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Abstract

The thalamus is the primary gateway that relays sensory information to the cerebral cortex. While a single recipient cortical
cell receives the convergence of many principal relay cells of the thalamus, each thalamic cell in turn integrates a dense and
distributed synaptic feedback from the cortex. During sensory processing, the influence of this functional loop remains
largely ignored. Using dynamic-clamp techniques in thalamic slices in vitro, we combined theoretical and experimental
approaches to implement a realistic hybrid retino-thalamo-cortical pathway mixing biological cells and simulated circuits.
The synaptic bombardment of cortical origin was mimicked through the injection of a stochastic mixture of excitatory and
inhibitory conductances, resulting in a gradable correlation level of afferent activity shared by thalamic cells. The study of
the impact of the simulated cortical input on the global retinocortical signal transfer efficiency revealed a novel control
mechanism resulting from the collective resonance of all thalamic relay neurons. We show here that the transfer efficiency
of sensory input transmission depends on three key features: i) the number of thalamocortical cells involved in the many-to-
one convergence from thalamus to cortex, ii) the statistics of the corticothalamic synaptic bombardment and iii) the level of
correlation imposed between converging thalamic relay cells. In particular, our results demonstrate counterintuitively that
the retinocortical signal transfer efficiency increases when the level of correlation across thalamic cells decreases. This
suggests that the transfer efficiency of relay cells could be selectively amplified when they become simultaneously
desynchronized by the cortical feedback. When applied to the intact brain, this network regulation mechanism could direct
an attentional focus to specific thalamic subassemblies and select the appropriate input lines to the cortex according to the
descending influence of cortically-defined ‘‘priors’’.
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Copyright: � 2013 Béhuret et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: SB was supported by the French DGA (Direction Générale de l’Armement). This work was supported by the CNRS, the Agence Nationale de la
Recherche (ANR-10-BLAN-1402: V1-Complex) and EC contracts (Facets (FP6-2004-IST-FETPI 15879), Brain-i-nets (FP7-2009-ICT-FET 243914) and BrainScales (FP7-
269921)). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: behuret@unic.cnrs-gif.fr (SB); bal@unic.cnrs-gif.fr (TB)

Introduction

The thalamus is the major sensory gateway to the cerebral

cortex. Forming the output of the retina, axons of ganglion cells

diverge to connect a small number of thalamocortical (TC)

neurons in the dorsolateral geniculate nucleus (dLGN); likewise

several ganglion cells send convergent connections to individual

TC neurons [1]. In turn, a sizable number of TC neurons (ranging

from 15 to 125 in the cat [2]) converge onto individual recipient

cortical neurons [3]. However, in spite of the fact that it is often

described and modeled as a pure feedforward relay, the thalamus

receives a massive corticofugal feedback. The functional interac-

tions between the feedforward thalamocortical converging stream

and the corticothalamic (CT) feedback are not known, and yet

likely plays a key role in the control of the global gain and filtering

features of the sensory thalamic relays.

Despite the fact that the function and mechanisms of the CT

input have attracted much interest they are still a matter of

discussion [4,5]. A first accepted view is that the cortical feedback

influences the transfer of sensory information by TC cells [6–8]

and may participate to modulate visual responses during attention

and awareness [9]. A second and well-publicized hypothesis

endows the CT feedback and the thalamic nucleus reticularis

(NRT) with a searchlight function [10] or focal attention [11] by

enhancing selectively the receptivity of targeted TC neuron

populations to attended sensory features. Others envision the

thalamus as an ‘‘active blackboard’’ onto which the cortex could

write down the results of its computation [12].

Nevertheless, the cellular mechanisms underlying the functional

impact of the CT feedback are poorly understood despite a few

experimental studies pointing to the spatial sharpening of thalamic

receptive field and its ON-OFF antagonism [13], the facilitation of

lateral geniculate nucleus (LGN) activity in the awake cat [14] or

attentive monkey [15], the synchronizing action on thalamic

neurons involved in the detection of co-aligned elements in the

visual field [16,17] or the enhancement of the surround

antagonism during motion processing [18].

A more mechanistic view, which is the central working

hypothesis of this paper, is that the cortex has the ability to gate

the thalamic transfer of sensory inputs via ‘‘on-line modulation’’ of
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the transfer efficiency of TC neurons through the contextual

synaptic bombardment originating from the CT input [19].

In the primary visual cortex (V1; areas 17 and 18 in the cat),

layer 6 is the source of the CT synaptic feedback to thalamus.

Activity patterns originating from projections of cortical layer 6

remain a major mystery although recent studies suggest behavioral

circumstances in which the feedback from corticothalamic neurons

could be engaged [20]. In the mouse, layer 6 neurons projecting to

thalamus are spontaneously active and their activity increases

during unspecific full-field visual stimulation (Fig. 1D in [21]).

However, the fine-scale activity of layer 6 circuits during

naturalistic vision is unknown. A detailed modeling of the activity

of layer 6 seems presently an unreachable target, since it would

require including interrelations with all other cortical layers and

other related cortical areas (see [20,22]). Instead, our strategy has

been to model the top-down cortical input as a configurable

activity pattern transmitted by excitatory and inhibitory synapses

for which we have fully explored the parameter space.

At the single-cell level, the efficiency of the transfer via the

thalamus was established by measuring the spiking probability

function of individual TC relay cells, and shown to depend on the

statistical context of the synaptic bombardment [19]. When

considering the whole population level, the question we want to

address is whether cortically-induced modulation of the thalamic

transfer efficiency can be deduced solely from the interactions

observed at the single-cell level or if it emerges from higher order

interactions within the network. In other words, in terms of the

global information transfer between retina and cortex, is the

combined effect of changes operating in individual cells equivalent

to the modulation of the thalamic population as a whole? Our

working hypothesis is that the CT synaptic bombardment is able

to modulate the transfer efficiency of specific TC neurons, not only

at the single-cell level by impacting on the input-output gain [19],

but also at the population-level by controlling the contextual

correlations in membrane potential fluctuations within subgroups

of TC relay cells. We present here a new approach in the study of

the sensory transfer gating mechanisms in the thalamus by

exploring the functional impact of higher order interactions arising

between multiple TC neurons, both in computer models and in

the slice.

Results

The aim of our experimental plan was to combine in computo

models of the retino-thalamo-cortical (RTC) pathway and top-

down corticothalamic inputs with in vitro measures of information

transfer at different points of the circuit. The results are organized

consequently to describe the global circuit model and its various

implementations, present parametric studies of the dependency on

the model on various structural and activity-dependent features,

and quantify their functional impact on global information transfer

efficiency between retina and cortex.

More specifically, the first part of the results and the methods

present the implementation of the circuit model (Fig. 1A) and

biological iteratively constructed networks (BICNs) in vitro (Fig. 1B).

In the second and third parts, respectively, we tested critical

structural parameters of the thalamocortical and retinothalamic

circuits topologies (Fig. 1A, i and ii). The fourth part shows the

dependency of the model behavior on CT synaptic bombardment

statistics (Fig. 1A, iii). In the final parts, we implemented various

contextual patterns in the thalamic layer, including membrane

potential fluctuation correlation across TC cells imposed via the

CT input, in both topologically optimized BICNs and model

networks (Fig. 1A, iv).

In all simulations, mutual information analysis (Eq. 19) was

carried out to estimate the efficiency of the global information

transfer between the retinal input and the cortical response (later

referred as ‘‘transfer efficiency’’ (TE); see Methods) [23,24]. This

theoretical tool quantifies the non-linear statistical dependencies of

specific features between two spike trains such as spike events,

absence of spikes or any combinations of these two events in a

given time window (see Figure S1 for comparison with other

methods).

The thalamocortical convergence circuit model
In our model, the topology of the feedforward retino-thalamo-

cortical circuitry (Fig. 1A) is highly schematic, but constrained with

detailed biophysical measurements taken from the available

literature. It is composed by an ordered layout of populations of

thalamocortical neurons in the dLGN converging to a single layer

4 pyramidal neuron of the primary visual cortex (see Methods for

details). Circuits were either built from collections of Hodgkin

Huxley type model neurons (Eq. 1–3) or reproduced in an in vitro

slice preparation of the rat thalamus using an iterative procedure

[25] implemented in dynamic-clamp [26–28]. Synapses were

conductance-based (Fig. 1, inset; see Methods) and mimicked

AMPA (a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid)

and GABAA (gamma-aminobutyric acid type A) mediated current

flows (Eq. 5 and 6). We based our circuit reconstructions on direct

estimates of the structure and size of the elementary thalamic

microcircuitry found in the literature. The topology of the circuit

was parametrized to test the sensitivity of information transfer on

the structural constraints. We varied in the model simulations

(Fig. 1A, i) the degree of convergence and weight of TC synapses

onto a single target cortical neuron and (Fig. 1A, ii) the

divergence/convergence configuration of the retinogeniculate

axons and retinal input synchronization.

In order to reproduce the main components of the thalamic

input, each artificial or biological TC neuron was fed with an

artificial retinal input pattern (Eq. 10) and received cortical inputs

simulated by stochastically fluctuating conductances composed of

Author Summary

Most of the sensory information in the early visual system
is relayed from the retina to the primary visual cortex
through principal relay cells in the thalamus. While relay
cells receive ,7–16% of their synapses from retina, they
integrate the synaptic barrage of a dense cortical
feedback, which accounts for more than 60% of their
total input. This feedback is thought to carry some form of
‘‘prior’’ resulting from the computation performed in
cortical areas, which influences the response of relay cells,
presumably by regulating the transfer of sensory informa-
tion to cortical areas. Nevertheless, its statistical nature
(input synchronization, excitation/inhibition ratio, etc.) and
the cellular mechanisms gating thalamic transfer are
largely ignored. Here we implemented hybrid circuits
(biological and modeled cells) reproducing the main
features of the thalamic gate and explored the functional
impact of various statistics of the cortical input. We found
that the regulation of sensory information is critically
determined by the statistical coherence of the cortical
synaptic bombardment associated with a stochastic
facilitation process. We propose that this tuning mecha-
nism could operate in the intact brain to selectively filter
the sensory information reaching cortical areas according
to attended features predesignated by the cortical
feedback.

Cortical Control of Thalamic Sensory Transfer
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mixed excitatory and inhibitory inputs (see Eq. 7 and 8). Exploring

the effects of the CT inputs requires modeling an artificial synaptic

signal whose statistical signature can be experimentally controlled.

With this approach it is possible to generate a large range of

artificial CT activity patterns and explore their effects by

stimulating recipient neurons with the resulting contextual

synaptic bombardments. It should be emphasized that we simulate

here the contextual synaptic noise in an open-loop fashion. In

other words, it does not depend on the activity of the model

cortical cell but rather is controlled by a set of statistical

parameters. This contextual synaptic noise produced background

membrane voltage fluctuations in TC neurons and was designed

Figure 1. In vitro and In computo reconstructions of convergent thalamocortical networks. A. Hybrid convergent circuit model. Biological
or model TC cells synaptically converge to a model cortical neuron. The population of TC cells is fed with modeled retinal inputs and receives a
corticothalamic input mimicked through the injection of stochastically fluctuating mixed excitatory and inhibitory conductances. Inset. Retinal and
thalamic synaptic inputs elicit somatic conductance-based events in the target neurons (see Methods). i, ii, iii, iv. Critical parameters of the circuit
explored in this study. See text for more details. B. BICNs consisted in at least one biological TC cell recorded multiple times with identical retinal
inputs and varying patterns of corticothalamic synaptic noise injected in real time through dynamic-clamp. The obtained response patterns were
then simultaneously replayed in the hybrid circuit thus mimicking the functional impact produced by thalamocortical convergence. C. Membrane
potential traces for a BICN. A single TC cell was recorded sequentially using the same model retinal inputs but adding different realizations of a
synaptic stochastic bombardment each sharing the same conductance mean and variance (see Methods; this is the uncorrelated condition in Fig. 4
and 5). Only five out of the ten thalamic voltage traces are shown. Spikes were truncated to 215 mV. D. Same as C with model TC cells.
doi:10.1371/journal.pcbi.1003401.g001

Cortical Control of Thalamic Sensory Transfer
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such as to mimic the dynamics of the direct AMPA synapses and

the disynaptic GABAergic input originating from local interneu-

rons and neurons from the NRT in the wake state where the

cortical input is presumably irregular. A distinctive feature of this

paradigm is that each one of the TC neurons can be either

modulated by a neuron-specific pattern of synaptic fluctuations or

share common synaptic inputs with neighboring cells. In order to

control the functional impact of the CT input, we analyzed critical

factors of the statistics of this synaptic noise such as the ratio of

inhibitory versus excitatory conductances, the amplitude of the

conductance fluctuations and the level of coherence of the noise

shared by TC neurons. Relevant model parameters are summa-

rized in Table 1.

We used BICNs in vitro and computer modeling (Fig. 1B) to

reproduce and explore systematically the voltage dynamics of

neural circuit existing in the intact brain. The activity patterns of

biologically recorded relay TC cells were replayed to simulate the

synaptic convergence activity of the thalamic layer and stimulate

the modeled cortical cell in the primary visual cortex, similar to

that described above in the model circuit. A BICN hybrid

thalamic layer thus consisted of a population of a parametrized set

of pseudo-neurons, whose output trains replayed simultaneously

individual response patterns recorded sequentially in biological

TC neurons (see Methods).

Figures 1C and 1D show examples of voltage traces of TC

neurons chosen among a larger population for both BICNs (in vitro)

and model (in computo) circuits. The fluctuating voltage recordings

illustrated for the TC cells are the result of different synaptic

bombardment sequences for each trace. The synaptic bombard-

ment has been optimized in order to maximize the transfer

efficiency according to paradigms explored in later sections.

Parametric dependency on thalamocortical convergence
and synaptic weight

In this first set of simulations, the statistics of the corticothalamic

input were uniform across the whole thalamic population but the

individual time patterns were chosen to be independent between

each of the TC cells. The entire thalamic population was

connected by a unique retinal cell mimicking the discharge

pattern of an ON-center Y cell (30 Hz gamma 3 distribution,

[29,30]; see Eq. 10). Hence, the TC cells input differed only in

their individual corticothalamic synaptic noise pattern.

We adjusted the synaptic weight (see Eq. 6 and inset in Fig. 1) of

the thalamocortical synapse to a biologically realistic value

(,2.3 nS, [31]) and varied the population size (Fig. 2A, black

curve). The TE was shown to reach a maximum for a convergence

ratio of 80–100 cells. In addition, we observed in this configuration

that roughly the simultaneous firing of a third of the TC cells was

required to elicit a spike in the cortical neuron. These ballpark

estimates were justified by protocols using single AMPA events in

which a strength of ,80 nS was required to evoke reliably a

cortical spike, corresponding to 30–35 TC neurons firing

simultaneously (Fig. S2A). Smaller thalamic population sizes

resulted in an insufficient synaptic drive of the target cortical cell

while larger thalamic population sizes led to an increased amount

of cortical spikes decoupled from the retinal input, both of these

cases leading to inefficient transfer values.

We then froze the thalamic population size to 90 cells and

varied the thalamocortical AMPA synaptic weight (Fig. 2B, black

curve). The TE peak was obtained for a biologically realistic

synaptic weight (2–2.5 nS) thus confirming the value chosen in

Figure 2A.

The above 90 cells version of the model circuit is too large to

achieve successful biological thalamic layer reconstruction and is

computationally intensive for multi-dimensional parametric ex-

plorations. We therefore reduced the number of TC relay neurons

in the model circuit and ran simulations to find the optimal

synaptic weight reflecting this decrease. First, we designed a 30

cells model circuit that was used in later computational

explorations (Fig. 2A and 2B, dark-gray curves). Second, we

tested a 10 cells model circuit as a control to match the BICN

hybrid thalamic layer size presented in Figure 1C and developed

in later sections (Fig. 2A and 2B, light-gray curves). When

reducing the population size from 90 to 30 TC cells, a

corresponding increase of the synaptic weight by a factor of 3

was necessary and sufficient to maintain optimality in signal

transfer. The same compensatory rule held when lowering the

population size from 30 to 10 TC cells. Hence, topologically

optimized networks consisted of 90 TC cells with the biologically

realistic synaptic weight, 30 TC cells with a 3 fold increase of the

weight or 10 TC cells with a 9 fold increase of the weight.

We tested other optimized topologies according to the following

empirical rule which reflects the above findings: ‘‘number of TC

cells’’6‘‘TC synaptic weight’’<210 nS (Fig. 2A, dashed curves).

This empirical rule ensured that the total net summed synaptic

input received by the target cortical cell was constant thus enabling

us to isolate the effect of the population size parameter. An

asymptotic saturation behavior was observed, showing a ceiling

value in the TE for convergence ratios around a critical value of 90

TC neurons. This finding implies that the structure of the

convergent networks, albeit flexible, needs to be constrained in

order to provide an efficient and optimal information transfer.

In the subsequent investigations and unless mentioned other-

wise, we performed numerical investigations with models of

parallel feedforward lines composed of 30 TC relay cells

converging to one model cortical cell through TC synapses using

a weight optimized as described above (Fig. 2B, dark-gray curve,

7 nS).

Parametric dependency on the synchronization level of
retinal inputs and TC spikes

Multiple retinal input lines were added to the model circuit

described previously. Both convergent and divergent processes

have been documented between retinal ganglion cells and relay

thalamocortical cells in the LGN [1]. The 30 TC relay cells were

contacted by 15 retinal cells in a realistic mixture of divergent and

convergent processes as illustrated in Figure 1A. Each retinal cell

contacted 4 TC neurons and each TC neuron was contacted by 2

retinal cells [1]. The thalamic population size and the TC synaptic

weight were kept frozen. The cortical synaptic bombardment was

kept as described above.

The level of synchronization of the retinal afferents was

controlled in two ways. First, we varied the number of retinal

cells replaying an independent activity pattern resulting in graded

levels of synchronization controlled by the parameter Rsync (Eq.

11). Second, we introduced an ad-hoc jitter to randomly shift the

timing of each retinal spikes (see Methods). The average spike-time

shift was characterized by the mean jitter parameter j0 (Eq. 12).

Low Rsync values and large spike-time jitters (j0) led to

desynchronized retinal inputs in the TC relay cell population. In

this model circuit including more than one retinal cell, transfer

efficiency was measured between only one of the retinal cells and

the cortical response. The chosen reference retinal cell was always

the one whose activity was correlated with some or all of the

retinal cells in the synchronized retinal input conditions.

Results show, as expected, that the transfer efficiency of the

model circuits increased with the retinal synchronization (Fig. 2C,

x-axis). Similarly, the TE value dropped for large spike-timing

Cortical Control of Thalamic Sensory Transfer
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Table 1. Retino-thalamo-cortical model circuit parameters.

Parameter Description Value(s) or range

Retinal stimulation

NR Number of retinal cells 1, 15 cells

i0 Mean interspike interval (firing rate) 0.33 ms (30 Hz)

kg Shape parameter of the gamma distribution 3

Rsync
(1) Retinal input synchronization 0–1

Thalamocortical cells

NTC Number of TC cells 1–240 cells

gleak Leak/passive conductance 9.12 nS

Eleak Leak reversal potential 276.5 mV

Cm Membrane capacitance 0.21 nF

Grest Resting input conductance 8.34 nS

Vrest Resting membrane potential 274.3 mV

vAMPA AMPA synaptic weight 12.5 nS

EAMPA AMPA reversal potential 0 mV

tAMPA AMPA time to peak amplitude 1 ms

j0
(2) Spike-time mean jitter 0–10 ms

Cortical cell

gleak Leak/passive conductance 29.0 nS

Eleak Leak reversal potential 270.0 mV

Cm Membrane capacitance 0.29 nF

Grest Resting input conductance 33.4 nS

Vrest Resting membrane potential 270.6 mV

vAMPA AMPA synaptic weight 0–40.0 nS

EAMPA AMPA reversal potential 0 mV

tAMPA AMPA time to peak amplitude 1 ms

j0
(2) Spike-time mean jitter 0–10 ms

vGABA
(3) GABA synaptic weight 0–10.0 nS

EGABA
(3) GABA reversal potential 275 mV

tGABA
(3) GABA time to peak amplitude 2 ms

dAMPA
(3) GABA input time lag (relative to AMPA) 0–10 ms

Synaptic bombardment

SGexcT (SGexcT=Grest) Excitatory conductance mean (amplitude) 0–25.02 nS (0–3)

sexc (sexc=SGexcT) Excitatory conductance SD (variation ratio) 0–12.51 nS (0–1)

Eexc Excitatory conductance reversal potential 0 mV

texc Excitatory conductance time constant 2.7 ms

SGinhT (SGinhT=Grest) Inhibitory conductance mean (amplitude) 0–25.02 nS (0–3)

sinh (sinh=SGinhT) Inhibitory conductance SD (variation ratio) 0–8.34 nS (0–1)

Einh Inhibitory conductance reversal potential 275 mV

tinh Inhibitory conductance time constant 10.5 ms

Cexc
(4) Exc./Inh. conductances correlation 0–1

Dexc
(4) Inh. conductance time lag (relative to Exc.) 0–10 ms

Cnoise
(5) Synaptic noise correlation 0–1

(1)Retinal synchronization (implemented for NR = 15).
(2)Presynaptic inputs random time jitters.
(3)Feedforward inhibition in the cortical cell.
(4)Temporal correlation of excitatory and inhibitory inputs in single TC cells.
(5)Temporal correlation of synaptic inputs across TC cells.
doi:10.1371/journal.pcbi.1003401.t001

Cortical Control of Thalamic Sensory Transfer

PLOS Computational Biology | www.ploscompbiol.org 5 December 2013 | Volume 9 | Issue 12 | e1003401



jitters but remained robust with low jitters (Fig. 2C, y-axis) with a

decrease of less than 20% for jitters up to 3 ms. We applied a

similar paradigm to the thalamic spikes and found a very similar

result. The TE scaled nearly linearly with the thalamic spike-time

jitters and remained robust with low jitters (Fig. 2D).

Because biological-like retinothalamic lines with highly syn-

chronized retinal inputs behave like divergent networks made of a

single retinal ganglion cell contacting the entire thalamic

population, we used this later paradigm for the rest of the

exploration.

Parametric dependency on the statistics of the
contextual synaptic bombardment

These simulations used optimized networks consisting of 30 TC

cells fed by a single retinal cell. Parameters controlling the

topology of the model circuits, such as the thalamic population size

and the TC synaptic weight were kept constant. We explored

various statistical configurations of the cortical input so that each

TC cell received a unique realization of a synaptic bombardment

while the global statistics seen by each cell remained identical, thus

corresponding to an uncorrelated bombardment among the

dLGN population similar to what was done in previous sections

(Cnoise~0, see Methods).

We varied the mean and standard deviation (SD) of both

excitatory and inhibitory components of the synaptic bombard-

ment (Gexc and Ginh, respectively) such as to maximize the

efficiency of the information transfer within the model network.

Mean synaptic conductances were normalized relative to the rest

conductance of the TC neurons (SGxT=Grest or ‘‘conductance

amplitude’’; x substitutes to ‘‘exc’’ or ‘‘inh’’) and SD were

normalized relative to their respective mean (sx=SGxT or

‘‘conductance variation ratio’’) (see Methods). The rest conduc-

tance, Grest, defines the input conductance of the cells at their

resting potential and is approximately equal to the leakage passive

conductance, gleak, when measured in absence of external input

activity. First, we ran coarse four-dimensional explorations of the

mean and SD for both the excitatory and inhibitory components

of the synaptic bombardment. Finer explorations were then

narrowed around the optimal estimates by keeping constant either

the standard deviation (Fig. 3A) or the mean conductances

(Fig. 3B).

In Figure 3A the conductance variation ratio was fixed at 0.2 for

both the excitatory and inhibitory components (an optimal value

chosen in Fig. 3B). An exhaustive exploration of the conductance

parameter space revealed the emergence of a ridge (dark red)

within a narrow band, where the TE is highest for an ensemble of

pairs of excitatory and inhibitory conductance amplitudes. This

indicates that an adjustment in the balance between excitation and

inhibition is required to optimize the information transfer.

On the left side of the narrow band (arrow ‘‘1’’ corresponding to

the ‘‘quiet’’ regime domain shown in Fig. 3C; 0 bit/s), information

transfer is inefficient due to the concomitant action of strong

Figure 2. Network topology affects the retinocortical transfer of sensory information in computo. A. Transfer efficiency as a function of
the thalamic population size. Each point represents the simulation of a modeled convergent circuit for three predefined TC AMPA synaptic weights in
addition to a special case (dashed line) where the synaptic weight was adjusted to the thalamic population size on a per-simulation basis (see text for
more details). The thickness of the curves represent the standard deviation across ten repetitions of the same retinal sensory simulation realized each
time in the context of a different realization of the cortical synaptic bombardment. B. Transfer efficiency as a function of the TC AMPA synaptic weight
for three predefined thalamic population size. C. Influence of the level of retinal input synchronization. The TE was measured for varying
retinothalamic spike-time mean jitters and retinal synchronization levels (see text for more details). D. Transfer efficiency measured as a function of
the thalamocortical spike-time mean jitter.
doi:10.1371/journal.pcbi.1003401.g002

Cortical Control of Thalamic Sensory Transfer
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Figure 3. Background synaptic bombardment tunes the retinocortical signal transfer in computo. A. Effect of the cortical input mean
excitatory and inhibitory conductances on TE. Cortical input conductances are normalized relative to the rest conductance of the TC cells. For each
trial, each model TC cell in the circuit received a unique realization of the synaptic noise conductances, obeying the same statistics across trials (this
condition is referred as the uncorrelated condition in later figures). Arrows denote specific operating regimes, which are shown in C (arrows 1 to 3)
and in Figure S3A (arrow 0). The conductance variation ratio was fixed to 0.2 for both the excitatory and inhibitory components, an optimal value
denoted by the arrow in B. B. Similar to A for the SD of the conductances. The SD of the conductances were normalized relative to their respective
means. The conductance amplitudes were set to 1.5 and 1.0 for the excitatory and inhibitory components of the synaptic noise, respectively. These
optimal values are denoted by the arrow ‘‘2low’’ in A. C. Top. Membrane voltage traces for three operating regimes reflecting three distinct cortical
synaptic bombardment statistics. Each regime is shown by an arrow in A and B. The optimal regime was further separated into a low and a high
conductance state. Bottom. Cortical spike-triggered averages relative to the number of thalamic spikes were calculated for each of the above cortical
voltage traces. The number of thalamic spikes preceding each cortical spike was averaged and plotted as the black curve. Grayed areas indicate the
SD of the thalamic spikes count across all cortical spikes. D. Numerical explorations as in A for a control circuit of normal biological size, and for an
impaired circuit in which half of the thalamic cells were inactive. The TE difference was calculated for each point by substracting the TE obtained for
the normal layer from the TE obtained for the impaired layer. White lines delineate the red ridge of optimal transfer found in the control condition,
which is replicated in the two other graphs for comparison.
doi:10.1371/journal.pcbi.1003401.g003

Cortical Control of Thalamic Sensory Transfer
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inhibition and weak excitation, resulting in an effective silencing of

the TC cells.

The normalized total cortical input conductance (SGsynT=Grest;

see Eq. 9) is a convenient way to characterize the relative strength

of the cortical input action on the TC cells. In the band delineating

optimal information transfer, the TE is highest for normalized

total cortical input conductance ranging from ,2.5 to ,4. Two

optimal background conductance states connected by the ridge of

optimal TE values can be qualitatively distinguished. The first

state is a low conductance (LC) regime (denoted by the arrow

‘‘2low’’ in Fig. 3A; 95 bits/s for SGsynT=Grest~2:5) where the

mean values of excitatory and inhibitory conductances are

approximately comparable to the rest conductance. The second

state is a high conductance (HC) regime (denoted by the arrow

‘‘2high’’ in Fig. 3A; 97 bits/s for SGsynT=Grest~4), characterized by

a rest conductance that is approximately 50% smaller than the

mean values of excitatory and inhibitory conductances. In the

corresponding regimes of activity (LC and HC optimal regimes

shown in Fig. 3C), the cortical spike-triggered average (STA)

clearly indicates an increase of the thalamic synchrony a few

milliseconds before the cortical spikes. No major differences were

observed apart from slightly stronger voltage fluctuations in the

relay cells for the HC state (TC cells membrane potentials SD after

removal of spikes is 1.0 mV for LC and 1.4 mV for HC) and a

slightly sharper peak for STA in the LC state. No significant STA

was presented for the quiet regime since no cortical spikes were

evoked.

On the right side of the narrow band (arrow ‘‘3’’, corresponding

to the ‘‘saturated’’ regime domain shown in Fig. 3C; 31 bits/s), the

inefficiency of the transfer is provoked conversely by a saturating

level of excitation. The resulting spiking regime in the relay cells

was sufficient to excite the cortical cell in a tonic mode and

decorrelate its spiking from the timing of the retinal input, as

shown in Figure 3C by the cortical spike-triggered average.

Next, we kept constant the excitatory and inhibitory conduc-

tance amplitudes (SGexcT=Grest = 1.5 and SGinhT=Grest = 1.0 as

found to be optimal in Figure 3A and corresponding to the LC

state in Fig. 3C) and varied the conductance variation ratio

(Fig. 3B). A ring shaped area of optimal transfer was found (arrow

in Fig. 3B), flanked by areas where both either very low or very

high fluctuations led to an inefficient transfer. Note that the

amount of inhibitory fluctuations had limited importance com-

pared to the amount of excitatory fluctuations as shown by the

enlargement of the ring over the y-axis. One explanation resides in

the fact that the inhibitory reversal potential is close to the actual

resting potential of the model TC cells, effectively limiting the

amplitude changes of the inhibitory synaptic bombardment

fluctuations, and thus their effect on stochastic resonance (see

below).

The mean firing rate of the TC cells occurring under optimal

synaptic bombardment (35 Hz) was slightly higher than both the

retinal and cortical firing rates (30 Hz) (Fig. 4C, Cnoise~0). The

additional spikes responsible for the increased thalamic firing were

caused by the CT input as expected from the high probability (0.7)

to evoke a spike under optimal synaptic bombardment, even for

retinothalamic AMPA events of small amplitude (Fig. S2B, gray

curve). In contrast, in absence of contextual synaptic bombard-

ment (denoted by the arrow ‘‘0’’ in Fig. 3A where Gsyn = 0; 1 bit/s;

traces shown on Fig. S3A), thalamic spikes were solely evoked by

the retinal inputs with a much lower probability (Fig. S2B, black

curve) and TC cells relayed significantly fewer spikes than present

in their retinal inputs. Depolarizing the thalamic cells with a

positive constant current (AC , Eq. 13), as to mimic the effects of

neuromodulation (see Discussion), shifted the optimal response

ridge seen in Figure 3A towards lower Gexc values, and increased

the baseline TE observed in absence of synaptic bombardment

(Fig. S3B; 50 bits/s for Gsyn~0 and a 0.6 nA constant current).

A common feature in the thalamocortical circuit is feedforward

inhibition (FFI). FFI is defined here in a loose sense (not cell

specific). It consists of a group of TC cells that influences excitatory

cortical cells in layer 4 through direct connections and indirectly

through local relay inhibitory neurons. In such FFI circuits,

postsynaptic excitatory neurons are considered highly sensitive to

the relative timing of action potentials among presynaptic TC

neurons (reviewed in [32]). Therefore, we tested the impact of FFI

in the current model circuit (see Methods). In the cortical cell,

inhibitory GABAA disynaptic events triggered by thalamocortical

inputs closely followed direct excitatory AMPA monosynaptic

events. The FFI was controlled by the GABAA synaptic weight

and its time lag relative to the AMPA events. We numerically

explored a range of GABAA synaptic weights and time lags and

found that the sensory signal transfer efficiency was improved in

the saturated regime by an average of more than 50% for GABAA

synaptic weights ranging from 3 to 5 nS and time lags up to 3 ms

(Fig. S4B; note this range of synaptic weights corresponds to the

combined inhibitory synaptic weight for the cortical cell in the 30

TC cells version of the model circuit). In contrast, TE in the

optimal regimes was mostly unaffected for a large range of

biologically realistic parameters, with only minor improvements

characterized by a TE increased up to 3% and 5% for the LC state

and the HC state regimes, respectively (Fig. S4A).

In the following sections, numerical simulations were performed

using the optimal LC state of the synaptic bombardment. No FFI

was implemented in the subsequent circuits.

Contextual synaptic bombardment adaptation to
impaired topology

We investigated if the drop in transfer efficiency observed when

changing the size of the thalamic population without readjusting

the TC synaptic weight (Fig. 2B, solid curves) could be counter-

balanced by a different tuning of the cortical input. This question

explores a potentially important issue, since it aims at determining

if pathological impairments of sensory afferent circuits associated

with degenerative diseases such as age-related macular degener-

ation, phantom limbs, tinnitus or strokes (see Discussion), could be

compensated by corticofugal activity adaptation. We compared

numerical explorations of the mean conductance amplitudes of the

synaptic bombardment as was done in Figure 3A for an optimized

network of realistic biological size (Fig. 3D, normal thalamic layer

including 90 TC cells) and an impaired network where half of the

TC cells did not receive any input (Fig. 3D, impaired thalamic

layer including 45 active TC cells and 45 inactive TC cells). The

TC synaptic weight of both normal and impaired thalamic layers

are identical and set to the biological value which is optimized for

a total of 90 TC cells.

As shown by the TE difference calculated by subtracting the

normal TE from the impaired TE (Fig. 3D, TE difference), the

transfer found in the control optimal narrow band for the normal

thalamic layer (delimited by white lines) was degraded in the

impaired thalamic layer, resulting in a large drop of transfer

efficiency (decrease up to 102 bits/s in the control band).

However, recovery was partially obtained in the impaired

thalamic layer via a moderate shift of the optimal transfer ridge.

The recovered peak efficiency (94 bits/s) accounted for more than

75% of the original peak transfer efficiency in the normal thalamic

layer (121 bits/s). The recovered optimal band was slightly shifted

towards higher Gexc values indicating that it is possible to

compensate for a decrease in the feedforward retinothalamic
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synaptic transmission by boosting the responsiveness of the TC

cells through cortical synaptic bombardment.

We speculate that this compensation could occur in early stages

of macular degeneration, but it would not work in later stages

when the thalamic layer is too massively impaired by a drastically

reduced number of retinal inputs. In our model, heavy compen-

sation involved a large increase of the excitatory component of the

CT input and drove the thalamocortical system into the saturated

regime shown in Figure 3C, where the output of the thalamic

population remained independent from the retinal afferent drive.

Figure 4. Impact of the CT inputs correlations on retinocortical information transfer efficiency in computo. A. Illustration of the two
synaptic bombardment correlation schemas used in this study. Colored cells receive an identical synaptic noise. Non-colored cells received an
independent synaptic noise. Partially colored cells receive a partially correlated synaptic noise. See text for more details. B. Left. Mean pairwise spike
correlations among the whole thalamic population as a function of the synaptic noise correlation strength, Cnoise . Right. Example distributions of the
thalamic pairwise correlations for Cnoise = 0.8 (indicated by the vertical dashed line in the left graph) for the homogeneous (upper) and heterogeneous
(lower) schemas. C. Thalamic mean firing rate (6 SD across the whole thalamic population) and cortical firing rate (6 SD across non-overlapping
windows of the cortical spike train). D. Thalamic coefficient of variation (6 SD across the whole thalamic population) and cortical coefficient of
variation (6 SD across non-overlapping windows of the cortical spike train). E. Effect of the synaptic bombardment correlation strength on TE for
both correlation schemas illustrated in A. F. Retinothalamic and thalamocortical partial sensory transfer efficiencies (TEpartial) for the homogeneous
correlation schema. See text for more details.
doi:10.1371/journal.pcbi.1003401.g004
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Impact of the temporal coherence of the corticothalamic
input across TC cells

Temporal correlations of corticothalamic inputs can be

examined at two different scales in the thalamic layer, at the level

of single cells or at the level of the cell population, with two very

different outcomes for information transfer.

At the single cell level, the corticothalamic input directly excites

TC cells and indirectly inhibits them via the NRT and local

interneurons in the LGN [33]. The precise spatial and temporal

organization of these inputs is not known. Inputs from layer 6 to

TC and NRT cells may overlap if they originate from the same

cortical columns [34], or not if they originate from different

columns [13]. Therefore it can be hypothetized that different

degrees of temporal correlation occurs in the target TC cells,

between monosynaptic cortical feedback excitatory postsynaptic

potentials (EPSPs) and disynaptic inhibitory postsynaptic poten-

tials (IPSPs). To explore this question, we tested for a large range

of correlation strengths (Cexc-inh) and correlation time lags (Dexc-inh)

between the excitatory and the inhibitory components of the

synaptic bombardment (Gexc and Ginh, respectively; see Eq. 15 and

16). Positive correlation time lags caused the inhibition to lag

behind the excitation. We observed only a very small decrease in

the retinocortical transfer efficiency for high correlation level with

no clear dependencies on the time lag (Fig. S5).

So far, the effects observed at the cell level can be explained by a

classical gain control where the spike response probability of each

individual TC cell is shaped by the characteristics of the noise

bombardment [13,19,35].

Beyond this modulatory effect specific of each cell, the following

simulations unravel another feature, critical in the control of

information transfer, namely the temporal coherence of the

synaptic bombardment across TC cells. To illustrate the functional

impact of temporal coherence, two possible correlation schemas

were explored at the population level, allowing a parametric

exploration ranging from complete desynchronization (case

examined so far in the previous parts) to full synchronization of

the CT input across the whole thalamic cell population (Fig. 4A).

In the ‘‘homogeneous’’ correlation case, the cortical projections

were arbitrarily divided into two sets of additive noise sources,

correlated and uncorrelated, whose relative influence could be

titrated parametrically: i) a pool of ‘‘shared’’ CT axons was

distributed jointly to all cells of the population and provided a

common synaptic input, leading to cross-cell correlations, whereas

ii) a pool of ‘‘independent’’ CT axons targeting different cells was

distributed within the population, thus providing desynchronized

synaptic drive. The differential recruitment of these two types of

projections by the cortex can be seen as a simple way to impose

different amounts of correlation across the thalamic cells.

We also explored a ‘‘heterogeneous’’ correlation case, where

only one type of input could be integrated at once by the thalamic

cells which received either shared or independent CT inputs from

the cortex. In this latter case, gradual correlation levels are just

implemented by spatial heterogeneity in the recruitment by CT

shared axons, where a variable number of TC cells receive shared

CT inputs while the remaining cells receive independent CT

inputs. This spatially organized correlation schema is illustrated by

islands of neighboring thalamic cells being densely contacted by

common CT axons which would be either synchronously activated

by the cortex or kept inactive.

Both the homogeneous (‘‘diffuse and shared’’) and heteroge-

neous (‘‘spatially selective’’) correlation schemas are characterized

by a correlation strength coefficient (Cnoise, see Eq. 17 and 18)

ranging from 0 (no imposed correlation) to 1 (identical synaptic

bombardment for every TC cells).

We gradually increased the correlation parameter Cnoise while

measuring the firing correlation of TC neurons pairs in model

circuits (Eq. 20). Correlations in the cortical input provoked

pairwise spike correlations in the thalamic layer (Fig. 4B, left). The

two correlation schemas did not affect the population in a similar

way. The homogeneous correlation schema induced an homoge-

neous distribution of pairwise spike correlations across the

population (Fig. 4B, upper right; distributions shown for

Cnoise~0:8 indicated by the vertical dashed line) while the

heterogeneous correlation schema induced a bimodal distribution

characterized by strong spike correlations only in a subset of TC

cells (only receiving shared inputs) and no correlation other than

the chance level for the remaining cells (only receiving indepen-

dent inputs) (Fig. 4B, lower right).

Next, we compared the spiking activity of the cortical response

with the average thalamic response. We measured both the firing

rate and the spiking variability during fully synchronized

(Cnoise~1) or uncorrelated (Cnoise~0) cortical bombardment in

model circuits. Although the correlations introduced in the

synaptic bombardment across cells did not affect the mean and

standard deviation of the cortical input nor the average response of

individual TC cells, it modulated both the firing rate (Fig. 4C) and

the coefficient of variation of the cortical response (Fig. 4D). In the

uncorrelated paradigm, the cortical firing rate remained lower

than its thalamic input. In contrast, full correlation of the synaptic

bombardment increased the firing rate of the cortical cell and

equaled it to the firing rate of the TC cells. Similarly, the spiking

variability depended upon the level of correlation of the synaptic

bombardment. Note that variability in the cortical discharge was

the largest during the uncorrelated paradigm.

We then explored the impact of the synaptic bombardment

correlation on the efficiency of the global retinocortical informa-

tion transfer for both correlation schemas (Fig. 4E). We found that

synaptic bombardment correlations injected at the thalamic level

strongly decreased the TE of sensory signal transfer. The TE

decrease was progressive resulting in a graded decoupling of the

retinal stimulation and the cortical response. The starting and

ending points were identical for both correlation schemas, only the

rate of variation due to correlation increase were different in the

two paradigms, being more linear for the homogeneous correla-

tion schema than for the heterogeneous one. Full correlation of the

synaptic bombardment (Cnoise~1) was still permissive for signal

transfer albeit TE was 76% lower than that measured for

uncorrelated bombardment (Cnoise~0).

We investigated further how the synaptic bombardment

correlation across the thalamic population affected the transfer

of sensory information in individual TC cells. We calculated the

TE for partial information transfers between the retinal input and

a TC cell response (retinothalamic TEpartial) and between a TC

cell input and the cortical response (thalamocortical TEpartial). The

synaptic bombardment correlation was varied using the homoge-

neous schema ensuring symmetric variations in all TC cells. A

single thalamic cell was thus arbitrarily chosen to calculate partial

retinothalamic and thalamocortical TEs.

The partial thalamocortical TE was improved by the correla-

tions present in the CT synaptic bombardment (Fig. 4F, squares),

an effect which at first look seems opposed to the decrease

observed on Figure 4E for the global retinocortical TE. This

apparent contradiction is due to the fact that two different things

are measured. The global retinocortical TE measures the strength

of the coupling between the retinal input and the cortical response,

reflecting the capability of the whole circuit to transfer retinal

sensory information to the cortical cell. The partial thalamocor-

tical TE specifically focuses on the coupling between a TC cell
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input and the cortical response. Increases in correlation levels of

the CT synaptic bombardment degraded the retinocortical

coupling while it improved the thalamocortical coupling. In

contrast, the partial retinothalamic TE was unaffected by

correlation changes in the CT inputs (Fig. 4F, circles). The latter

finding obeys an invariance principle in the first order statistics

seen by individual TC cells (note here that correlation changes

across the TC cells do not affect the mean or the standard

deviation of the synaptic bombardment conductances).

The simultaneous decrease of the global retinocortical TE and

increase of the partial thalamocortical TE are both explained by a

stochastic resonance effect between the synaptic bombardment

noise and the response of every TC cells at the whole population

level. The synaptic bombardment can sometime provoke spikes in

TC cells which are decoupled from the retinal input if the

fluctuations are depolarizing, and conversely prevent the gener-

ation of TC spikes in response to retinal events when the

fluctuations are hyperpolarizing. Therefore, in presence of highly

synchronized corticothalamic noise, spikes provoked or prevented

by the synaptic bombardment in TC cells are amplified

simultaneously in the whole thalamic population, resulting in a

more uniform response. High pairwise spike correlations among

TC cells reveal this uniformity (Fig. 4B). The uniformity of the

thalamic responses across TC cells further lead to increased spike

transmission errors (Fig. 5A, spike transmission failures in the

correlated condition) which is precisely what degrades the coupling

(i.e. the global TE) between the retinal input and the cortical

response. Another related consequence of the cortical input

synchronization is the elevation of the thalamocortical synchrony,

which boosts the thalamic population drive of the cortical cell.

This effect is reflected by an increased partial TE value between

any sampled TC cell and the cortical cell.

In summary, dissecting the analysis of information transfer

properties at different levels of the circuit reveals that decorrelation

in the synaptic bombardment of the corticothalamic input induces

a stochastic facilitation process between the retinal input and the

target cortical cell which only emerges at the whole thalamic

population level (resulting from the collective action of all TC

cells). This facilitation process optimizes the efficiency of the global

retinocortical transfer of information when TC cells membrane

potential fluctuations are decorrelated.

Impact of synaptic noise temporal correlations in
reconstructed biological networks

Running biological exploration in parallel with simulation is a

useful strategy for the refinement of the model parameters and

allows checking their consistency in a biological situation. The

explorations of the parameter space with the model suggested the

use for BICNs of small fluctuation amplitudes for the synaptic

bombardment. This strategy led to the important finding that

small membrane fluctuations in individual biological cells (SD = 1–

1.4 mV in model cells and 0.9–3.5 mV in biological cells after

removal of spikes; see Fig. 1C,D and Fig. 5A) —that may go

unnoticed in in vivo recordings— have a strong effect on the

transfer of information when considering the whole TC cell

population synaptically converging to a same cortical cell. The use

of BICNs (detailed below) also led to the observation that

membrane properties of biological cells is an important element

for information transfer, not only a the level of the single cell, but

especially at the level of the circuit. Note that these experimental

findings may not be fully captured by simulations due to inherent

limitations of any model.

We examined more in-depth the impact of correlations in the

synaptic bombardment by conducting information transfer analysis

on BICNs built from the recordings of 8 TC biological neurons (see

Methods). BICNs were analogous to the model circuits tested in

Figure 4. Pseudo-TC cells activities in BICNs replayed membrane

potential traces recorded in biological TC neurons. The neurons

were recorded in dLGN slices of rats and mice and stimulated with

an input identical to the one used in model TC cells, using patch

and sharp intracellular electrodes and the dynamic-clamp technique

(see Methods).

First, we built 15 ‘‘small single-cell’’ BICNs (see Methods) each

made of 10 pseudo-TC cells derived from the recordings of a

single biological cell. We varied the correlation of the synaptic

bombardment across the pseudo-TC cells as was previously done

in the model circuits. The correlation parameter (Cnoise) ranged

from 0 to 1 using the heterogeneous thalamocortical correlation

schema. Illustration of recording sequences from a BICN is shown

for both the uncorrelated (Cnoise~0) and correlated (Cnoise~1)

conditions (Fig. 5A). Close examination of the voltage fluctuations

in the uncorrelated condition revealed notable differences,

reflecting variations in the injected synaptic noise conductances

(Fig. 5A, insets). Variations in the voltage fluctuations were also

present in the correlated condition, albeit much smaller, reflecting

solely the trial-to-trial variability intrinsic to the biological TC cell.

We found that, when compared to the uncorrelated condition, the

correlated synaptic bombardment failed to elicit a number of

cortical spikes in response to the retinal input (Fig. 5A, lower left

bar graph). The retinocortical global transfer efficiency decreased

with increasing levels of correlation in the thalamic layers (Fig. 5B),

confirming the results obtained in computo in previous sections. The

average transfer efficiency drop in the 15 BICNs became highly

significant for correlation strengths larger or equal to 0.33 (Fig. 5C;

p = 0.00031 for Cnoise = 0.33; p = 0.000015 for Cnoise = 1; paired-

sample t-test). These in vitro results confirmed that an increase in

the synaptic bombardment correlation led to a significant decrease

of the retinocortical transfer efficiency.

Next, we constructed ‘‘large mixed-cell’’ BICNs (see Methods)

with a number of pseudo-TC cells ranging from 0 to 130. We

compared the TE for correlated (Cnoise~1) and partially

decorrelated synaptic bombardments. Compared to the previous

BICNs made of 10 pseudo-TC cells obtained from a single

biological cell (Fig. 5A to 5C), the large mixed-cells BICNs

(Fig. 5D, solid lines) were built from a collection of distinct

biological cells which added cellular diversity and variability in the

membrane potential fluctuations due to the differences in

biological cell properties. We found that the TE was lower in

the correlated condition for network sizes larger than ,50 pseudo-

TC cells, thus confirming the paradigm by which correlation in

CT synaptic inputs decreases the efficiency of the sensory

information transfer in the more realistic case of BICNs made of

distinct biological TC cells.

BICNs offer an opportunity to explore the impact of biological

cellular diversity on the transfer of sensory information. In order to

suppress diversity, we built ‘‘large single-cell’’ BICNs (see

Methods) in correlated and partially decorrelated conditions.

Similarly to the small single-cell BICNs, each large single-cell

BICN was obtained from the recordings of a single biological cell.

Large single-cell BICNs thus differs from the large mixed-cell

BICNs by their lack of cellular diversity while still maintaining the

trial-to-trial variability inherent to intracellular recordings. In large

single-cell BICNs, thalamic layer sizes larger than the previously

described small single-cell BICN from which they are made from,

were achieved by duplicating separately the activities of the

pseudo-neurons. To illustrate this, a large single-cell BICN

composed of 130 pseudo-cells was built upon a set of recorded

sequences of activity used previously in the construction of an
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individual small single-cell BICN composed of 10 pseudo-cells,

with each sequence being duplicated a total of 13 times. We then

averaged the TE for each thalamic layer size and each correlation

condition of the above large single-cell BICNs (Fig. 5D, dashed

lines). We found that TE averaged for the large single-cell BICNs

was lower than TE obtained for the large mixed-cell BICNs,

indicating that there was a positive contribution of the biological

cellular diversity in the transfer of sensory information. For a size

of 130 pseudo-cells, large mixed-cell BICNs TEs were 18% and

54% higher than the average TEs for large single-cell BICNs, in

the correlated and partially decorrelated conditions, respectively.

In the light of these results obtained by combined in vitro and in

computo approaches, we propose that active decorrelation of

background synaptic activity in the thalamic layer provides a

powerful optimization mechanism —emerging from a population

effect— controlling the efficiency of the retinocortical signal

transfer. In this framework, each TC cell is seen as a detector of

the retinal stimulation and the brain could modulate the overall

transfer efficiency via the CT feedback correlation by controlling

the level of independency between the individual detectors,

ranging from fully synchronized (lowest information rate) to

desynchronized (highest information rate). In the next section, we

further investigated the impact of cellular diversity on information

transfer in model circuits.

Parametric study of cellular heterogeneity as a
‘‘decorrelation’’ source

In addition to the influence of synaptic inputs and the ongoing

afferent activity, the putative diversity of intrinsic membrane

properties encountered within a same cell class or across different

cell classes due to the variety of their detailed morphology and the

Figure 5. Decorrelation of the corticothalamic synaptic noise boosts retinocortical signal transfer in BICNs. A. Top. Illustration of
voltage traces for a small single-cell BICN (indicated by an arrow in B) receiving uncorrelated synaptic bombardment. Insets. Zoomed sections of the
biological TC cells membrane voltage fluctuations. Bottom. Same BICN as above receiving a correlated synaptic bombardment. Numerous spike
failures are observed compared to the uncorrelated synaptic bombardment. The lower left bar graph shows the mean (6 SEM across all spikes)
retinocortical spike transmission probability for both the uncorrelated and correlated conditions. B. Transfer efficiency as a function of the synaptic
noise correlation strength in small single-cell BICNs (see Methods) normalized relative to the respective uncorrelated condition of each BICN
(Cnoise = 0). Each curve represents a different BICN with varying synaptic bombardment correlation strength. The correlation was varied using the
heterogeneous schema. Curves with similar colors represent BICNs built from the same biological TC neuron. C. Average TE drop for all small single-
cell BICNs (6 SEM across all BICNs) as a function of the synaptic bombardment correlation strength. D. TE measurements for large mixed-cell BICNs
and average TE for large single-cell BICNs of varying size for both correlated and partially decorrelated conditions (see Methods).
doi:10.1371/journal.pcbi.1003401.g005
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distribution of their ionic channels may also contribute to the

decorrelation of the cells activities. We therefore investigated in

model circuits to which extent intrinsic cellular heterogeneity

could affect the retinocortical global information transfer.

We introduced cellular heterogeneity in our convergent

networks by randomizing key intrinsic parameters reflecting the

number of channels, the morphology and the integration time

constant of the TC neurons (see Methods). We defined a ‘‘cellular

heterogeneity’’ index, ranging from 0 to 1, as the amount of

variation of the randomized parameters, where a value of 0 meant

there was no variation at all and a value of 1 meant that

randomized parameters varied up to 100% around their respective

original values (Eq. 4). This randomization was repeated for each

TC cell. The synaptic bombardment parameters were kept

identical to those used previously in model circuits made of non-

randomized model TC cells. Note that as a consequence, the

bombardment was no longer optimal after randomization of the

TC cells intrinsic properties and, a priori, it would require a cell-

per-cell adjustment to optimally adapt the bombardment to the

new properties of each TC cell. To summarize, two types of

decorrelation coexisted in these new simulations, respectively of

extrinsic (synaptic bombardment) and intrinsic (biophysical

cellular diversity) sources.

Starting with pools of identical TC cells (where the cellular

heterogeneity index is 0 in Fig. 6A), in both the correlated and

uncorrelated CT synaptic input condition, we found that

moderate to high cellular heterogeneity was associated with an

improved TE, up to a maximum of 60% of variation for all

parameters, after which further cell variability led to degradation

of transfer efficiency. Figure 6B illustrates the activities of cells for

moderate (20%) and very high (60%) cellular heterogeneities.

Comparing the two curves, it is important to note that cellular

heterogeneity is very effective in rescuing the low information rate

resulting from the correlated synaptic activity, as was previously

observed in BICNs (Fig. 5D). Cellular heterogeneity has much less

effects in presence of uncorrelated synaptic activity, especially for a

moderate, presumably realistic, cell heterogeneity of around 20%

(see Discussion).

In summary, these simulations show the diversity of possible

mechanisms through which information transfer can be con-

trolled, and the importance of decorrelated background activity in

the gating of input from the sensory periphery to cortical areas.

Impact of coherent oscillations in the thalamic layer
We finally considered an extreme mode of correlation, present

in the brain in the form of widespread synchronized oscillations of

various but specific frequencies, that are known to impair signal

transfer during sleep [36,37], absence epilepsy [38], promote loss

of consciousness [39] and show reduced magnitude during focal

attention [40]. We investigated to which extent such oscillation-

induced correlations imposed in the convergent structure of the

thalamic network would affect signal transmission.

We induced oscillations in the thalamic layer of model circuits

by injecting sine-wave currents of varying amplitude (AS ) and

frequency (fS ) to every TC cells (Eq. 14) in addition to a cell-

independent synaptic bombardment (no imposed correlation,

Cnoise~0). In a first case, the phases (wS ) of the sine-wave currents

were identical across all TC cells which resulted in coherent

oscillations in the thalamic layer (Fig. 7A). In a second case, the

oscillations were desynchronized by a homogeneous distribution of

the sine-wave phases across the thalamic population (Fig. 7B).

We found that imposing coherent oscillations resulted in a large

decrease of the TE for the full range of tested frequencies, as soon

as the oscillation amplitude became large enough (Fig. 7C). In

contrast, the desynchronized oscillations were not as effective to

decrease the TE. For particular oscillation frequencies, larger

amplitudes, by at least three fold, were required to achieve a

similar drop compared to the coherent oscillations (Fig. 7D).

Moreover, the coherent oscillations achieved the same TE

decrease for every tested frequencies while the desynchronized

oscillations were more effective in dropping the transfer efficiency

for the 30–60 Hz (gamma) frequency range. Changing the retinal

input discharge frequency did not affect the shapes of the graphs

(data not shown).

Consistent with recent reports showing task-dependent changes

of the oscillatory synchrony in the alert animals (see Discussion),

we propose that one important role of the cortical feedback is to

modulate the spatial coherence of the thalamocortical oscillatory

activities in order to regulate the efficiency of the retinocortical

sensory transfer. Combined with a dynamic modulation of the

first-order statistics of the CT input (classical single cell gain

control), these mechanisms could be used by the brain to actively

filter the information conveyed by the retinal ganglion cells to the

cortical areas, reflecting both attentional processes and active

stimulus filtering under the supervision of higher areas in the

brain.

Discussion

In this paper we have quantified the impact of the corticofugal

synaptic bombardment on information transfer at the scale of the

whole thalamic population presynaptic to a cortical neuron, both

in biological iteratively constructed networks and model circuits.

Figure 6. Cellular heterogeneity improves the retinocortical
signal transfer in computo. A. Transfer efficiency as a function of the
cellular heterogeneity index (see Methods) for both uncorrelated and
correlated synaptic bombardment. B. Model voltage traces are shown
for moderate (20%) and very high (60%) cellular heterogeneity.
doi:10.1371/journal.pcbi.1003401.g006
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Cortically-induced fluctuations of the synaptic conductances were

mimicked with a stochastic process and injected in the biological

cells through dynamic-clamp. The main finding reported here is

that the circuit simulating the convergence of thalamic neurons

onto a common target cortical cell, constitutes a distributed array

of input sources which are ideal targets for a top down control.

Cortically-controlled stochastic facilitation in individual thalamic

cells add up to form an emerging signal filtering property at the

network level that promote accurate retinal spike transfer to

cortex. We show that this property is critically controlled by the

number of TC cells involved simultaneously in the convergence,

the statistics of the cortically-driven synaptic bombardment, and

the level of correlation imposed across membrane potential

fluctuations of the TC cells.

Simulations limited to a realistic range of biophysical param-

eters in synaptic weight and EPSP amplitude show that an optimal

number of ,90 TC cells was best adapted to favor the transfer of

sensory information to the convergent circuit topology, which is

characterized by weak TC synapses and a high degree of TC

convergence. Cortically-induced thalamic voltage fluctuations

could be adjusted to control the thalamic spike synchronization

window thus sharpening the cortical spike-triggered average

response and the efficiency of the sensory input transfer. Most

importantly, we found that cortical input coherence was a key

factor controlling the sensory signal information transfer efficiency

to the target cortical cell. Simulation of coherence increase across

TC cells by imposing additional correlated random fluctuations or

coherent voltage oscillations in their membrane potential gradu-

ally degraded the sensory signal transfer. In contrast, a relatively

high amount of retinal afferent synchronization was critical to

ensure efficient transfers.

Our approach calls however for some reservation: in its detailed

implementation, the present BICN circuit does not implement in

full the feedback between cortex and thalamus, since the simulated

cortical input to the thalamic relay cells is not updated by the

ongoing output activity of the thalamocortical stream. However,

our aim was to explore the functional impact of a parametrized

cortical input signal whose statistical structure has the ‘‘color’’ of a

‘‘realistic’’ cortical feedback. One could still object that such added

feedback could simulate as well a contextual noise at the thalamic

level. Nevertheless, our working hypothesis posits that the ‘‘color’’

of this noise is dictated by the corticothalamic loop. There is

indeed biological evidence supporting our theoretical framework:

in contrast to the assumed distributed nature of the cortical

feedback, it is well established that ongoing activity of intra-

thalamic origin (as observed in vivo [41] and in vitro [42] in the

deafferented slice) has a strong rhythmic dominance [43,44]. In

order to test the impact of such oscillatory noise source, we

imposed voltage oscillations in the TC cells and found that

coherent oscillations have the property of reducing the sensory

signal information transfer whereas desynchronized oscillations

remain permissive.

We propose that the synaptic gating of sensory information in

the thalamus may rely on transient and spatially-focalized

modulations of the coherence level of the contextual cortical

feedback.

Optimal size of the convergent circuit
The convergent synaptic organization of the thalamocortical

circuit forms the structural kernel of our feedforward model. This

rather simple topology of projecting relay neurons in the visual

thalamocortical system [3] has not attracted the attention it

deserves perhaps because of the yet unsolved technical challenge of

identifying and record simultaneously all neurons belonging to the

same convergent circuit. In this paper we reveal that this

convergent topology might be essential for information transfer,

first because, in a somewhat trivial way, it allows the recipient

cortical cell to integrate sensory EPSPs evoked in all the relay cells

simultaneously, and second, in a less obvious way, because the

concomitant synaptic bombardment exerted by the descending

corticothalamic feedback can result in stochastic facilitation of the

feedforward input lines.

Figure 7. Impact of thalamocortical oscillations on the retinocortical information transfer efficiency in computo. A and B. Sine-wave
currents of varying amplitude and frequency were injected to every model TC cells in addition to retinal inputs and uncorrelated synaptic
bombardment. The current oscillations were either coherent (same phase for every TC cells) or desynchronized (phase evenly distributed in the
thalamic population). C and D. Transfer efficiency for both conditions shown in A and B, respectively.
doi:10.1371/journal.pcbi.1003401.g007
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We found the number of thalamocortical cell involved in the

convergent network to be a key parameter controlling information

transfer. An exhaustive exploration of the parameter space

revealed that the efficiency of the transfer reached a peak for a

population of ,90 relay cells, with rather weak synapses (,1 mV

EPSP), whose individual recruitment would never trigger per se a

cortical spike. For larger population sizes, little or no gain was

observed, indicating a saturation of the impact of the convergent

afferent circuit.

These results are coherent with findings obtained in vivo.

Thalamocortical inputs on layer 4 stellate neurons are thought to

be among the strongest in the neocortex. However, recent in vivo

data show that individual synapses are weak (EPSP ,0,5–2 mV)

and that a subnetwork of at least ,30 inputs needs to be

synchronously active to drive the firing of a single cell in the visual

cortex [31,45,46] and in the somatosensory cortex [47]. Our

model is based on data from the visual thalamus and by

exploration of the parameter space we found that statistically at

least one third of the 90 cells are required to fire simultaneously in

order to elicit a spike in the target cortical neuron. It should be

noted that despite their different functional specialization, the

topology of converging TC circuits to V1 and S1 seem to retain

the similarity of having numerous and synchronous convergent

inputs to layer 4 cortical cells (estimated to ,85 in S1 [47]; and

range between the extreme values of 15 to 125 in V1 [2,3]).

It is important to note that the optimal size of the convergent

circuit we reported here was directly obtained from numerical

explorations performed on the retino-thalamo-cortical model

circuit. Put together, the above results led us to the suggestion

that the value of ,90 TC cells is of significance not only for the

visual thalamic network but potentially for similar feedforward

multi-layered networks as found in other sensory modalities.

Nevertheless, although the model circuit parameters are extremely

consistent and thoroughly constrained with biological data, it is

likely that more exhaustive simulations are needed in order to

estimate the actual optimal value of the population size adapted to

other network topologies (with different synaptic convergence and

divergence ratios), cellular properties and input statistics (which

differ significantly across sensory modalities).

Synchrony detection and spike-timing in thalamocortical
convergence

The activity of local groups of cells with neighboring receptive

fields can be significantly correlated if the visual input itself has

strong spatial and temporal correlations (for a review see [48]), as

it is the case with natural scenes [49–51]. LGN cells with

overlapping receptive fields of the same type (ON-center or OFF-

center) often fire spikes that are synchronized within 1 ms in vivo

[1] and their precise correlation was found to be of considerable

importance [52] in the coding of visual information. In our model

circuit, synchronization of the LGN inputs to the cortical cell was

directly controlled by the retinal spike synchronization parameter

in a biologically realistic retinothalamic stage, where multiple

retinal ganglion cells were connected through both convergent and

divergent processes to the TC cells. In accordance with the works

cited above, we found that a relative synchronization of the retinal

afferents was critical to convey an efficient transfer to the cortical

neuron (Fig. 2C).

Interestingly, the thalamocortical convergent circuit was adapt-

ed to detect synchrony of the LGN cells. Successful propagation of

retinal spikes to the cortical cell required the LGN spikes to fall

within a ,10 ms time window. This estimate corresponds to twice

the peak half-width of the spike-triggered average for the optimal

regimes in Figure 3C and is consistent with the ‘‘spiking

opportunity window’’ for thalamic spikes [53], thalamic synchro-

nization tuning resulting from adaptation [54] and retinogenicu-

late paired-spike transmission enhancements [55,56].

In contrast with the importance of the synchronization level of

the retinal inputs, the precise timing of individual LGN action

potentials within this spiking opportunity window was not a critical

factor for an efficient information transfer to the cortical cell. We

found that in the presence of background synaptic noise,

information transfer remained relatively resistant to the deleterious

effect of retinal and thalamic spike-time jitters. In a demanding test

in which increasingly large delay jitters were randomly applied to

the feedforward circuit (Fig. 2C,D), transfer efficiency decreased

by less than 20% for delay jitters up to 3 ms in either the retinal or

the thalamic inputs. This suggests that the deleterious effect of

retinocortical propagation variability (estimated to 1 ms for the

retinothalamic transmission [57] and to 0.4 ms for the thalamo-

cortical transmission [58]) on signal transfer can be easily

overcome by the gating effect of the corticothalamic feedback on

the TC cell population.

Whether correlations among the retinal ganglion cells are strong

enough to drive synchronously their thalamic targets remains a

matter of debate. A possibility is to consider multiple arrays of

small intermingled thalamocortical convergent networks, such as

studied here, each capable of detecting and relay specific sets of

synchronous retinal ganglion cells. In this framework, each set of

synchronously active retinal ganglion cells could represent a

distinct feature of the visual scene and convergent networks

involved in the synchrony detection of the latter sets could

propagate meaningful representations of the visual space to

cortical layer 4. This intuitive proposition should be tested in

larger scale computer simulations.

Feedforward inhibition in the cortex is another feature that

could facilitate information transfer. Circuits with strong FFI can

selectively gate synchronous over asynchronous inputs ([32]). This

predicted that in our model —in which synchrony of thalamo-

cortical inputs to cortex is paradoxically favored by uncorrelated

corticothalamic noise— a strong cortical FFI could sharpen the

synchrony of excitatory input and thus increase information

transfer. We found that transfer efficiency in the quiet and optimal

regimes was mostly unaffected for a large range of biologically

realistic parameters. However, FFI could partially rescue infor-

mation transfer in the saturated regime (Fig. S4).

The challenging task of modeling the activity of layer 6
corticothalamic neurons

Considering their massive projections to the thalamus and to

other cortical layers, and of their strong synchronizing role during

sleep (see final part of Discussion), it has been a long-standing

enigma that layer 6 (L6) neurons are largely unresponsive or fire at

low rate in the lightly anesthetized [59] and in the awake animal

[60–62]. Nevertheless, Swadlow [61] predicted that ‘‘the high

degree of receptive field specificity of L6 neurons implies that

action potentials of such neurons carry a high significance’’. By

depolarizing L6 neurons, Kwegyir-Afful et al. [63] unraveled that

the vast majority (,80%) of L6 neurons respond to whisker

deflection. One can argue that even if their individual firing is low,

the overall spiking activity is high because of the large number of

cells involved [62]. Recent studies suggest behavioral circum-

stances in which corticothalamic neurons could be engaged.

Feedback from the cortical area MT (V5) to layer 6 of V1 is

particularly interesting because it has the potential to influence the

feedback to the LGN directly (see [18]). Similarly, during

voluntary whisking, sensory transmission in whisker/barrel thal-

amocortical circuits may be modulated according to specific
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activation patterns that are generated in the motor map [20]. The

authors found that L6 corticothalamic neurons responded more

robustly to whisker deflections when motor cortex activity was

focally enhanced. Therefore, it is critical that future studies of L6

in S1 be done in the behaving animal and engages motor cortex.

The activity of L6 may influence cortical sensory responses

directly through intracortical projection and indirectly through

corticothalamic feedback projections. In the visual system, the

activity of L6 neurons and the relative contribution of the two

different L6 neurons projections, as been recently clarified by

Olsen et al. [21]. First, they show in the mouse visual cortex that

L6 neurons are spontaneously active and that their activity

increases during visual stimulation (Fig. 1D in [21]). Second, when

L6 activity is artificially increased by broad optogenetic photo-

stimulations or by full-field visual stimulation, it has a suppressive

effect on other cortical layers and on the dLGN. Suppression in

the dLGN is at odds with studies enhancing the activity of

corticothalamic feedback projections through focal pharmacolog-

ical manipulation of L6 neurons, which typically reported a

facilitation of functionally or topographically aligned thalamic

neurons overlaid by broader surround suppression [13,18]. To

reconcile these findings, Olsen et al. [21] discussed that their

results are consistent with pharmacological models, because full-

field visual stimulation involves the spatial summation of individual

inhibitory surrounds and will result in a net suppressive effect of

the corticothalamic feedback projection.

Single cell versus population coding
Looking at the effect of the cortically-induced synaptic noise on

TC cells responsiveness, we found important distinctions when

considering either the isolated cell or the mesoscopic organization

level of an assembly of thalamic cells.

In individual TC cells, input-output transfer efficiency can be

measured by evaluating the spiking response probability of the

neuron to individual excitatory retinal-like synaptic inputs. Such a

probabilistic input-output curve defines the neuronal responsive-

ness over a wide range of inputs and is characterized by its slope,

or gain. This transfer property has been shown to be efficiently

modulated by the dynamical interactions between the inputs and

the synaptic bombardment-induced membrane voltage fluctua-

tions [19,64], a phenomenon linked to stochastic resonance

[65,66]: increases in membrane potential variance resulted in an

enhancement of the probability of spike generation to small

amplitude conductance inputs, which were previously ineffective

in the absence of noisy background bombardment.

In this previous approach, synaptic noise controlled the cell

responsiveness in a probabilistic manner, and the repetition of

trials of similar inputs was necessary to average the response over

time and build up the full description of the input-output transfer

response. In the real brain, the need for immediate response

makes trial averaging impossible and there must be mechanisms

responsible for the rapid extraction of the probability function

underlying neuronal responsiveness. We show here that such a

process can be embedded at a higher level of integration, where a

target cortical cell can decode probabilistic signal integration

distributed in the thalamic convergent circuit. A corollary of this

property emerging at the population level is that it might be

difficult to unravel in experiments in the awake animal. A

possibility would be to identify and record extracellularly a great

number, if not all, of the thalamic cells involved in the convergent

circuit and their target cortical cell. A very challenging alternative

would be to record simultaneously many TC cells intracellularly

in order to unravel the correlation level of the synaptic

bombardment.

The amplitude and fluctuations of background synaptic
noise determine information transfer

Several non-exclusive mechanisms may contribute to a permis-

sive action on sensory transfer in the thalamus. The first one is the

well-described neuromodulation of membrane properties of relay

cells. The activity of brainstem afferents releases neurotransmitters

in the thalamus (acetylcholine, noradrenaline, etc.), and results in

depolarization of thalamic relay neurons out of the voltage range

in which rhythmic oscillations are prevalent and promote a state of

single spike activity [67]. We had previously shown in hybrid

circuits that application of noradrenaline increased both retinal

spike transfer efficiency and reliability to cortex [68]. This

neuromodulatory effect is however acting slowly. In contrast, the

cortical control of thalamic transfer efficiency by a tunable mixed

excitatory and inhibitory synaptic background activity, as

proposed in the present study, presents several advantages over

the modulation by slow neuromodulators: It is dynamic, fast and

topographically precise.

Systematic exploration of the parametric space defined by

excitatory and inhibitory conductances (at the level of the thalamic

population) led us to define an ‘‘optimal noise’’. This noise level is

characterized by rather small fluctuation amplitudes (compared

with the previous works cited above), corresponding to irregular

and weak fluctuations around a balanced excitation/inhibition

regime. The amplitude of the voltage fluctuations in biological

(SD = 0.9–3.5 mV) and model neurons (SD = 1–1.4 mV for low

and high conductance states, respectively) fell in the lower end of

the distribution of fluctuation amplitudes for which responsiveness

was enhanced in isolated relay cells recorded in vitro (see Fig. 1C in

[19]).

We defined low and high conductance states that differ by their

total CT synaptic conductances but shared high information

transfer capabilities, provided that the ratio of the excitatory to the

inhibitory components of the synaptic bombardment was

optimally adjusted. The distinction between low and high

conductance states is nevertheless important. 7 to 16% of synapses

on relay cells are from retinal afferents [69,70] and ,60% from

the CT feedback. The remaining ,30% of relay cell inputs

originates from other thalamic areas, from indirect CT input

whose cortical cells are not located in the striate cortex and not

contacted by LGN cells [9] and from the diffuse neuromodulatory

afferents mentioned above [67]. These additional inputs may

occlude the modulatory effect of the dedicated CT feedback on the

TC cells via a change in the conductance of the cell membrane. In

this situation, an efficient modulation of the TC cells may not be

successfully achieved by a low conductance state feedback and

would rather require a high conductance CT feedback input.

In terms of conductance proportion, optimization of the transfer

efficiency by means of mutual information analysis led to total

corticothalamic input averages of 20.85 nS (SGsynT=Grest = 2.5)

and 33.36 nS (SGsynT=Grest = 4) in the low and high conductance

states, respectively. Adding the retinothalamic AMPA synaptic

weight, 12.5 nS (estimated from [71,72]), and assuming the

resulting quantities account for 70% of the total input of the TC

cells as seen above (the remaining ,30% inputs of thalamic origin

are not modeled in the present study), the retinal input can be

estimated to 26% and 19% of the total input conductance of the

TC cells for the low and high conductance states, respectively. It is

important to note that, as shown by these ballpark estimates, the

proportion of the retinal input to the total input of the TC cell was

not a fixed constant in our model, but rather depended on the

conductance state of the cortical input. Given the dynamic nature

of the cortical feedback, it is probable that this ratio varies in vivo.

Other factors such as the contribution of other inputs originating
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from thalamic areas or the statistical structure of the stimulus

could also play a role on this ratio.

Interestingly, depolarizing effects of neuromodulation during

waking may modulate the effects of corticothalamic inputs. We

have tested this effect by depolarizing the thalamic cells with a

positive constant current, and this shifted the optimal response

ridge seen in Figure 3A towards lower values of excitatory

conductances, and increased the sensory signal transfer efficiency

in absence of synaptic bombardment (Fig. S3B).

These observations point out that the functional role of the CT

feedback could be ensured in a variety of physiological or

pathological synaptic contexts, by simply adjusting the contextual

bombardment mean amplitude and fluctuations, including the

ratio of excitation and inhibition, over a wide-range of conduc-

tance states. An intriguing question is whether such a property

could be involved in adaptation of the thalamic circuitry to

disruptive effects resulting from peripheral or central neural

dysfunctions, such as age-related macular degeneration, stroke or

phantom limb pain. While phantom sensation and tinnitus might

result from a local deafferentation of thalamic circuit from sensory

inputs in the somatosensory system and auditory system respec-

tively [73] (comparable to the situation in Fig. 4F where the

thalamocortical partial transfer is highest but decoupled from the

sensory afferents), age-related maculopathy (ARM) is character-

ized by a progressive loss of central vision resulting from retinal

impairments of localized area in the fovea [74]. Thalamic cells in

register to the macula are consequently decoupled from the

normal retinal information flow. However, in early stage of the

disease, when the macula degeneration is still limited, the visual

symptoms are inconspicuous [75] and one may ask if compensa-

tory mechanisms such as an adaptation of the corticofugal activity,

are already at work in the corresponding thalamocortical circuitry.

Clinical recovery training protocols for ARM patients aim indeed

at restoring a ‘‘displaced fovea’’ in the areas adjacent to the

macula, where the retino-thalamo-cortical circuitry is intact. We

speculate that in addition to plasticity mechanisms, the clinical

paradigm may benefit from the training itself in shifting attention.

We propose that the synaptic resonance process reported in the

present study may be operating to the benefit of the trained

patient, when he has learned successfully to redirect the focus of

corticofugal synaptic bombardment on the thalamic representa-

tion of a displaced fovea, at the healthy periphery of the

degenerated macula.

When considering the CT feedback as the result of a cortical

computation in response to various stimuli, it has been proposed

that part of the cortical function is devoted to predict future

sensory inputs and constantly readjusts its output to optimally

reflect the afferents-driven cortical representations [10–12,18].

Hence, we could expect the dense and continuous activity of the

CT feedback to strongly modulate the thalamus by causing retina-

unrelated synaptic events and spikes in the TC cells in time register

when retinal spikes are expected by cortical higher areas.

This resonance behavior could account for the modulation of

sensory transfer in the thalamus during attention. Attention

typically amplifies neuronal responses evoked by task-relevant

stimuli while attenuating responses to task-irrelevant distracters

[76,77]. Clear attentional effects have been demonstrated in the

thalamus of the monkey performing an attentive task [15,78].

When the animal focused his attention on a visual clue located in

the receptive field of thalamic relay neurons, these cells had their

firing increased by 12–21%. In these experiments, individual relay

neurons were recorded extracellularly, giving no information on

the intracellular mechanism responsible for the attention-

dependent increased firing. We can only speculate in accordance

with the authors that this increase is likely resulting from a change

in the balance and strength of L6 cortically-driven synaptic inputs.

Note also that our working hypothesis differs from that formulated

by [79] where the attentional state modulates the classical input/

output gain of neurons, i.e. the slope of their psychometric curve,

without affecting the membrane potential contextual fluctuations

of the relay cells.

Is (de)correlation in the converging thalamic layer a
candidate mechanism for selective attention?

Most studies on the function of the corticothalamic feedback

seem to assume a predictive coding role, essentially based on the

precise topography, increased discharge and timing of corticotha-

lamic projections [10,11,18,80]. The mechanisms implementing

selective attention at the circuit level in the thalamus might

however take other forms less conspicuous than a mere increased

cellular discharge, as suggested by studies in the monkey area V4

in the neocortex. Individual V4 neurons responded to attended

stimuli that were not salient enough to elicit a response when

unattended. This lowering of detectability threshold and increase

in sensitivity was reflected in a leftward shift in the contrast-

response function without a substantial increase in the firing

response to high-contrast stimuli [81]. Multiple units recording in

other studies revealed that spatially selective attention acts to

reduce task-irrelevant correlated noise [82,83]. The source of noise

originates from slow to intermediate timescale fluctuations in firing

rate that are correlated across relatively large populations of

neurons and it has been suggested that the attention-dependent

reductions in correlated firing could produce a far greater

improvement in signal-to-noise ratio than increases in firing rate

associated with attention would do [83].

How can the assumption of a precise implementation for

predictive coding be reconciled with the randomness of the

decorrelated synaptic noise responsible for stochastic facilitation?

As already discussed above, it all depends upon the scale of

organization that one considers. The concept that visual cognitive

features emerge at a scale of encoding more mesoscopic than that

of the neuron is a common assumption and was theorized for

instance by Alan Newell (for a review see [84]).

Seemingly random at the individual cell level, synaptic noise

provides precision when it is actively decorrelated at the circuit

scale within the thalamocortical convergent circuit of ,30–100

neurons. This can first be seen by comparing the traces in

Figure 5A, in which the uncorrelated noise increases accuracy of

spike relay, as well as the information content (Fig. 5B). At the

cellular level, we have also tested for changes in the level of

randomness of the stochastic synaptic noise. This was done by

injecting in each TC cell gradually increasing correlations between

Gexc and Ginh with varying correlation time lag (not to be

confounded with the correlation of noise across cells). We did not

observe any significant change in the signal transfer information

content (see Figure S5) indicating that noise decorrelation is most

effective at the scale of the thalamocortical convergent circuit.

Similarly to the ‘‘rescuing’’ effect of feedforward inhibition in the

cortex, we speculate that signal transfer of TC cells discharging in

a tonic mode could be improved by correlations between Gexc and

Ginh.

We further investigated the effects of noise decorrelation by

implementing various regimes of correlation in the synaptic

bombardment across the TC cells in BICNs. Similarly to results

obtained in model circuits, we found that a desynchronized

(uncorrelated) top-down input was highly efficient to promote

retinal signal transfer to the cortical neuron, while correlated input

had the opposite effect of strongly reducing the relay. The
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explanation is that when the synaptic bombardment was highly

correlated across the thalamic population, the TC cells membrane

voltage fluctuations were nearly identical (on the basis of similar

intrinsic membrane properties), resulting in an uniform response in

the whole thalamic population by either amplifying or attenuating

every TC cell simultaneously. For instance, when a strong

depolarization due to the top-down synaptic bombardment would

elicit spikes in the entire population of TC cells, the convergent

structure of the circuit would then amplify the signal, and transmit

a retina-unrelated spike to the cortical neuron. Therefore,

correlated background inputs made the TC cells act as similar

detectors and implied an all-or-nothing behavior in the convergent

circuits detrimental to signal transmission. Conversely, weakly

correlated or uncorrelated inputs resulted in a stochastic facilita-

tion effect [85], possibly linked to a collective stochastic resonance

mechanism [65,66] acting independently in each TC cell. Each

cell thus becomes an independent detector discerning features in

the retinal signal that may not be seen by neighboring cells.

At low correlation level in the CT synaptic bombardment, a

slight increase of correlation led to a large decrease in the

efficiency of the retinocortical transfer (Fig. 4E) despite an almost

undetectable increase in the pairwise correlations between the

relay cells (Fig. 4B). These results show that differences in thalamic

pairwise spike correlations, so small that they could barely be

detected using dual recordings, may nonetheless strongly impact

thalamocortical processing. This is consistent with a recent study

in the primary visual cortex of awake macaques, showing that

neurons with similar orientation tuning virtually share no

correlation [86], and another study stressing the high impact of

the low correlations in neural populations [87].

Background noise (de)correlation is not an all-or-none ‘‘permis-

sive’’ mechanism. As seen throughout our analysis, not only can

top-down synaptic inputs actively impose a state of decorrelation

in the thalamic activity, characterized by high level of information

transfer, they can also adjust the level of information transfer by

imposing graded degrees of correlations in the circuit. Even in

presence of fully correlated corticothalamic synaptic bombard-

ment the retinocortical transfer is not entirely switched off (in other

words the cortical response is only partially decoupled from the

retinal input). This can be seen in the model in Figure 4E.

Transfer efficiency decreases gradually from a value near 95 bits/s

for uncorrelated noise, reaching a floor value of approximately 23

bits/s for maximally correlated noise. A similar tendency is

obtained using a different measure as seen in the graph of spike

transmission probability in Figure 5A for biological cells. Spike

probability is increased from 75% for the correlated noise to near

100% for the uncorrelated noise (note that values of spike

probability cannot be directly compared to those of transfer

efficiency).

To conclude this section, we would like to suggest a few

cognitive processes emerging in the early visual system for which a

mechanism of actively decorrelated top-down synaptic bombard-

ment could be at work.

It was proposed by Sillito et al. [18] that feedback from MT

(V5) has the capacity to influence V1 and LGN cells at retinotopic

locations ahead of the current stimulus location. MT receptive

fields are much (up to ten times) larger than those of V1 cells.

According to the authors, ‘‘a moving stimulus entering an MT

receptive field, and causing it to respond, will start to drive a

feedback influence that affects V1 cells at retinotopic locations

ahead of and around the actual stimulus location’’. Although the

authors hypothesized a feedback-induced increase in cellular

discharge, they did not clearly identify how top-down modulation

affects cellular responses in V1 and the LGN. We propose that the

permissive feedback cascading down from area MT could be

implemented at precise locations in V1 and thalamus by the

decorrelation of a synaptic bombardment. According to recent

studies, focused attention decorrelates V4 activity in the attending

monkey [82,83]. We speculate that MT activity could be similarly

decorrelated when a moving bar enters the receptive fields of MT

cells, enabling top-down modulation from MT area to rapidly and

precisely decorrelate V1 cells around and ahead the retinotopic

positions matching the bar in movement. V1 neurons feedback

input to LGN would therefore be decorrelated too, thus improving

signal transfer at selective positions matching the retinotopic area

covered by the activated MT cells.

Attentional modulation originating in higher-level visual areas

and directing its focused action on low-level visual areas is central

to the ‘‘Reverse Hierarchy Theory’’ [88]. It posits that the ‘‘pop-

out’’ phenomenon (when a visual stimulus stands out from the

background) is assigned to initial perception at high-level areas

using their large receptive fields. This phenomenon is extremely

rapid and robust, and in the case of complex objects may not

incorporate fine details of the stimulus (for instance perceiving

words before letters or the ‘‘forest before the trees’’). Filling-in the

details demands focused attention and it is proposed that later

feedback reentry to low levels slowly adds details available in the

small receptive fields found in primary areas. The nature of the

feedback is unknown and we speculate that the decorrelation of

synaptic bombardment targeted to fine features of the visual scene

in the early visual system (V1 and thalamus) could play a role. A

detailed schema along with in-depth explanations of this

hypothesis can be found in Figure S6 and Text S1.

To summarize this key section, corticothalamic input-induced

correlations in the thalamus embody yet another population

emergence effect in which the overall retinocortical transfer

efficiency is not modulated by a variation in the activity of single

TC cells but rather by the differential integration of many TC cell

responses. We propose that a stochastic facilitation process [85]

emerging at the whole thalamic population level enhances the

global sensory information transfer in presence of decorrelated

corticogeniculate feedback bombardment. We propose further

that such a process may be the basis for attentional modulation of

sensory signals at the thalamic level.

Other possible sources of decorrelation
Neurons in the brain present a wide variety of intrinsic

properties and morphological characteristics. There are different

thalamocortical cell-types, which may vary from cell to cell in its

detailed characteristics. We therefore studied the impact of such

heterogeneity, as a source of decorrelation on signal transfer in

large-scale model and biological (BICNs) convergent networks.

It was recently shown in computo that an heterogeneous

population of neurons generated more output entropy than a

population made of identical neurons [89,90]. The author’s

proposal that neuronal heterogeneity may improve the coding

capacity of neural ensembles can be explained by the fact that

heterogeneity contributes to decorrelate the population activity as

discussed above, leading to an increase in the diversity of the

neurons’ responses at the population level (hence contributing to

the output entropy increase). Note that output entropy quantifies

the amount of diversity in the response while the mutual

information measurements we performed characterize both the

output diversity and the dependency of the responses on the input

stimuli.

Our results in large-scale BICNs (Fig. 5D) and in large-scale

circuit simulation (Fig. 6) extend the previous findings [89,90]. In

both cases heterogeneity of cellular properties boosted information
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transfer. In the model, we investigated various levels of heteroge-

neity by designing thalamic layers composed of heterogeneous

model TC cells that were obtained after randomization of the

conductances parameters of the original model TC cell. We found

that information transfer kept increasing until cellular heteroge-

neity reached biologically unrealistic levels (some TC cells display

a highly saturated discharge activity, others are silent; Fig. 6B,

traces for 60% variation). This result is surprising since a number

of TC cells taken individually fail to respond properly to the retinal

inputs. It should be noted that this ‘‘rescuing’’ effect of

heterogeneity was particularly prominent in presence of correlated

synaptic noise, corresponding to low information transfer. In

contrast, the cellular heterogeneity rescuing effect was largely

occluded by the voltage variability imposed by the synaptic

bombardment in the uncorrelated situation. This aspect is

interesting for several reasons. First, input synaptic variability is

a dynamical process governed by the presynaptic activity of

thousands of neurons and is capable of adapting rapidly, perhaps

instantaneously, to the needs of sensory transfer. In contrast,

alteration of cellular biophysical properties is a slow adaptive

process [91], which is ill-suited to achieve fast and reversible

dynamical regulation of sensory transfer. Second, despite the cell-

to-cell differences, synaptic bombardment statistics (mean and

standard deviation of the excitatory and inhibitory synaptic noise

conductances) did not need to be tuned in a cell-specific manner in

order to provide an efficient transfer. Instead, tuning the statistics

as a whole for the ‘‘average cell’’ in the heterogeneous population

resulted in a higher transfer efficiency compared to the same

tuning in an homogeneous population. This apparent discrepancy

between results obtained in the isolated cell and in the circuit is an

indication that distributed changes imposed in the statistics of the

synaptic noise in individual cells may have a fundamental and

unpredictable impact at the level of the whole thalamic

population.

Put together, these results bring new insights about the

possibility of a combined interplay between the synaptic

bombardment and the heterogeneity in the intrinsic determinants

of cellular excitability. Both may contribute to the decorrelation of

input signals in order to reduce the redundancy of the signals and

maximize information transfer, in a passive manner via intrinsic

properties variability and in an active manner via background

synaptic activity self-generated by the cortex.

The coherence of thalamic oscillations controls
information transfer

The top-down correlations we implemented among the TC

relay cells concerned the whole frequency spectrum of the synaptic

noise conductances. Another way by which the brain imposes

correlated firing in the LGN arises from oscillatory activities which

drive correlated spiking during periods of depolarization synchro-

nized among the TC cells. Oscillations are rather stereotyped in

frequency and amplitude, lack the broadband variability of the

statistical structure of the cortical noise and are widely present in

the thalamocortical system during wakefulness and sleep. There is

a growing body of evidence that they could be associated to

sensory flow filtering and attentional modulation.

From wakefulness to sleep, a variety of rhythms have been

reported in the thalamus. In relaxed wakefulness, the electroen-

cephalogram (EEG) exhibits robust rhythms in the a band (8–

13 Hz), which decelerate to h (2–7 Hz) frequencies during early

sleep [44,92], followed by the 10–14 Hz spindles waves and the

slow (,1 Hz) rhythms during non-REM sleep ([93]; for a recent

review see [94]). Spindles are perhaps among the best-understood

synchronized oscillations generated endogenously in the

thalamocortical system during slow wave sleep ([42]; for a review

see [43]). Spindles are known to be spatially correlated in the

thalamocortical system, and lose their coherence after decortica-

tion in the cat, demonstrating the involvement of the CT feedback

in the correlating process [41].

We proposed earlier that spindle oscillations, studied at the

single-cell level, had the property of imposing a temporal

decorrelation of retinal cell input and thalamic relay output,

resulting in the functional disconnection of the cortex from the

sensory drive [68]. This idea was confirmed recently in human in a

study showing that the amount of spindles correlated with sleep

robustness: people having more spindles were more likely to stay

asleep in noisy situations [36]. Consistent with this report, it was

later proposed that synchronized oscillations in the alpha band are

part of an active attentional suppression mechanism aimed at

ignoring irrelevant or distracting information [95]. Signal decou-

pling by means of synchronized oscillations is most likely to reach

its maximum impact in situations of anesthesia or epilepsy. A

theoretical study based on human EEG recordings suggested that

the thalamocortical coherence during the alpha rhythm produced

by Propofol, a short-acting hypnotic agent, is a generative

mechanism for the loss of conscious sensory experience [39].

Conversely, during wakefulness, the waning of correlations

and/or coherent oscillations, and in particular the decrease of

power in the alpha band [40], seem to be associated with

attention. An analogous phenomena was reported in the primary

somatosensory cortex of humans for the mu rhythm [96].

This view is supported by the present work showing that the

decoupling effect of synchronized oscillations culminates when

implemented at the population level, in the ,90 cells of the

convergent thalamocortical circuit. We found in computo that

coherent thalamic oscillations in a broad range of tested

frequencies effectively reduce the retinocortical signal transfer

efficiency compared to desynchronized oscillations.

However, an opposite effect was reported in a study where

coherent thalamocortical oscillations in the beta range (15–30 Hz)

and increases in both the LGN and the primary visual cortex

gamma power were observed in cat local field potential (LFP)

recordings during focused attention [97]. The authors proposed

that enhanced beta activity within the primary visual cortex and

LGN might be an electrophysiological correlate of the attentional

mechanism that increases the gain of afferent visual information

flow to the cortex.

This discrepancy may only be apparent. While a growing body

of evidence [36,39,40,82,83,96], including the present results,

points towards the importance of decorrelation for an improved

sensory flow, we may consider the idea that a putative active

filtering mechanism for attentional modulation should not only

favor the relay of relevant information but simultaneously and

actively reduce the non-relevant information for the current task

and context. In this model, active decorrelation, that was shown

theoretically to emerge from recurrent network dynamics [98] and

feedforward inhibitory circuitry during sensory stimulation [99]

would favor at any point of space and time a given sensory

information stream while simultaneously shutting down other non-

relevant streams by imposing correlations and/or coherent

oscillations.

These different hypothetical schemas lead us to consider the

thalamus as an addressable array of massively intertwined input

lines converging onto cortex, among which only a limited number

would become elected at a given time depending on the resonance

of the local sensory input with the cortical prediction: the top-

down feedback could act not only as a ‘‘searchlight’’ but could

authorize the efficient transfer of the sensory drive throughout an
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ever changing landscape of ‘‘hot spots’’ immersed in a network

otherwise decoupled from the external drive.

Methods

Ethics statement
All in vitro research procedures concerning the experimental

animals and their care adhered to the American Physiological

Society’s Guiding Principles in the Care and Use of Animals, to

European Council Directive 86/609/EEC and to European

Treaties Series 123 and were also approved by the regional ethics

committee ‘‘Ile-de-France Sud’’ (Certificate 05-003). Animals used

in these experiments have been bred in the Central CNRS Animal

Care at Gif-sur-Yvette (French Agriculture Ministry Authoriza-

tion: B91-272-105) under the required veterinary and National

Ethical Committee supervision.

In vitro preparations
In vitro experiments were performed on 300–350 mm-thick slices

from the dLGN of rat thalamus in either interface style or

submerged recording chambers. Wistar rats, 4–6 weeks old for

sharp recording and 14–25 days old (CNRS, Gif-sur-Yvette) for

patch recording were anesthetized with sodium pentobarbital

(30 mg/kg) or inhaled isoflurane before decapitation, craniectomy

and brain removal. Slices were prepared with a vibratome in a

solution in which the NaCl was replaced with sucrose while

maintaining an osmolarity of 314 mOsm and were maintained in

the interface recording chamber at 34–35uC. During recording,

the slices were incubated in slice solution containing (in mM) 126

NaCl, 2.5 KCl, 1.2 MgSO4 (sharp recording) or 2 MgCl2 (patch

recording), 1.25 NaHPO4, 2 CaCl2, 26 NaHCO3, and either 25 or

10 dextrose (for interface and submerged chambers respectively)

and aerated with 95% O2-5% CO2 to a final pH of 7.4.

30 minutes to 2 hours of recovery were allowed before intracel-

lular recordings. Sharp micropipettes were filled with 1.2–2 M

potassium acetate and 4 mM KCl and had resistances of 80–

110 Mohm after bevelling. Patch electrodes (tip resistance: 2–

3 Mohm) were filled with a solution containing (in mM): 135 K-

gluconate, 0.1 CaCl2, 5 MgCl2, 1 EGTA, 10 HEPES, and 4 Na-

ATP, 15 phosphocreatine and 50 units/ml creatine phosphokinase

(pH adjusted to 7.3 with KOH, osmolarity 290 mOsm). The liquid

junction potential (+10 mV) was systematically corrected at the

beginning of the recording. Patch recordings were performed at

32uC. Access and series resistances were constantly monitored and

data from neurons with more that 20% of changes from initial

value were discarded.

The dynamic-clamp technique [26–28] was used to inject

computer-generated conductances in real neurons. When using

sharp electrodes, dynamic-clamp was coupled with an Active

Electrode Compensation (AEC) method that we developed and

validated recently in vivo and in vitro [100]. AEC allows the removal

of electrode noise from intracellular voltage recordings in real

time. The dynamic-clamp software is based on a custom ADC/

DAC program used for data acquisition and analysis (Elphy2,

developed at UNIC by Gérard Sadoc) and is interfaced with a

Real Time-NEURON environment [28], in which the NEURON

simulator v6.0 [101] was modified and recompiled to run under

the INtime stack (TenAsys), a kernel driver enabling real time

operation under Microsoft Windows OS. Stimulation protocols

were run in real time with the acquisition card at 10 kHz.

Dynamic-clamp was used to insert retinothalamic inputs and

cortically-induced synaptic noise in thalamic neurons. The

synaptic noise was simulated using excitatory and inhibitory

fluctuating conductances generated as independent stochastic

processes unless stated otherwise (see following sections) and

mimicking the effect of thousands of stochastically glutamate- and

GABA-releasing synapses [102], as detailed below.

We selected 8 thalamic neurons from 5 animals for which

intracellular recordings were very stable during long periods of

time in order to perform a sufficient number of sequential

conductance injections. Each of these sequences had to be long

enough to get a large number of spikes for the purpose of

calculating the mutual information. These neurons had a

resting potential 6 standard error of measurement (SEM) of

266 mV and an input resistance of 88 MV when recorded

with sharp electrode in an interface chamber (1 neuron) and of

27162 mV and an input resistance of 338648 MV when

using patch pipettes in a submerged chamber (7 neurons). All

cells showed classical rebound burst discharges accompanied by

low-threshold calcium spikes (LTS) upon repolarization after

hyperpolarization.

Circuit modeling
The circuits were modeled under the NEURON simulator and

are described in the Results. Cortical and thalamic model neurons

are based on single-compartment Hodgkin Huxley type models

developed in previous modeling studies [103,104]. The cortical

neuron is based on a pyramidal layer 4 cell and the thalamic cells

are based on a thalamocortical relay cell. The model retinal cells

consisted in random spike-train generators mimicking the

discharge pattern of an ON-center Y cell. Model parameters for

cell passive properties, synaptic currents and synaptic bombard-

ment are summarized in Table 1 Cellular models, current kinetics

and BICN implementations are described in the sections below.

The model files are available on ModelDB website, accession

number 150240.

Retino-thalamo-cortical circuit topology
The model circuits were composed of 1 or 15 retinal cells (NR),

1 to 240 TC relay cells (NTC ) and one recipient cortical cell.

Synapses were either excitatory-type or inhibitory-type and

mimicked AMPA (a-amino-3-hydroxy-5-methyl-4-isoxazolepro-

pionic acid) and GABAA (gamma-aminobutyric acid type A)

mediated current flows in the postsynaptic compartments,

respectively.

Unless otherwise mentioned, a common retinal spike train was

simultaneously fed to the whole thalamic population. In this case,

each TC cell was coupled to the retinal cell through a single

excitatory synapse.

In some cases, multiple retinal lines were simulated (NR = 15).

Each retinal cell projected to 4 TC neurons and each TC neuron

was contacted by 2 retinal cells [1]. For each TC cell, the sum of

the synaptic weights coupled to the incoming retinothalamic

synapses was identical to the single synaptic weight used in the

single retinal cell version of the circuit. The original retinothalamic

synaptic weight (12.5 nS, [71,72]) was splitted between the two

retinothalamic synapses in the proportion of 75% and 25%, giving

synaptic weights of ,9.4 nS for one synapse and ,3.1 nS for the

other synapse.

The degree of convergence between thalamic and cortical

neurons is well quantified [2,3]. The many-to-one thalamocortical

convergence was implemented by connecting each TC cell to the

cortical cell through a single excitatory synapse.

Conduction delays were neglected since retinothalamic synapses

have been shown to be synchronized within a millisecond [1,57]

and TC propagation delays exhibit a very low variability [58]. No

plasticity rules were implemented in our models.
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Cellular model and intrinsic currents
Model neurons were described with the following equation

Cm
dVm

dt
~gleak Eleak{Vmð Þz

X
i

Iinti
z
X

j

Isynj
zInoise ð1Þ

where Vm is membrane potential, Cm is the capacitance of the cell,

gleak is the leakage conductance, Eleak the leakage reversal

potential, Iinti
is an intrinsic current, Isynj

is a synaptic current,

Inoise is a fluctuating synaptic current and t is the time variable. By

convention, positive currents were directed towards the soma and

provoked depolarization of the membrane potential.

Intrinsic currents (Iinti
) were described by the generic form

Iinti
~�ggim

M
i hN

i Ei{Vmð Þ ð2Þ

where the current is expressed as the product of respectively the

maximal conductance, �ggi, activation (mi) and inactivation

variables (hi), and the difference between the membrane potential

Vm, and the reverse potential Ei. Activation and inactivation gates

follow the simple two-state kinetic scheme introduced by Hodgkin

and Huxley (1952)

closedð Þ
a Vmð Þ
/?

b Vmð Þ
openedð Þ ð3Þ

where a and b are voltage-dependent rate constants.

The set of intrinsic current was different for cortical and TC

model neurons. For each current, parameter values were obtained

from matching the kinetic model to voltage-clamp data. The

intrinsic currents used here and references for more details were:

IT and Ih in TC cells [105–107], IM in cortical cell [108] and for

both cell types, INa2IK currents responsible for action potentials

[109]. In TC cells, Ca2+ dynamics and all other parameters were

identical to a previous model [105].

Resting input conductance (Grest) and resting membrane

potential (Vrest) were set to 33.4 nS and 270.6 mV respectively

for the model cortical cell and 8.34 nS and 274.3 mV for the

model TC cell.

Synaptic currents (Isynj
) are described in the ‘‘Synaptic currents’’

section. Fluctuating synaptic current input (Inoise) is described in

the ‘‘Synaptic bombardment model’’ section.

Cellular model randomization
To build up a cellular heterogeneity in the model circuits, we

randomized some of the built-in parameters characterizing the TC

model cells. The randomized parameters were generated from

xrandomized~xoriginal 1zhindex 2U{1ð Þð Þ ð4Þ

where hindex is the ‘‘cellular heterogeneity’’ index, U is a random

number drawn from a uniform distribution on the unit interval

and xoriginal is the original value of the parameter. The

randomized parameters thus varied in random proportions. The

cellular heterogeneity index controlled the maximum amount of

variation. Each TC cell was driven by its own set of parameters.

Randomized parameters included calcium, sodium and potas-

sium maximal conductances of the IT, Ih and Ina2IK currents (�ggi),

the membrane leak conductance (gleak ) and the membrane

capacitance (Cm).

Synaptic currents
Synaptic interactions are mediated by conductance-based

synaptic currents described by

Isynj
~
X

k

gsynj,k
Ej{Vm

� �
ð5Þ

where gsynj,k
is the synaptic conductance for the spike k and Ej the

synaptic reversal potential. Spikes elicited in the post-somatic

compartment unitary conductance patterns of the form

gsynj,k
~vj

t{t0k

tj

exp {
t{t0k

{tj

tj

� �
ð6Þ

where vj is the synaptic weight of the synapse reflecting the peak

conductance amplitude, tj is the time to the peak amplitude and

t0k
the time of the spike k. Prior to a given spike (tvt0k

), gsynj,k
is

set to 0. For clarity, excitatory and inhibitory synaptic parameters

were termed by the suffixes ‘‘AMPA’’ and ‘‘GABA’’, respectively.

This conductance pattern is illustrated in the inset of Figure 1.

Retinothalamic and thalamocortical synapses were excitatory-

type. Feedforward inhibition in the cortical cell involved inhibi-

tory-type synapses (see next section).

Excitatory synaptic parameters were set to EAMPA = 0 mV and

tAMPA = 1 ms in both cortical and thalamic model neurons. The

synaptic weight vAMPA was set to 12.5 nS for retinal EPSPs in TC

cells [71,72] and 2.33 (biological estimate), 7 or 21 nS for thalamic

EPSPs in the cortical cell for the 90 (biologically realistic size), 30

and 10 TC cells version of the circuit, respectively [31].

Feedforward inhibition to the cortical cell
Feedforward inhibition was implemented by coupling an

inhibitory synapse to the thalamocortical excitatory synapse. In

addition to the excitatory synaptic current, each TC spikes

triggered an inhibitory synaptic current in the cortical cell.

Inhibitory synaptic parameters were set to EGABA = 275 mV and

tGABA = 2 ms. The synaptic weight vAMPA was varied from 0 to

10 nS. A positive time lag was introduced to delay the IPSPs,

dAMPA-GABA, and varied from 0 to 10 ms.

Synaptic bombardment model
In addition to the massively feedforward pathway cascading

from retina to cortex, we added a corticothalamic synaptic

bombardment to the TC cells, operating in a highly distributed

way. In some cases, we also added a cortical bombardment to the

cortical cell. The synaptic bombardment was composed of two

fluctuating conductances, excitatory Gexc, and inhibitory Ginh, and

is determined by

Inoise~Gexc Eexc{Vmð ÞzGinh Einh{Vmð Þ ð7Þ

where Eexc = 0 mV and Einh = 275 mV are the reversal potentials

for excitatory and inhibitory conductances, respectively. Each CT

input synaptic conductance (Gexc and Ginh) was described by a

stochastic equation of the type

dGx

dt
~{1=tx Gx{SGxTð Þz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2sx

2=tx

q
fx ð8Þ

where Gx stands for either Gexc or Ginh, SGxT is the mean

conductance, tx is the correlation time, sx
2 is the variance of the

conductance and fx is a Gaussian noise of zero mean and unit
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variance. These equations are identical to the dual Ornstein-

Uhlenbeck process hypothetized in [110] and reflects through a

Gaussian distribution the total conductances seen by a neuron

permanently bombarded by thousand of synaptic events.

Synaptic noise mean conductance values were normalized

relative to the rest conductance of each neuron. Normalization

relative to the rest conductance ensures that the synaptic

conductances will produce a similar voltage deflection regardless

of the intrinsic properties of a cell in vitro or in computo. We thus

defined the ‘‘conductance amplitude’’ as SGxT=Grest for both the

excitatory and the inhibitory components of the synaptic

bombardment. In order to keep the amplitude of the synaptic

noise conductances fluctuation deflections proportional to the

mean level of the conductances, we defined the ‘‘conductance

variation ratio’’ as sx=SGxT similarly to the conductance

amplitude. Note that, as a consequence of this normalization, a

conductance amplitude value of 0 also nullifies the conductance

fluctuations.

For numerical explorations, the conductance amplitude of the

synaptic bombardment was varied from 0 to 3 for both excitatory

and inhibitory components, translating to SGxT ranging from 0 to

25.02 nS in Figure 3A. The conductance variation ratio was

varied from 0 to 1 corresponding to sexc ranging from 0 to

12.51 nS and sinh ranging from 0 to 8.34 nS in Figure 3B

(SGexcT=Grest = 1.5 and SGinhT=Grest = 1.0).

The total cortical input conductance was expressed as

SGsynT~SGextTzSGinhT ð9Þ

and varied between 0 and 50.04 nS. Similarly, we normalized the

total conductance SGsynT to the rest conductance of the TC cells.

The normalized total cortical input conductance (SGsynT=Grest)

ranged from 0 to 6 in our numerical explorations.

The parameters texc = 2.7 ms and tinh = 10.5 ms were adjusted

to match the power spectrum of synaptic conductances resulting

from thousands of randomly releasing synapses [110]. The mean

(SGxT) and variance (sx
2) of the conductances injected in TC

neurons were adjusted such as to optimize the transfer efficiency of

the convergent circuit (Fig. 3, see Results). For the cortical neuron,

Inoise was set to 0 (SGxT = 0 and sx
2 = 0).

Retinal stimulation
The retinal stimulation mimicked the discharge pattern of an

ON-center Y cell. This pattern is characterized by a 30 Hz

gamma 3 distribution [29,30] and is described by

FISI i,kg,i0
� �

~
c kg,i

kg
i0

� �
C kg

� � ð10Þ

where FISI is the cumulative distribution function of the spike-time

interval i, kg the shape parameter, i0 the mean interspike interval

parameter, c the lower incomplete gamma function and C the

gamma function. The mean interval (i0) was set to 0.33 ms

(30 Hz), the shape parameter (kg) was set to 3 and the scale

parameter was set to i0=kg.

When multiple retinal lines were simulated, the level of

synchronization of the retinal afferents was parametrically

controlled by modulating the number of retinal inputs replaying

a common pattern. This was implemented by designing NR

independent retinal activity input patterns, where NR is the total

number of simulated retinal lines (NR = 15). To increase the

synchronization of the retinal inputs, the number of independent

retinal inputs was reduced so that some of the retinal inputs

remained independent while the others replayed the same retinal

input pattern, R0. The synchronization of the retinal afferents was

expressed as

Rsync~
nR0

{1

NR{1
ð11Þ

where nR0
is the total number of retinal lines replaying the same

input pattern R0 and ranged from 1 to NR. A retinal

synchronization (Rsync) value of 0 meant there was no forced

synchronization among the retinal lines and a value of 1 meant the

retinal afferents were all synchronized.

Spike-time jitters were also used to desynchronize the timing of

the retinal spikes in the TC cells. This implementation is described

in the next section.

Spike-time jitters
In some cases, an ad-hoc spike-time jitter was introduced so that

each retinal or thalamic spike was affected by a different time jitter

independently of the other spikes (Fig. 2C and 2D, see Results).

Large retinal spike-time jitters led to desynchronized retinal inputs

among TC relay cells and large thalamic spike-time jitters led to

desynchronized thalamic inputs in the cortical cell. The spike-time

jitters were randomly drawn for each spike from an exponential

distribution described by

Fjitter j,j0ð Þ~ 1

j0
e
{

j
j0 ð12Þ

where Fjitter is the cumulative distribution function of the spike-time

jitter j and j0 is the mean value parameter. The mean spike-time

jitter (j0) ranged from 0 to 10 ms. A value of 0 means the jitters are

null (control value). Positive jitters are obtained for j0w0.

Constant current and current sines
We injected constant and sine-wave currents to thalamic cells.

The constant current is simply described by a constant

Iconstant~AC ð13Þ

ranging from 0 to 0.6 nA.

The sine-wave current is characterized by

Isine~ASsin 2pfStzwSð Þ ð14Þ

where AS is the amplitude of the current ranging from 0 to

0.6 nA, fS is the frequency of sine ranging from 0 to 60 Hz and S

is the phase. The phase of the oscillation was either 0 for every TC

cells, which was referred as the ‘‘coherent oscillations’’ condition,

or uniformly distributed from 0 to 2p in the thalamic population,

referred as the ‘‘decorrelated oscillations’’ condition. No current

offset was applied resulting in an average Isine current of 0 nA.

These currents were added to the membrane potential equation of

the model neurons (Eq. 1).

Temporal correlation of the synaptic bombardment
Correlation between the excitatory (Gexc) and the inhibitory

(Ginh) components of the synaptic bombardment were controlled

by the Cexc correlation parameter and the Dexc correlation time

lag parameter. Correlated Gaussian noises f0exc and f0inh were

expressed by
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f0exc~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{Cexc{inh

p
fexcz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cexc{inh

p
Fexc{inh t½ � ð15Þ

and

f0inh~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{Cexc{inh

p
finhz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cexc{inh

p
Fexc{inh t{Dexc-inh½ � ð16Þ

where Fexc is a vector of independent Gaussian noises of zero

mean and unit variance which are also independent from fexc and

finh. The Gaussian noises f0exc and f0inh had identical statistics to

fexc and finh, respectively, and were injected in Equation 8 as a

replacement to the original Gaussian noises fx.

Correlation of the synaptic bombardment across TC cells is

described in the next section.

Thalamocortical correlation schemas
TC membrane potential correlations among the whole thalamic

population were induced by the CT synaptic bombardment and

controlled by the Cnoise correlation parameter, ranging from 0 for

cell-independent cortical inputs to 1 for common cortical inputs in

the whole thalamic population. Two correlation schemas were

considered.

The first schema correlated homogeneously the entire thalamic

population such as

Gcorr
x ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{Cnoise

p
Guncorr

x {SGxT
� �

z
ffiffiffiffiffiffiffiffiffiffiffi
Cnoise

p
Gcommon

x {SGxT
� �

zSGxT
ð17Þ

where Gx stands for either Gexc or Ginh, Gcorr
x is the resulting

correlated conductance noise, Guncorr
x is an uncorrelated conduc-

tance noise specific to each TC cell, Gcommon
x is a common

conductance noise identical in every TC cells and SGxT is the

mean conductance. This expression assumes that Guncorr
x and

Gcommon
x have identical mean and variance so that the resulting

Gcorr
x has identical statistics. This schema was denoted as the

‘‘homogeneous’’ correlation schema.

In the second schema, a subset of the population received

common cortical inputs (Gcommon
x ) while the rest of the population

received cell-independent cortical inputs (Guncorr
x ). Hence, the first

subset of the thalamic population had fully correlated cortical

inputs. Other TC cells had no imposed correlation. We denoted

this schema as the ‘‘heterogeneous’’ correlation schema and its

correlation strength Cnoise was defined by

Cnoise~
nTC0

{1

NTC{1
ð18Þ

where NTC is the total population size of the thalamic layer and

nTC0
is the number of TC cells receiving the common cortical

inputs patterns Gcommon
exc and Gcommon

inh and ranged from 1 to NTC .

Note that the definition of Cnoise in the heterogeneous schema is

similar to the definition of the retinal synchronization parameter,

Rsync (Eq. 11).

Biological iteratively constructed networks
BICNs [25] offered a way to explore the voltage dynamics of the

thalamocortical convergence in vitro. We simulated the heteroge-

neous correlation schema of the synaptic bombardment in three

types of BICNs. In all of BICN types, the model TC cells were

replaced by activity patterns of biologically recorded relay TC cells.

Building a BICN involved a two-steps procedure. First, biological

TC neurons were sequentially recorded under various conditions

described below. Second, the recorded membrane potential traces

were integrated off-line in the model circuit. In the resulting hybrid

circuit, each pseudo-TC cell replayed a corresponding recorded

voltage trace to simulate the synaptic convergence of the hybrid

thalamic layer onto the model cortical cell. Biological TC cells input

was composed of artificial retinal inputs and synaptic bombardment

injected through dynamic-clamp.

Biological TC cells were recorded 10 times with the same

realization of a synaptic bombardment and 10 times with

independent realizations of a synaptic bombardment, accounting

for a total of 20 recorded voltage traces. The same retinal

stimulation was fed during each of the 20 recorded sequences,

and the mean and standard deviation of the synaptic noise

conductances were kept identical across the recordings. The

individual fluctuation patterns of the synaptic noise differed from

one recording to another for the 10 independent synaptic

bombardment sequences and the same set of 11 distinct synaptic

bombardment patterns (1 common pattern and 10 independent

patterns) were used in every biological cells. Each set of 20 recorded

sequences in the same biological cell was termed a ‘‘sequence set’’,

and was thus composed of 10 correlated pseudo-cell activities

(common synaptic noise) and 10 decorrelated pseudo-cell activities

(independent synaptic noise). In some cases, we could repeat this

procedure 2 or 3 times in a single biological TC cell. From these

recordings we built a ‘‘small single-cell’’ BICN type, a ‘‘large mixed-

cell’’ BICN type and a ‘‘large single-cell’’ BICN type.

The small single-cell BICN type was based on a thalamic

population of 10 pseudo-neurons with thalamocortical AMPA

synaptic weight optimized for this size (the optimal value was

found for model circuits and is shown in Fig. 2A and 2B by the

light-gray curves). We built one BICN of this type per sequence set

obtained as described above, accounting for a total of 15 BICNs

(cell 1 to 8 in Fig. 5B). For each small single-cell BICN, we

constructed off-line 10 hybrid thalamic layers mixing sequences

recorded under the same synaptic noise and sequences recorded

under independent realizations of a synaptic noise in the

proportions 1–9, 2–8, …, 9–1 and 10-0, respectively. These

hybrid thalamic layers were thus characterized by a different

correlation strength coefficient as defined for the heterogeneous

correlation schema and ranged from Cnoise = 0 to Cnoise = 1

(incremental step is 1.11). Note that the first thalamic layer mixing

sequences in the proportion 1–9 has an effective correlation

coefficient of 0 because the 9 independent realizations of a

synaptic noise were also independent from the common synaptic

noise that was used multiple times per cell.

The large mixed-cell BICN type had a thalamic population size

ranging from 0 to 130 pseudo-neurons. The thalamocortical

AMPA synaptic weight was always set to its biological value,

optimized for a biologically realistic population of 90 TC cells. To

build a large mixed-cell BICN of size N in the correlated condition

(Cnoise~1), we combined in a hybrid thalamic layer N sequences

chosen randomly among all of the sequence sets recorded in

patch-clamp (cell 2 to 8 in Fig. 5B) under the same realization of a

synaptic bombardment, accounting for a total 13 sequence sets

and 130 correlated pseudo-cell activities. In this correlated

condition, all pseudo-TC cells shared the same realization of a

synaptic bombardment. Similarly, we built large mixed-cell BICNs

of size N in the ‘‘partially decorrelated’’ condition (see below) by

randomly combining N sequences recorded under one of the ten

independent realizations of a synaptic bombardment (i.e. the

remaining 130 decorrelated pseudo-cell activities). In the latter

BICNs, there were only 10 distinct synaptic noise sequences
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repeated a maximum number of 13 times, hence resulting in a

partial decorrelation of the synaptic noise across the TC cells. It

was not possible to calculate the Cnoise parameter in the partially

decorrelated condition because the resulting correlation schema

differed from both the homogeneous and the heterogeneous

schemas previously described in this study.

Finally, the large single-cell BICN type was a mixture of the two

previous types of BICN. Large single-cell BICNs were similar to

the large mixed-cell BICNs in respect to their population size

range, their thalamocortical AMPA synaptic weight and the pool

of sequences included in their construction (cell 2 to 8 in Fig. 5B;

patch-clamp sequences). Similarly to the single-cell BICN type, we

built one large single-cell BICN per sequence set recorded in the

same biological TC cell. First, for each BICN of this type, the

associated sequence set was duplicated 13 times resulting in a new

‘‘duplicated sequence set’’ composed of 130 correlated pseudo-cell

activities (common synaptic noise) and 130 decorrelated pseudo-

cell activities (independent synaptic noise; note there were only 10

distinct synaptic noise sequences repeated a maximum number of

13 times as for the large mixed-cell BICN type). Large single-cell

BICNs of size N in either correlated or partially decorrelated

condition were then built as described above for the large mixed-

cell BICN type by randomly combining N either correlated or

decorrelated sequences from the associated duplicated sequence

set. Finally, we averaged for each hybrid thalamic layer of size N

and each correlation condition the transfer efficiency measured in

every large single-cell BICNs as to reflect the average information

transfer in the large single-cell BICNs.

Information transfer efficiency analysis
We calculated the efficiency of the global retinocortical sensory

signal transfer and partial retinothalamic and thalamocortical signal

transfers by means of mutual information theoretical analysis

MI S; Rð Þ~
X

s

P sð Þ
X

r

P r=sð Þlog2

P r=sð Þ
P rð Þ ð19Þ

where S denotes the stimulation, R the response, P sð Þ the probability

of presentation of the stimulus window s, P rð Þ the probability of

presentation of the response window r and P r=sð Þ the probability to

obtain the response window r in response to the stimulus window s.

For retinocortical signal transfer analysis, S is the spiking activity of a

retinal cell and R is the spike train response of the target cortical cell.

Partial retinothalamic and thalamocortical signal transfer analysis

involved the spiking activity of a chosen thalamic TC cell as the

response signal R or the stimulation signal S, respectively. Stimulations

and responses spike trains consisted in sequences of ‘‘0’’ and ‘‘1’’ with

fixed time bin size where ‘‘0’’ denotes the absence of a spike in a given

time bin and, conversely, ‘‘1’’ denotes the presence of a spike. Rarely,

when more than one spike happened in a single time bin, a ‘‘1’’ was

counted. Recorded and simulated membrane potential traces where

converted to spike trains using a spike threshold of 230 mV.

To consider as extensively as possible the spatio-temporal

richness of the spike trains, we looked for correlations up to 30 ms

using the smallest time bin allowed by the finite size of the data.

We therefore segmented S and R in windows of 30 ms. In vitro

recording time was at least 40 seconds and in computo simulation

time was 100 seconds. We used a 3 ms time bin for BICN transfer

analysis and a 1 ms time bin for model circuit transfer analysis as a

trade-off between the biological spike timing precision and the

finite size of our data.

We emphasize that even if the maximum number of distinct

window patterns could theoretically reach up 210 for BICNs and

230 for model circuits, not all configurations can occur due to the

limitations imposed by the intrinsic properties of the neurons such

as the after-hyperpolarization following a spike. We checked that

the number of unique window patterns was small enough

compared to the recording and simulation times in order to avoid

the well-known ‘‘undersampling catastrophe’’. We did this with

the help of extensive computer simulations on biological and

synthetic data by gradually increasing the time bin and decreasing

the window size until the finite data set corrections as described in

[111] became negligible (less than 1% of the final values). Varying

the time bin and window sizes did not change the structure of the

mutual information as a function of the explored circuit

parameters. In the worst case it only slightly affected the overall

scale of the curves. Note that correlations on a timescale higher

than 30 ms cannot be excluded. However, our numerical

simulations did show that around 90% of the stimulation-induced

correlations in the response are included in a 30 ms window.

We then checked for residual information bias by a bootstrap

procedure. We randomly paired stimulation and response window

patterns and computed the mutual information from these random

pairings. The information obtained in this case should be zero and

is an indication of residual error so we removed this bootstrap

estimate from our mutual information calculations.

Although the synaptic transmission is instantaneous in our

circuit model, a time lag between S and R was set to account for

the propagation time due to the integration constant of the cells.

When the model relay cells were used, the lags were best estimated

to 6, 4 and 2 ms for the retinocortical, retinothalamic and

thalamocortical transfers, respectively. In vitro time lag was re-

estimated for each BICN.

We also tested other methods to estimate the transfer efficiency

including classical spike transfer probability and linear cross-

correlation analysis (Fig. S1). In any case the mutual information

analysis gave the most coherent results according to the paradigms

explored in this study (see legend of Fig. S1 for more details)..

Spike train correlation analysis
For each pair of TC cells, we calculated the Pearson’s linear

correlation coefficient between thalamic spike trains. The conver-

sion of thalamic voltage responses to spike trains was done as

described in the ‘‘Information Transfer Efficiency analysis’’ section

using a bin size of 1 ms. Pairwise spike correlation coefficients are

described by

rx,y~
cov X ,Yð Þ
s Xð Þs Yð Þ ð20Þ

where X and Y are the two spike trains, s Xð Þ and s Yð Þ are the

standard deviations of X and Y, respectively, and cov X ,Yð Þ is the

covariance of X and Y. Pairwise spike correlation coefficients

average, Srx,yT, was calculated for each unique pair of TC

neurons..

Spike-triggered average analysis
For each cortical spike, a 30 ms region preceding the spike was

considered. The region was cut in bins of 1 ms each. Each bin

consisted in the average number of thalamic spikes ns ms before

the cortical spike, where ns is the index of the bin on the x-axis of

the STA shown in Figure 3.

Supporting Information

Figure S1 Methods for evaluating the sensory transfer
efficiency. A. Same as Figure 3A; for ease of comparison. B. The

mutual information calculations were limited to the only
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knowledge of the spike count in a 30 ms window. This was done to

reduce the number of symbols used in mutual information

calculations and avoid any undersampling issues. The resulting

transfer efficiency was underestimated but remained similar in

shape to A. C. Synaptic information efficiency developed by

London et al. (2002) [24] resulted in entropy values almost

identical to A. D. Evaluation of the transfer efficacy, defined as the

probability that a retinal spike will evoke a cortical spike in a

30 ms window following the spike. This method is similar to the

classical spike transfer probability used in Wolfart et al. (2005)

[19]. This analysis would alone misleadingly suggest that high

efficiency is reached when the cortical firing probability is high (see

the saturated regime in Figure 3C). E. Evaluation of the transfer

contribution, from 0 to 1, defined as the ratio of the number of

transmitted retinal spikes to the total number of cortical spikes.

Low contribution values indicate that the cortical spikes are

unlikely to be linked to the retinal spikes while high contribution

values indicate that the cortical spikes are more likely to be evoked

by the retinal spikes. White areas indicate there were not enough

cortical spikes to calculate the transfer contribution. The middle

area bounded by the saturation zones (efficacy and contribu-

tion<1) in D and E is similar to the optimal red band in A. F.

Classical cross-correlation analysis between the retinal and cortical

spike trains with a bin size of 1 ms. The correlations were

calculated using MATLAB (MathWorks) xcorr function and

normalized so that the autocorrelations at zero lag are identically

1. White areas indicate that the function could not calculate the

correlations and returned ‘‘NaN’’ values.

(TIF)

Figure S2 Transfer functions of cortical and TC model
neurons. A. Probability that the cortical model neuron evokes a

spike in a 30 ms window following an AMPA conductance event

of varying amplitude. B. Same as A for a model TC cell. The

probability was measured either with optimal synaptic bombard-

ment (see low conductance state regime in Figure 3) or without

contextual synaptic bombardment.

(TIF)

Figure S3 Depolarization of the TC model neurons
improves the sensory signal transfer in absence of
synaptic bombardment. A. Model circuit membrane voltage

traces obtained in absence of synaptic bombardment (denoted by

the arrow ‘‘0’’ in Figure 3A). B. Numerical explorations of the

cortical input conductance amplitudes for two depolarizing

constant currents. Model circuit, conductance variation ratio

and analysis are identical to the ones presented in Figure 3A.

(TIF)

Figure S4 Feedforward inhibition to the cortical cell
helps sensory signal transfer in the saturated regime. A.

Transfer efficiency as a function of the feedforward inhibition

GABAA synaptic weight and time lag (see Methods) for both

optimal regimes shown in Figure 3A. B. Similar to A for the

saturated regime.

(TIF)

Figure S5 Synaptic bombardment excitation and inhi-
bition interplay in TC model cells. Numerical explorations

of the temporal correlations between the excitatory and the

inhibitory components of the corticothalamic input at the single

cell level. Transfer efficiency is plotted as a function of the

excitatory–inhibitory conductance correlation strength and the

inhibitory conductance time lag (see Methods).

(TIF)

Figure S6 Speculative role of synaptic bombardment
decorrelation and thalamic oscillation coherence in
focused attention. A. Visual stimulation composed of bars of

various orientation. Focusing attention on a single bar (for instance

vertical) will slowly segregate all other bars of same orientation

from the context made of other bars of dissimilar orientation.

Vertical bars are colored in brown for illustration purposes only. B.

Presumed functional steps involved when focusing attention on a

vertical bar. Vertical bars shown on each neuron illustrate the

orientation preference. Columnar organization of V1 circuits is

not illustrated although each neuron shown in this schema belong

to a different orientation column. An initial decorrelation of

activity in cortical area V1 is generated at the retinotopic location

of the focused bar. This decorrelated activity is propagated to

other regions whose orientation preference match the orientation

of the focused bar. A decorrelated corticothalamic feedback is then

sent to dLGN target neurons which are specifically tuned to detect

features matching a bar of similar orientation. Other thalamic

regions that receive no decorrelated feedback would develop

synchronized oscillations. More detailed explanations of this

hypothesis are provided in Text S1. C. Proposed selective

attention mechanisms for sensory signal filtering. Foci of

decorrelated corticothalamic activity amplify the visual streams

whose features match the bars of vertical orientation while

synchronized oscillations in the thalamus reduce the sensory

transfer of visual features related to the bars of other orientation.

(TIF)

Text S1 Focused attention: A synaptic bombardment
decorrelation hypothesis. Supporting evidences for the

implication of synaptic bombardment decorrelation in focused

attention. We propose a phenomenological model based on the

segregation effect described in Figure S6. Based upon the findings

of the present study, we make the prediction of the existence of

dynamic functional maps of correlation and decorrelation in V1

and the thalamus. These non-classical maps provide a putative

mechanism for the implementation of selective sensory attention in

the thalamocortical system.

(DOC)
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