettuce Blue-LED and Red LED TPC Bioactive compound

production Li et al. [98]

Pachyrhizus erosus RED-LED

Malonyldaidzin, malonyl
genistin, salicylic acid,
p-hydrobenzoic acid and
gentisic acid

Bioactive compound
production Chung et al. [4]

Wheat sprout Blue-LED
p-coumaric acid, gallic acid,
ferulic acid, hydroxybenzoic
acid

Bioactive compound
production Park et al. [99]

Wheat sprout Blue-LED TaPA1,2, TaC4H, TaHCI, 1,
TaCHS and TaF3H genes Gene expression Cuong et al. [49]

Cyclocarya paliurus Blue-LED.

(kaempferol, isoquercitrin
and quercetin
Phenylalanine ammonia
lyase, PAL; 4-coumaroyl
CoA-ligase, 4CL; and
chalcone synthase, CHS

Bioactive compound
production
gene expression

Liu et al. [100]
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2.2. Effects of LED Irradiation on In Vitro Organogenesis

LEDs have drawn considerable attention as suitable alternative light sources for
the in vitro propagation, mass propagation, shoot regeneration, and root culture of var-
ious plant species. Due to technological advancement and flexibility of LED spectral
wavelength, LEDs have been successfully applied for in vitro organogenesis of plant
species (Table 2). Several studies have reported the effects of LED irradiation on the car-
bohydrate metabolism and micropropagation of plant species [101–103]. Many previous
studies have demonstrated the varying in vitro shoot and root organogenesis-promoting
effects of irradiation with LED combinations, depending on the various plant parts and
species [104–106]. Blue and red LED irradiation was found to stimulate shoot organogen-
esis in potato [104] and vanilla [107] and enhance bulbet organogenesis in Lilium [108].
Increased shoot regeneration was observed in A. distichum irradiated with combined red
and blue LEDs [109]. Other studies demonstrated the stimulatory role of monochromatic
blue or red LED irradiation in shoot organogenesis [1,110,111]. Increased shoot elongation
was observed in Oncidium [112], and blueberries [113,114] irradiated with red LED. In a sim-
ilar study, shoot elongation was increased in sugarcane irradiated with blue and red LED
combinations [110].

In several studies, LED irradiation of in vitro plants increased their biomass. For
example, irradiation with blue and red LED combinations resulted in enhanced biomass
during the in vitro culture of Achillea millefolium [115], Densribium [1], blueberries [114],
sugarcane [110,116], and chrysanthemum [26]. In addition to biomass, chlorophyll content
was increased in different plant species cultured under LED irradiation [24,42,117–119]. In
similar studies, increased total carotenoid level was reported in shoot cultures irradiated
with different LEDs [119–121]. Tuan et al. [120] observed elevated expression of carotenoid
biosynthesis-associated PSY, ZDS, CHXB, and ZEP genes. LED irradiation of various
cultured plants also increased in vitro adventitious root induction. For example, the
adventitious root-promoting effects of LED irradiation were observed in strawberries [122],
chrysanthemum [123], chestnuts [124], Oncidium [113], and C. lanceolata [34]. The effects of
spectral differences in light quality on somatic embryo formation have been reported in
Peucedanum japonium [125], Coffea canephora [126], Pinus densiflora [127], Pinus taeda, and
Pinus elliottii [128]. However, somatic embryo formation and germination were observed on
irradiation with different combinations and quantities of LEDs. Jung et al. [129] observed
an increase in the polyphenol content of rice seedlings grown in vitro under irradiation
with different LED combinations.

In several instances, increased bioactive compound production observed in plant
species grown in vitro could be maintained under irradiation with different LEDs
[35,46,130–134]. Additionally, increased total phenol and total flavonoid contents were
observed in different plants irradiated with different LEDs [1,35,42,119,135]. Recently,
increased phytochemical levels have been recorded in important crops and medicinal
plants. For example, ascorbic and dehydroascorbic acids were observed in Lycopersicon
esculentum cv. ‘House Momotaro’ & ‘Mini Carol’ [136], and myrcene and limonene were ob-
served in Lippia rotundifolia Cham maintained under blue LED irradiation [137]. Irradiation
with red and blue LED combinations enhanced phytochemical levels in Bacopa monnieri
L. [138] and Plectranthus amboinicus (Lour.) Spreng [139]. Increased antioxidant activity
was significantly correlated with enhanced phytochemical concentration in LED-irradiated
plants. Moreover, a substantial increase in antioxidant enzymatic activity was observed
in plants grown in vitro under irradiation with various LEDs. For instance, Gupta and
Sahoo [80] observed an increase in APX activity in C. orchioides cultured under red LED
irradiation. Similarly, enhanced POD activity was observed in C. orchioides irradiated with
blue LEDs [80]. Additionally, changes in the antioxidant enzyme activity and polyphenol
concentration were observed in LED-irradiated plants cultured in vitro [106,140,141], indi-
cating a close association between LED irradiation and plant phytochemical composition
and antioxidant activities.
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Table 2. Effect of light emitting diodes on in vitro plant propagation.

Plant Species Type of LED Metabolites/Enzyme/Gene Biological Activity References

Lippia gracilis Schauer Blue-LED
Total chlorophyll, total
carotenoid, carvacrol,
E-caryophyllene

Bioactive compound
production Lazzarini et al. [117]

Brachypodium distachyon
(L.) Red:Blue:White LED

PAL, F5H
Superoxide dismutase,
Catalase

Gene expression,
antioxidant enzyme
expression

Mamedes-Rodrigues
et al. [141]

Hyptis marrubioides
Epling White and Blue-LED Rutin Bioactive compound

production Pedroso et al. [130]

Cunninghamia lanceolata Red:Blue:Purple:Green
(8:1:1:1) LED Peroxidase, catalase

Root growing,
antioxidant enzyme
expression

Xu et al. [34]

Ocimum basilicum L. Red, Blue, White LED

Total flavonoid, peonidin,
cyaniding (Red LED),
rosmarinic acid, eugenol
(Blue LED), chicoric acid
(White)

Bioactive compound
production Nadeem et al. [35]

Lycopersicon esculentum
cv. ‘House Momotaro’
& ‘Mini Carol’

Blue LED Ascorbic acid,
dehydroascorbic acid Antioxidation Zushi et al. [136]

Boehmeria nivea cv.
‘Zhongsizhu 1′ Red and Orange LED

Total chlorophyll (Red),
malondialdehyde (+),
superoxide dismutase,
peroxidase (Orange)

Bioactive compound
production, antioxidant
enzyme expression

Rehman et al. [118]

Schisandra chinensis
(Turcz.) Blue LED Chlorogenic acid, gallic

acid, protocatechuic acid

Biomass increase,
Bioactive compound
production

Szopa and Ekiert
[131]

Bacopa monnieri L. Red and Blue LED Triterpenoid saponin
glycosides

Bioactive compound
production

Watcharatanon et al.
[138]

Scutellaria baicalensis
Georgi Blue LED Total carotenoid, PSY,

ZDS, CHXB, ZEP

Bioactive compound
production,
gene expression

Tuan et al. [120]

Cnidium officinale
Makino Red and Blue (1:1) LED

Total phenol, total
flavonoid, ascorbate
peroxidase

Bioactive compound
production, antioxidant
enzyme exprssion

Adil et al. [46]

Grapes Blue LED Chlorophyll photosynthetic
compound Poudel et al. [110]

Canavalia ensiformis Red and Blue (1:3) LED
Total phenol, total
chlorophyll, total
carotenoid

Biomass increase, callus
induction, bioactive
compound production,
antioxidation

Saldarriaga et al.
[119]

Rhodiola imbricata
Edgew Blue LED Salidroside, total phenol,

total flavonoid
Bioactive compound
production Kapoor et al. [135]

Lepidium sativum L. White, Blue, Green LED

Total phenol (White),
p-coumaric acid (Blue),
superoxide dismutase,
peroxidase (Green)

Bioactive compound
production, antioxidant
enzyme exprssion

Ullah et al. [132]

Solanum tuberosum cv.
‘Zhuanxinwu’ Blue LED Anthocyanin Bioactive compound

production Xu et al. [142]

Ajuga bracteosa Blue LED Total phenol, total
flavonoid

Bioactive compound
production Rukh et al. [133]

Vitis vinifera cv.
“Manicure Finger” Blue LED Total chlorophyll, total

carotenoid
Bioactive compound
production Li et al. [143]

Lippia rotundifolia Cham Blue LED Myrcene, limonene Bioactive compound
production De Hsie et al. [137]
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Table 2. Cont.

Plant Species Type of LED Metabolites/Enzyme/Gene Biological Activity References

Pfaffia glomerata
accessions (Ac22, Ac43) Red and Blue (1:1) LED

Anthocyanin,
20-hydroxyecdysone,
peroxidases, catalase

Bioactive compound
production, antioxidant
enzyme exprssion

Silva et al. [140]

Lippia filifolia Mart. &
Schauer Red, Blue LED Malondialdehyde (-) Bioactive compound

production Chaves et al. [134]

Drosera burmannii Vahl,
Drosera indica L. Blue LED Plumbagin Bioactive compound

production
Boonsnongcheep et al.
[144]

Potato Red and Blue LED - Shoot elongation Edesi et al. [104]
Lilium Red and Blue LED - Bulbet organogenesis Lian et al. [108]
Vanilla Red and Blue LED - Shoot organogenesis Bello-Bello et al. [107]
A. distichum Red and Blue LED - Shoot regeneration Lee et al. [109]
R. glutinosa, Red LED - Shoot elongation Hahn et al. [22]
Sugarcan Blue and Red LED - Shoot elongation Silva et al. [139]
A. milletolium Blue and Red LED - Enhanced biomass Alvarenga et al. [115]
Densribium Blue and Red LED - Enhanced biomass Lin et al. [1]
Blue-berry Blue and Red LED - Enhanced biomass Hung et al. [114]
Crysanthemum Blue and Red LED - Enhanced biomass Kim et al. [26]
Sugarcan Blue and Red LED - Enhanced biomass Maluta et al. [116]

Castanea crenata Red-LED - Shoot elongation Park and Kim et al.
[145]

Oncidium Red-LED - Shoot elongation Chung et al. [113]
Blue berry Red LED - Shoot elongation Hung et al. [112,114]

Banana Red-LED - Chlorophyll Do Nascimento
Vieira et al. [24]

C. orchioides Red-LED, Blue-LED APX, POX Enzyme activity Dutta G. and Sahoo
[80]

2.3. Effects of LED Irradiation on Tocopherol Biosynthesis in Crops

Tocopherols, synthesized through the isopropenoid pathway, are associated with
the antioxidant properties of green plants [146]. These phytochemicals play a key role
in protecting the photosynthetic membranes and apparatus from high-intensity light
stress [147]. A previous study showed direct interaction between photoreceptor activation
and tocopherol content in plants [148]. A significant increase in È-tocopherol content
and the suppression of α-tocopherol content were reported in barley irradiated with red
LEDs [81]. Moreover, yellow LED irradiation effectively enhanced tocopherol accumulation
in apples [82], demonstrating the species-dependent effects of LED irradiation. Similar
results were reported in basil, whereas combined irradiation with blue and red LEDs,
compared with only blue LED irradiation, enhanced α-tocopherol content in parsley [53].
Koga et al. [81] proposed that the suppression of homogentisate phytyltransferase, an
enzyme that regulates the total tocopherol content in plants, might lower the tocopherol
concentration in blue LED-irradiated sprouts. Moreover, in another study, irradiation with
blue LEDs at a lower dosage resulted in an increase in the total tocopherol content in
beets [83]. Thus, it is possible that LED irradiation can interact with the enzymes involved
in tocopherol biosynthesis pathways. However, in another study, irradiation with HPS
lamps combined with red LEDs significantly enhanced α-tocopherol accumulation in
parsley extracts [83], indicating that red or blue LED irradiation is solely insufficient to
regulate tocopherol biosynthesis in plants.

2.4. Effects of LED Irradiation on Carotenoid Biosynthesis in Crops

Carotenoids, including β-carotene and lutein, are present in most green plants and
green algae and are associated with light harvesting and the transfer of energy to the reac-
tion center of photosystems [149,150]. They also deactivate ROS formed under extreme light
stress to protect the photosynthetic apparatus [151]. Moreover, carotenoid consumption has
been linked to several health benefits in humans, including heart disease and cancer pre-
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vention, and it has been reported to be closely associated with ophthalmic health [152–155].
Many previous studies have reported the effects of both spectral quality and light intensity
on carotenoid biosynthesis in plants. Among the different LEDs, red LED irradiation
enhanced β-carotene accumulation in pea plants [84]. Other studies reported that red LED
irradiation resulted in an increase in β-cryptoxanthin content in citrus fruits [156] and ly-
copene content in tomatoes [157]. The duration of LED irradiation affected total carotenoid
content and carotenoid biosynthesis in the growing plants. Compared to combined red
and blue LED irradiation, blue LED irradiation for a short duration significantly increased
β-carotene and violaxanthin accumulation in broccoli microgreens [89]. In a similar study,
BC levels in pea plants were increased after blue LED irradiation for a short duration [84].
However, β-carotene and lutein levels in buckwheat sprouts were decreased following blue
LED irradiation, compared with white LED irradiation [120]. As shown in Table 1, the LED
source markedly affected carotenoid accumulation and was significantly associated with
gene expression during carotenoid biosynthesis in the plants. The variation in carotenoid
content in the plants irradiated with LEDs could be attributed to the differential expression
of genes associated with carotenoid synthesis. For instance, buckwheat sprouts grown
under irradiation with different LEDs showed increased expression of FtPSY, FtLCYB,
FtCHXB, FtCHXE, FtLCYe, and FtZEP genes, which are associated with carotenoid biosyn-
thesis, following white LED irradiation [120]. In a similar study, Zhang et al. [88] observed
the upregulation of the expression of carotenoid biosynthesis-associated genes, such as
CitPSY, CitZDS, CitPDS, and CitLCY, in citrus species, indicating a differential stimulatory
role of LED irradiation in the regulatory mechanism of carotenoid biosynthesis in plants.

2.5. Effects of LED Irradiation on Flavonoid Biosynthesis in Crops

Flavonoids are widely distributed phytochemicals found in plants and are involved
in multiple mechanisms, including protection against pathogens and ultraviolet (UV)
radiation, flower coloration, and male fertility [158–160]. Additionally, these phytochemical
compounds are involved in plant coloration, protection of leaf cells from photooxidative
damage [161], stress response, and other physiological activities [162,163]. Light is an
important abiotic factor that affects flavonoid accumulation and flavonoid biosynthesis-
related gene expression in plant species [164]. Numerous previous studies have reported
the key role of LEDs in flavonoid biosynthesis in plants. Blue LED irradiation increased
anthocyanin concentration in grapes [90]. Upregulation of the expression of VIMYBA1-2,
VIMYBA2, and VvUFGT genes, which are associated with anthocyanin biosynthesis, was
also observed. Similarly, Thwe et al. [91] observed increased anthocyanin accumulation in
buckwheat grown under blue LED irradiation and wide variation in FtPAL, FtANS, and
FtDFR expression in buckwheat sprouts. In another study, a positive correlation between
anthocyanin accumulation and flavonoid synthesis-related gene expression, including that
of 4-coumaryol CoA-ligase (4CL) and phenylalanine ammonia synthase, was observed
in Cyclocarya paliurus grown under blue LED irradiation [57]. Park et al. [72] reported
an increase in the levels of rosmaric acid, tilianin, and expression of genes encoding
phenylpropanoid biosynthesis-related enzymes, such as cinnamate 4-hydroxylase (C4H),
chalcone isomerase (CHI), and RAS, in Acaulospora rugosa under white LED irradiation,
compared with irradiation with other LEDs. Similarly, enhanced gallic acid and quercetin
accumulation and decreased p-coumaric acid and epicatechin levels were observed in
wheat sprouts grown under blue LED irradiation [49]. Irradiation with a combination of
blue and red LEDs at a ratio of 1:4 resulted in an increased expression of genes encoding
flavonoid synthesis-related enzymes, such as phenylalanine ammonia lyase (PAL), chalcone
synthase (CHS), CHI, and flavonol synthase, in Anoectochilus roxburghii, further resulting in
increased flavonoid accumulation [60].

2.6. Effects of LED Irradiation on Anthocyanin Biosynthesis in Crops

Anthocyanins are soluble flavonoids that are widely distributed in plants and are
associated with seed dispersal, pollination, stress resistance, and flower coloration. They
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are widely used in the food industry for coloring purposes [165]. Additionally, these
phytochemicals are known for their antioxidant properties, including protection of the
photosynthetic apparatus and DNA from harmful radiation and cold stress, and they play
key roles in drought resistance [166,167]. Previous studies have reported the effects of
LED irradiation on anthocyanin accumulation in plants [58]. Irradiation with a red and
far-red LED combination has been reported to increase total anthocyanin (TA) content
in lettuce plants [92,93]. However, irradiation with a deep red LED alone reduced total
anthocyanin content in mustard plants [94]. TA concentration was significantly increased
in other vegetables, such as cabbage [95] and Chinese kale sprouts [168], following red
LED irradiation. Moreover, irradiation with a combination of a red LED with HPS lamp
resulted in higher TA accumulation in green vegetables than irradiation with red LEDs
alone [169]. Green vegetables, such as lettuce and romaine baby leaves, have been reported
to show higher TA content when grown under green LED irradiation than when grown
under red LED irradiation [6,40]. Moreover, TA accumulation was higher in Camellia
sinensis (L.) O. Kuntze ‘Zhonghuang 3′ grown under blue LED irradiation [62]. These
results indicated that TA biosynthesis in plants depended on not only the light wavelength
but also the plant species. Anthocyanin concentration was increased in apples grown
under red LED irradiation [96]. According to this report, red LED irradiation upregulated
the expression of MD-MYB10 and MdUFGT genes, which are related to anthocyanin
biosynthesis [96]. Moreover, irradiation of grapes with both blue and red LEDs upregulated
the expression of anthocyanin biosynthesis-related genes, such as MYB transcription
factor genes [97]. In another study, the expression of anthocyanin synthesis-related genes,
including V1MYBA1-2, VIMYBA2, and VvUFGT, was increased with the enhancement in
anthocyanin accumulation in grape berries irradiated with blue LEDs [90].

2.7. Effects of LED Irradiation on Phenolic Acid Biosynthesis in Crops

Phenolic compounds are ubiquitous in most higher plants and are associated with
plant defense systems against abiotic and biotic factors, including UV radiation, high
temperature, excess light, pathogen attack, and wounding [170,171]. Phenolic compounds
are formed via the shikimate pathway in plants. Phenylalanine, an intermediate compound
formed in these pathways, is converted into phenolic compounds by PAL, which is widely
regulated by light-responsive factors and ROS formed under excess light [142,172]. Some
studies have reported the effects of LEDs on phenolic acid accumulation in plants. Among
the different LEDs, irradiation with red LED was effective in increasing the total phenolic
content (TPC) in basil [53]. A stimulatory effect of red LED irradiation on TPC in various
vegetables, including radish, wheat, and lentil, was observed. Moreover, a positive effect
of irradiation with red LEDs, combined with other LEDs on TPC in basil microgreens
was observed. However, red LED irradiation exerted a negative effect on TPC in parsley
microgreens [53]. In contrast, Qian et al. [95] and Brazaityte et al. [169] found that red LED
irradiation did not affect TPC in Chinese kale sprouts and Brassica microgreens, respectively.
A similar trend was also observed in lettuce leaves [40,173]. Blue LED irradiation resulted
in an increase in TPC in growing Chinese kale sprouts [95]. Other studies have reported
increased TPC in Chinese cabbage and lettuce irradiated with blue LEDs alone compared
with those irradiated with red LEDs alone or a combination of red and blue LEDs [98],
indicating that the effects of LEDs on TPC varied among plant species. Several studies
have investigated the levels of phenolic compounds in plant species grown under LED
irradiation [55,57,58,68,72,174,175]. Chung et al. [4] reported an increase in malonyldaidzin,
malonyl genistin, salicylic acid, p-hydrobenzoic acid, and gentisic acid levels in Pachyrhizus
erosus grown under red LED irradiation. An increased concentration of p-coumaric acid
was observed in P. erosus grown under blue LED irradiation. The accumulation of phenolic
compounds, such as p-coumaric, gallic, ferulic, and hydroxybenzoic acids, was increased
in wheat sprouts irradiated with blue LEDs [99]. Several studies have shown an increase in
antioxidant activity and phytochemical accumulation in plants irradiated with different
LEDs [4,175,176].
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Irradiation with blue LEDs triggered increased phenolic compound accumulation and
phenolic compound biosynthesis-related gene expression [59,74,77]. Irradiation with red
LEDs alone was also shown to enhance the concentrations of important phytochemicals
in various plant species [65,69,70,73]. Additionally, irradiation with LED combinations at
different ratios enhanced phytochemical contents in plant species [54,56,67,71,76,177–179].
The increase in phenolic compound content was positively correlated with the expression of
TaPA1, TAPA2, TaC4H, TaCHI, TaCHS, and TaF3H genes; these genes are involved in phenolic
compound synthesis through the phenylpropanoid biosynthesis pathway [65]. The highest
levels of select flavonoids (kaempferol, isoquercitrin, and quercetin) and enhanced relative
expression of genes encoding key enzymes, such as PAL, 4CL, and CHS, were observed in
Cyclocarya paliurus irradiated with blue LEDs [100].

3. Conclusions and Future Prospects

In this review, we aimed to provide updates on the innovative use of LEDs in im-
proving nutritional quality of plants grown in vitro and in vivo. Moreover, in the present
review, we summarized the expression patterns of various genes related to phytochemical
biosynthesis in response to different LED spectral wavelengths. It is important to identify
the appropriate light quality and intensity to increase the quantity and quality of important
phytochemicals associated with nutrition and human health. It can be concluded from
this overview of research that the flexibility of LED irradiation allows the enhancement
of nutritional levels of vegetables and phytochemical contents of plant species. Moreover,
irradiation with LED combinations at different ratios and combination of LEDs with normal
light (FL) sources can enhance phytochemical content, biomass, and nutritional quality of
vegetables and medicinal plants. However, detailed studies on the association between
LEDs and their phytochemical accumulation-promoting effects as well as the underlying
physiological and molecular mechanisms are required. We observed that different plant
species respond differentially to various LED spectral wavelengths. Therefore, further
research is required to understand the application of LEDs for the successful growth and
mass propagation of plants.
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dependent photoresponse of antioxidants in herb microgreens. PLoS ONE 2016, 11, e0163405. [CrossRef]

54. Bian, Z.; Yang, Q.; Li, T.; Cheng, R.; Barnett, Y.; Lu, C. Study of the beneficial effects of green light on lettuce grown under
short-term continuous red and blue light-emitting diodes. Physiol. Plant. 2018, 164, 226–240. [CrossRef]

55. Nguyen, T.K.L.; Oh, M. Physiological and biochemical responses of green and red perilla to LED-based light. J. Sci. Food Agric.
2021, 101, 240–252. [CrossRef]

56. Johkan, M.; Shoji, K.; Goto, F.; Hashida, S.N.; Yoshihara, T. Blue light-emitting diode light irradiation of seedlings improves
seedling quality and growth after transplanting in red leaf lettuce. Hortscience 2010, 45, 1809–1814. [CrossRef]

57. Liu, H.; Chen, Y.; Hu, T.; Zhang, S.; Zhang, Y.; Zhao, T.; Yu, H.; Kang, Y. The influence of light-emitting diodes on the phenolic
compounds and antioxidant activities in pea sprouts. J. Funct. Foods 2016, 25, 459–465. [CrossRef]

58. Azad, M.O.K.; Adnan, M.; Son, J.; Choi, D.H.; Park, C.H. Effect of Artificial LED on the Growth, Anthocyanin, Chlorophyll and
Total Phenolic Content of Buckwheat Seedling. Biomed. J. Sci. Tech. Res. 2020, 13, 10274–10277.

59. Wilawan, N.; Ngamwonglumlert, L.; Devahastin, S.; Chiewchan, N. Changes in enzyme activities and amino acids and their
relations with phenolic compounds contents in okra treated by LED lights of different colors. Food Bioprocess. Technol. 2019, 12,
1945–1954. [CrossRef]

http://doi.org/10.1016/j.sajb.2017.01.205
http://doi.org/10.1038/s41598-019-46139-2
http://doi.org/10.1016/j.jphotobiol.2018.09.011
http://doi.org/10.1016/j.indcrop.2018.05.073
http://doi.org/10.1016/j.envexpbot.2015.04.002
http://doi.org/10.1016/j.envexpbot.2015.05.010
http://doi.org/10.1016/j.foodchem.2012.03.061
http://www.ncbi.nlm.nih.gov/pubmed/25005972
http://doi.org/10.1016/j.procbio.2005.12.015
http://doi.org/10.3390/agriculture10070258
http://doi.org/10.1016/j.plantsci.2006.02.009
http://doi.org/10.1104/pp.113.2.411
http://www.ncbi.nlm.nih.gov/pubmed/12223615
http://doi.org/10.1016/j.postharvbio.2019.110999
http://doi.org/10.1016/j.jphotobiol.2019.05.006
http://www.ncbi.nlm.nih.gov/pubmed/31128431
http://doi.org/10.1007/s00425-005-0125-8
http://www.ncbi.nlm.nih.gov/pubmed/16341707
http://doi.org/10.3390/agronomy9060307
http://doi.org/10.1007/BF00024782
http://doi.org/10.1023/B:BIOP.0000022248.62869.c7
http://doi.org/10.1007/s11738-008-0187-x
http://doi.org/10.1371/journal.pone.0163405
http://doi.org/10.1111/ppl.12713
http://doi.org/10.1002/jsfa.10636
http://doi.org/10.21273/HORTSCI.45.12.1809
http://doi.org/10.1016/j.jff.2016.06.028
http://doi.org/10.1007/s11947-019-02359-y


Molecules 2021, 26, 1477 14 of 18

60. Gam, D.T.; Khoi, P.H.; Ngoc, P.B.; Linh, L.K.; Hung, N.K.; Anh, P.T.L.; Thu, N.T.; Hien, N.T.T.; Khanh, T.D.; Ha, C.H. LED Lights
promote growth and flavonoid accumulation of Anoectochilus roxburghii and are linked to the enhanced expression of several
related genes. Plants 2020, 9, 1344. [CrossRef] [PubMed]

61. Park, C.H.; Park, Y.E.; Yeo, H.J.; Kim, J.K.; Park, S.U. Effects of Light-Emitting Diodes on the Accumulation of Phenolic Compounds
and Glucosinolates in Brassica juncea Sprouts. Horticulturae 2020, 6, 77. [CrossRef]

62. Zheng, C.; Ma, J.; Ma, C.; Shen, S.; Liu, Y.; Chen, L. Regulation of growth and flavonoid formation of tea plants (Camellia sinensis)
by blue and green light. J. Agric. Food Chem. 2019, 67, 2408–2419. [CrossRef] [PubMed]

63. Yoneda, Y.; Nakashima, H.; Miyasaka, J.; Ohdoi, K.; Shimizu, H. Impact of blue, red, and far-red light treatments on gene
expression and steviol glycoside accumulation in Stevia rebaudiana. Phytochemistry 2017, 137, 57–65. [CrossRef]

64. Ghaffari, Z.; Rahimmalek, M.; Sabzalian, M.R. Variation in the primary and secondary metabolites derived from the isoprenoid
pathway in the Perovskia species in response to different wavelengths generated by light emitting diodes (LEDs). Ind. Crops Prod.
2019, 140, 111592. [CrossRef]

65. Cuong, D.M.; Jeon, J.; Morgan, A.M.; Kim, C.; Kim, J.K.; Lee, S.Y.; Park, S.U. Accumulation of charantin and expression of
triterpenoid biosynthesis genes in bitter melon (Momordica charantia). J. Agric. Food Chem. 2017, 65, 7240–7249. [CrossRef]
[PubMed]

66. Park, C.H.; Kim, N.S.; Park, J.S.; Lee, S.Y.; Lee, J.; Park, S.U. Effects of light-emitting diodes on the accumulation of glucosinolates
and phenolic compounds in sprouting canola (Brassica napus L.). Foods 2019, 8, 76. [CrossRef] [PubMed]

67. Zha, L.; Liu, W.; Yang, Q.; Zhang, Y.; Zhou, C.; Shao, M. Regulation of ascorbate accumulation and metabolism in lettuce by the
red: Blue ratio of continuous light using LEDs. Front. Plant Sci. 2020, 11, 704. [CrossRef]

68. Nam, T.G.; Kim, D.; Eom, S.H. Effects of light sources on major flavonoids and antioxidant activity in common buckwheat sprouts.
Food Sci. Biotechnol. 2018, 27, 169–176. [CrossRef] [PubMed]

69. Sobhani Najafabadi, A.; Khanahmadi, M.; Ebrahimi, M.; Moradi, K.; Behroozi, P.; Noormohammadi, N. Effect of different quality
of light on growth and production of secondary metabolites in adventitious root cultivation of Hypericum perforatum. Plant Signal.
Behav. 2019, 14, 1640561. [CrossRef] [PubMed]

70. Tran, L.H.; Jung, S. Effects of light-emitting diode irradiation on growth characteristics and regulation of porphyrin biosynthesis
in rice seedlings. Int. J. Mol. Sci. 2017, 18, 641. [CrossRef]

71. Chiang, S.; Liang, Z.; Wang, Y.; Liang, C. Effect of light-emitting diodes on the production of cordycepin, mannitol and adenosine
in solid-state fermented rice by Cordyceps militaris. J. Food Composit. Anal. 2017, 60, 51–56. [CrossRef]

72. Park, W.T.; Yeo, S.K.; Sathasivam, R.; Park, J.S.; Kim, J.K.; Park, S.U. Influence of light-emitting diodes on phenylpropanoid
biosynthetic gene expression and phenylpropanoid accumulation in Agastache rugose. Appl. Biol. Chem. 2020, 63, 25. [CrossRef]

73. Hosseini, A.; Zare Mehrjerdi, M.; Aliniaeifard, S. Alteration of bioactive compounds in two varieties of basil (Ocimum basilicum)
grown under different light spectra. J. Essent. Oil Bearing Plants 2018, 21, 913–923. [CrossRef]

74. Lopes, E.M.; Guimarães-Dias, F.; Gama, T.D.S.S.; Macedo, A.L.; Valverde, A.L.; de Moraes, M.C.; de Aguiar-Dias, A.C.A.; Bizzo,
H.R.; Alves-Ferreira, M.; Tavares, E.S.; et al. Artemisia annua L. and photoresponse: From artemisinin accumulation, volatile
profile and anatomical modifications to gene expression. Plant Cell Rep. 2020, 39, 101–117. [CrossRef]

75. Lee, M.J.; Son, K.H.; Oh, M.M. Increase in biomass and bioactive compound in lettuce under various ratios of red to far-red LED
light supplemented with blue LED light. Hortic. Environ. Biotechnol. 2016, 57, 139–147. [CrossRef]

76. Kim, Y.J.; Kim, H.M.; Kim, H.M.; Lee, H.R.; Jeong, B.R.; Lee, H.; Kim, H.; Hwang, S.J. Growth and phytochemicals of ice plant
(Mesembryanthemum crystallinum L.) as affected by various combined ratios of red and blue LEDs in a closed-type plant production
system. J. Appl. Res. Med. Aromat. Plants 2020, 20, 100267. [CrossRef]

77. Nakai, A.; Tanaka, A.; Yoshihara, H.; Murai, K.; Watanabe, T.; Miyawaki, K. Blue LED light promotes indican accumulation and
flowering in indigo plant, Polygonum tinctorium. Ind. Crops Prod. 2020, 155, 112774. [CrossRef]

78. Ha, S.Y.; · Jung, J.Y.; Yang, J.K. Effect of Light-Emitting Diodes on Cordycepin Production in Submerged Culture of Paecilomyces
japonica. J. Korean Wood Sci. Technol. 2020, 48, 548–561.

79. Tian, M.; Gu, Q.; Zhu, M. The involvement of hydrogen peroxide and antioxidant enzymes in the process of shoot organogenesis
of strawberry callus. Plant Sci. 2003, 165, 701–707. [CrossRef]

80. Dutta Gupta, S.; Sahoo, T.K. Light emitting diode (LED)-induced alteration of oxidative events during in vitro shoot organogenesis
of Curculigo orchioides Gaertn. Acta Physiol. Plant 2015, 37, 233. [CrossRef]

81. Koga, R.; Meng, T.; Nakamura, E.; Miura, C.; Irino, N.; Devkota, H.P.; Yahara, S.; Kondo, R. The effect of photo-irradiation on the
growth and ingredient composition of young green barley (Hordeum vulgare). Agric. Sci. 2013, 4, 185–194.
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