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Quantitative prediction of grain boundary thermal
conductivities from local atomic environments
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Quantifying the dependence of thermal conductivity on grain boundary (GB) structure is

critical for controlling nanoscale thermal transport in many technologically important mate-

rials. A major obstacle to determining such a relationship is the lack of a robust and physically

intuitive structure descriptor capable of distinguishing between disparate GB structures. We

demonstrate that a microscopic structure metric, the local distortion factor, correlates well

with atomically decomposed thermal conductivities obtained from perturbed molecular

dynamics for a wide variety of MgO GBs. Based on this correlation, a model for accurately

predicting thermal conductivity of GBs is constructed using machine learning techniques. The

model reveals that small distortions to local atomic environments are sufficient to reduce

overall thermal conductivity dramatically. The method developed should enable more precise

design of next-generation thermal materials as it allows GB structures exhibiting the desired

thermal transport behaviour to be identified with small computational overhead.
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Thermal conductivity is a fundamental property of a
material and crucial for many technological applications,
e.g., thermoelectrics1–3, thermal barrier coatings4,5, high-

power devices6,7 and microelectronics8,9. Recent studies have
shown that nanocrystalline materials, which have large grain
boundary (GB) populations, exhibit extremely low lattice ther-
mal conductivities1,5,10,11, even when the bulk form is thermally
conductive, e.g., elemental silicon12,13. This dramatic reduction
in lattice thermal conductivity is commonly attributed to
shortening of the phonon mean free path (MFP), with the
assumption that it is of the same order as the average grain
size5,12,14,15. Although this first-order approximation has
informed most attempts to control thermal conductivity, e.g., by
tailoring grain size distributions16, it does not take into account
the impact of individual GBs and their different atomistic
structures, and recent experimental studies have indicated that
the amount of thermal conductivity reduction varies con-
siderably depending on the structure of a particular GB17–19. For
example, Tai et al18. measured the thermal resistances of three
twist Al2O3 GBs and found that they vary by a factor of three.
Quantitatively determining the relationship between GB struc-
ture and thermal conductivity is thus desirable for designing
thermally functional materials at the nano-scale.

Many computational studies have been performed over the
past two decades using non-equilibrium molecular dynamics
(MD) to examine thermal conductivities of individual GBs20–24.
Although the results revealed that thermal conductivity varies
with misorientation angle and GB energy, the underlying physical
mechanism responsible for this has not been elucidated in terms
of the GB structures themselves. To help remedy this, we recently
calculated thermal conductivities of 81 MgO symmetric tilt GBs
(STGBs), and found that GB excess volume, which stems from
reduced atomic coordination and non-optimal bond lengths at
the GB core (the characteristic structure pattern centred on the
GB plane), is strongly correlated with thermal conductivity25. We
identified three different correlations depending on the type of
GB, with low thermal conductivities occurring in the vicinity of
the most open structures. The results provided further evidence
that thermal conductivity can vary significantly depending on the
type of GB and its atomic structure.

An analysis based on excess volume alone, however, is insuf-
ficient for explaining structure-property relationships over high-
dimensional space, e.g., general GBs in polycrystals, because a
given excess volume is not necessarily unique to a particular GB
structure. This is because excess volume is a measure of the non-
optimum packing of atoms at a GB but contains no other
information about how the GB structure differs from that in the
crystal bulk or to other GBs; consequently two GBs can have the
same excess volume but exhibit very different thermal con-
ductivity behaviour because of differences in atom configurations
and bonding26–30. General GBs consist of complex mixtures of
simpler high-symmetry (planar) GBs, and are even harder to
analyse because of the enormous number of degrees of freedom
involved. This problem is exacerbated when the effect of intrinsic
defects or impurity atoms is included. A brute force method, e.g.,
MD simulation, can enable a specific thermal conductivity to be
assigned to a specific GB core structure so that the dependence of
thermal conductivity on GB misorientation and composition can
be examined systematically, but even using computationally
inexpensive empirical potential models it would take an inordi-
nately long time to generate sufficient data for a wide variety of
GB forms. Thus a more efficient and computationally tractable
method is needed if meaningful progress is to be made.

A promising method for handling large numbers of different
atomic configurations is the use of structure descriptors devel-
oped in the burgeoning field of materials informatics31–35. These

descriptors contain information sufficient to define uniquely a
particular atom arrangement, and act as fingerprints distin-
guishing different atomistic structures. Recent studies have used
such descriptors in the context of machine learning (ML) to
enhance our understanding of GB structure-property relation-
ships36–38. A prime example is the study of Rosenbrock et al.38;
using the smooth overlap of atomic positions (SOAP)
descriptor39,40 and a supervised ML technique, they identified a
set of building blocks (or representative local atomic environ-
ments, LAEs) from which GBs of metallic Ni are constructed, and
determined which LAEs strongly influence GB energies and
mobilities. In related work41 they reviewed various models used
to analyse GB structures (in particular comparing the utility of
the local environment representation to that of the structural unit
model in the analysis of 126 Ni STGBs), and showed that the
former is in many respects superior to the others, most notably
because it provides a smoothly varying function.

In this report we describe our search for a suitable SOAP-based
microscopic metric that correlates with GB thermal conductivity
and can be used to identify relationships between GB structure
and thermal conductivity. To ensure the rigour of the relationship
identified, a wide range of GBs are included in the analysis, viz.,
symmetric tilt, twist, twin and asymmetric tilt GBs stable at
standard pressure, and symmetric tilt GBs stable at higher pres-
sure. MgO is chosen as a model material because of its simple
structure and long history of experimental and theoretical work.
The most appropriate microscopic quantity that we identify,
which we refer to as the local distortion factor, LDF, measures
deviations in the local structural environment of an atom near a
GB from that of an identical atom in the crystal bulk, and cor-
relates well with atomically decomposed thermal conductivities
perpendicular to the GB extracted from perturbed MD simula-
tions. We then construct a prediction model using multiple linear
regression with input variables based on hierarchical clustering of
LAEs, and demonstrate that the thermal conductivity of a GB can
be predicted with high accuracy using this model. Analysing the
results in terms of LDFs reveals that even a small amount of
structural distortion at the GB is sufficient to suppress thermal
conductivity strongly. We expect that extension of this ML-based
technique to other materials should greatly enhance our under-
standing of GB behaviour, thereby enabling materials to be tai-
lored to exhibit the desired thermal properties, especially once
suitable nano-scale engineering techniques have been developed.

Results
Effective thermal conductivities. In addition to low-angle and
high-angle STGBs reported previously25, in this study we calcu-
lated effective thermal conductivities across GB planes of
standard-pressure twist, asymmetric tilt and high-pressure tilt
GBs of MgO to obtain a more comprehensive understanding of
the relationship between GB structure and thermal conductivity.
Detailed lists of all GB models used in this study are provided in
Supplementary Tables 1–9, with some relevant properties sum-
marised in Supplementary Figs. 1–3, and explanatory notes
included as Supplementary Notes 1 and 2. The combined results
are plotted in Fig. 1a against excess volume per unit area of each
GB, with representative GB structures shown in Fig. 1b–h. For the
STGBs under standard pressure, the thermal conductivities
exhibit three different correlations with excess volume depending
on the GB type: low-angle GBs with (I) dense and (I′) open
dislocation core structures, and (II) high-angle GBs. In Fig. 1a,
thermal conductivities of high-angle high-pressure STGBs also
fall on correlation line II (solid black line), whereas their excess
volumes are smaller than those of standard-pressure STGBs
with the same misorientation because of their denser GB core

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-15619-9

2 NATURE COMMUNICATIONS |         (2020) 11:1854 | https://doi.org/10.1038/s41467-020-15619-9 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


structures. In contrast, thermal conductivities of low-angle high-
pressure STGBs deviate from these trends, lying between lines I
and I′ because of the intermediate densities of their dislocation
structures. Thermal conductivities of asymmetric Σ5 [001] tilt
GBs lie only slightly above the correlation II line, probably
because their GB core structures are similar to those of high-angle
GBs; the asymmetric boundaries in this study are mainly com-
posed of (310) and (210) facets similar to those in the corre-
sponding symmetric boundaries, although different kinds of
atomic structures are formed at the facet junctions.

The three twist GBs examined also show similar behaviour to
the dense low-angle STGBs; the thermal conductivity is high for
low excess volumes, and initially decreases rapidly with increasing
excess volume, but the rate of decrease diminishes once the
dislocations begin to overlap. The most pertinent difference
between twist and tilt GBs in this case, however, is that the excess
volumes of twist GBs are much smaller than those of STGBs
because of their denser structures. GBs with very high symmetry
and thus high number density, viz., the Σ3(111) twin boundary
and GBs with LAEs similar to it (labelled twin-like in Fig. 1a),
appear to fall on a fourth correlation line, one flatter than
correlations I or I′ (see Supplementary Fig. 1 for their structures).
The results indicate that the thermal conductivities of high-
pressure tilt, asymmetric tilt and twist GBs are governed by the
same mechanism as for STGBs, and that the macroscopic metric,
i.e., GB excess volume, is inadequate as a parameter for accurately
predicting thermal conductivities of various types of GB
structures. As explained below, we overcome this problem by
quantifying LAEs in the vicinity of GBs using the SOAP
descriptor to generate input data for ML techniques. A schematic
of the method is shown in Fig. 1i.

Quantifying local distortions. The mechanism by which ther-
mal conductivity is reduced at GBs is expected to be related to
local structural distortions because long-range thermal transport
occurs by phonons, which are the collective motion of atoms in
a periodic lattice, and any disturbance to this motion results in
enhanced phonon scattering, as evidenced by numerous
experimental and theoretical studies1,3,5,10–25. To quantify these

structural distortions, we defined a (non-normalised) dissim-
ilarity metric that measures the difference in LAE between an
atom at a GB and an atom in the crystal bulk, which we refer to
as the local distortion factor, LDF using the SOAP descriptor
(see Methods for details). We calculated LDFs of all atoms in GB
structure models for a wide variety of different GB types, viz., 80
standard-pressure STGBs (about six different rotation axes), a
twin25, four high-pressure [001] STGBs, three (001) twist GBs
and four asymmetric [001] tilt GBs. Figure 2a shows a plot of the
LDFs in each model classified by GB rotation axis in order of
increasing tilt or twist angle. The LDFs span a wide range, from
0 to 3000, with atoms at open GBs tending to have high values
and those at relatively dense GBs to have low values.

To quantify how LDFs vary with bond elongation, we also
calculated those of atoms in uniformly expanded, defect-free
MgO single crystals, and the results are plotted in Fig. 2b. This
plot shows that when an MgO crystal is expanded isotropically,
LDFs (those of cations and anions are equivalent in this case
because of its rock-salt structure) increase smoothly and reach a
value equivalent to the maximum LDF in the GB models for a
lattice constant elongation of ~9.5% and volume expansion of
~31.2%. Unlike the atoms in the perfect crystal, atoms at GBs
are not subjected to as large increases in local volume or bond
lengths, but instead experience non-uniform (anisotropic) strain
to their bonds and/or changes in coordination environment.
Although LDFs by themselves do not indicate whether strain or
coordination environment has the stronger effect, separate
analysis showed that both of them are important, with
contributions of similar magnitude in many cases. For example,
the average and standard deviation of LDFs of atoms with first-
nearest neighbour coordination deficiencies of 0, 1 and 2 are
456.6 ± 392.4, 1270.0 ± 608.4 and 1483.5 ± 580.0, respectively.
The LDF values increase with increasing under-coordination but
also have high standard deviations because of large variations in
bond strain about atoms with different LAEs.

Clustering analysis of LAEs. To classify the structural environ-
ments of atoms at the cores of different GBs into groups suitable
for constructing our ML model, we first used the complete-linkage
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method to identify LAEs in each GB model based on the dissim-
ilarity metric d between each pair of atoms, before applying Ward’s
hierarchical clustering method42 to the complete set of LAEs
generated (see Methods for details). Figure 3 shows a dendrogram
of the different classes of LAEs identified, together with repre-
sentative STGBs to illustrate how they are distributed around GBs.
The dendrogram in Fig. 3a shows three supergroups of LAEs
(indicated by different colour shading in the figure) that are

classified into six groups whose members consist of unstrained
(bulk-like) atoms, weakly strained atoms, moderately strained
atoms, strongly strained atoms, moderately under-coordinated
atoms and highly under-coordinated (bond-ruptured) atoms. The
averages and standard deviations of LDFs in these six groups are
70.0 ± 66.1, 138.7 ± 42.9, 316.8 ± 84.8, 609.8 ± 140.7, 1032.3 ± 165.6
and 1786.1 ± 323.8, respectively, reflecting the increasing amount
of structural distortion (LDF distributions in each LAE group are
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reported in Supplementary Fig. 3). For reference, from Fig. 2b the
LDFs of weakly strained, moderately strained and strongly strained
groups correspond to average bond elongations of roughly 0.4, 0.8
and 1.6%, respectively. The average amounts of first-nearest
neighbour under-coordination in these groups are 0.00, 0.01, 0.03,
0.22, 0.37 and 0.94, respectively, suggesting that the effect of
strongly strained atoms is of similar magnitude to that of slightly
under-coordinated atoms.

Figure 3b shows GB structures coloured according to LAE group
and LDF values for two low-angle STGBs with dense structures, a
low-angle STGB with open structure, a high-pressure high-angle
STGB and two standard-pressure high-angle GBs. These indicate
that highly under-coordinated atoms occur at open GB core
structures, whereas dense GB core structures consist of atoms in
strongly strained environments, either at dense low-angle GBs or
adjacent to under-coordinated atoms in high-angle STGBs. In dense
low-angle GBs such as Σ183ð13 14 1Þ=½111� and Σ113(15 1 0)/
[001], atoms between the dislocation cores have LAEs similar to
bulk atoms. These results illustrate how hierarchical clustering of
LAEs and LDFs captures information regarding the arrangement of
atoms and degree of distortion at GBs in a physically interpretable
manner.

LDF values quantify the local distortion relative to the ideal
crystal bulk, but do not directly measure differences in LAEs
between GBs. To better assess the range of LAEs present in different
types of GBs, we thus also calculated d values between all atoms in
one GB model with those in another. This revealed that similar
LAEs frequently occur in other GBs, with greater differences
occurring for high-pressure and high-angle STGBs than for others.
Specifically, the minimum d value of any atom in the high-pressure
STGBs, asymmetric tilt GBs and twist GBs were no greater than
211, 140 and 87, respectively (compared to maximum LDFs close to
3000); these values correspond to about 0.5%, 0.4% and 0.2% bond
elongation, respectively, when considered in terms of a uniformly
expanded MgO crystal (Fig. 2b). For example, the d value for the
two atoms indicated by blue circles in the high-pressure Σ17(410)/
[001] GB and standard-pressure Σ5ð0�21Þ=½112� GB in Fig. 3b is
only 58.2. In other words, the range of LAEs provided by a
sufficiently large and diverse sample of GB structures (92 in our
case) is expected to encompass those encountered in GBs with other
misorientations, higher complexity or lower symmetry. This result
is consistent with Priedman et al.’s observation that different GBs
consist of similar structural building blocks or motifs41. Conse-
quently, similar to Rosenbrock et al.’s38 findings for GB energies
and mobilities, the properties and behaviour of individual GBs of
MgO can be expected to depend on the relative numbers of each
type of LAE of which they are composed. Identifying correlations
between the numbers and distributions of LAEs in a GB and its
thermal conductivity, preferably in a physically meaningful way,
should thus allow thermal conductivities of MgO GBs of arbitrary
structure to be predicted quickly, accurately and reliably. In the
following sections we demonstrate how hierarchical clustering can
fulfil this purpose in the context of thermal transport and phonon
dispersion, with interpretation facilitated by analysing LDFs.

Thermal conduction at tilt grain boundaries. To determine the
dependence of microscopic thermal conduction on structural
distortion in the vicinity of GB planes, we calculated atomic
thermal conductivities perpendicular to GB planes at 300 K using
perturbed MD simulations, and LDFs from the relaxed GB
structures for each GB model.

Figure 4 compares plots of LDFs and atomic thermal
conductivities of standard- and high-pressure Σ25(710)/[001]
and Σ5(310)/[001] STGBs, together with the LAE classifications
identified by hierarchical clustering. These plots reveal that,

overall, there is strong negative correlation between LDF and
atomic thermal conductivity in these two cases. One exception to
this is the standard-pressure Σ5(310)/[001] STGB, in which LDFs
of the innermost atoms (Fig. 4b) are high and their atomic
thermal conductivities (Fig. 4d) are the highest of all atoms in the
GB structure. This inversion of the correlation is because the
SOAP vector, and hence LDF, are non-directional, whereas there
is a large anisotropy in the bond distances and hence components
of atomic thermal conductivity of the Σ5(310)/[001] GB, with
single pairs of atoms across the GB plane acting like thermal
conduction bottlenecks. Distances between atoms perpendicular
to the GB plane are similar to those in the bulk, but much longer
parallel to it in the ½1�30� direction, resulting in a large LDF factor
(maps of the components of atomic thermal conductivity
perpendicular and parallel to the GB plane are compared in
Supplementary Fig. 4 and Supplementary Note 3). Such bottle-
necks generally only occur in high-angle STGBs, but in low
densities dispersed between low-conductivity voids, so their effect
on the overall thermal conductivity is small.

The greatest decrease in atomic thermal conduction occurs at
the centres of dislocation cores, whereas thermal conduction is
rapid via atoms in less disturbed (low LDF) regions even if on the
GB plane (corresponding to light-coloured atoms in Fig. 4a, b).
The core structures of the high-pressure GBs are denser than
those of the standard-pressure GBs, making them more like low-
angle GBs in which dislocations are arrayed in a regular pattern.
This results in the wider regions of unruptured bonds on the GB
planes seen in the right-hand images of Fig. 4a, c. This explains
why the effective thermal conductivity of the low-angle high-
pressure GB is higher than those of the standard-pressure GBs,
falling between lines I and I′ in Fig. 1a because of the intermediate
atomic densities of its dislocations. Overall, the close correspon-
dence between LDF and atomic thermal conductivity suggests
that this metric makes a good descriptor for developing a model
for predicting thermal conductivities in a wide variety of GB types
of MgO.
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Thermal conduction at twist grain boundaries. In Fig. 5, we
compare LDFs and atomic thermal conductivities of three (001)
twist GBs, viz. Σ41, Σ25 and Σ37, in order of increasing twist
angle. In this case thermal conductivities are projected onto the
GB planes, as opposed to parallel to the GB planes in the case of
tilt GBs (Fig. 4). In the twist GBs, the LDFs are smaller than those
of STGBs (as seen in Fig. 2a), but the structurally distorted sites
are widely distributed about the GB plane, which is very different
to the case of tilt GBs. In the case of the Σ41 twist GB, the
dislocation lines, identified using the method of Stukowski
et al.43, are relatively far apart, and the LDF values are relatively
low in the regions between them. These regions serve as thermal
conduction highways, evidenced by the close match between
regions of low LDF and high atomic thermal conductivity
(Fig. 5a, b). In the case of the Σ37 GB, with its relatively high twist
angle, all atoms on the GB plane are in distorted environments
and the LDFs are uniformly high. The structural distortion thus
correlates with low thermal conductivities across the GB plane in
contrast to the rapid thermal conduction paths identified in the
case of the Σ41 GB.

In contrast to the strong correlation between LDF and atomic
thermal conductivity in the case of Σ41 and Σ37 twist GBs, the
correlation in the case of the Σ25 twist GB is somewhat weaker.
Even though its LDFs are lower than those of the Σ37 GB,
especially in the inter-dislocation regions, their atomic thermal
conductivities (and hence the effective thermal conductivity of the
GB) are similar to those of the Σ37 GB. This difference indicates
that the relationship between LDF and atomic thermal conductiv-
ity is non-linear; relatively small structural distortions to the lattice
are sufficient to dampen the local thermal conduction strongly and
thus very high LDFs may not be necessary to suppress thermal
transport dramatically. This interpretation is consistent with the
slow decrease in effective thermal conductivity exhibited by
correlation II in Fig. 1a. Figure 5 also suggests that LDFs may be
useful for identifying sites which induce strong phonon scattering
and thus lower the effective thermal conductivity in the case of

twist GBs as well as for tilt GBs. Further discussion on the utility
and limitations of the LDF is provided in Supplementary Note 4.

Prediction models for thermal conductivity. Motivated by the
good correlation between LDF and atomic thermal conductivity
described in the previous sections, we constructed a mathematical
model for predicting thermal conductivities of GBs using multiple
linear regression with l2-norm (or ridge) regularisation. For this,
we classified the LAEs into several groups according to the
magnitude of their average LDF values by slicing the hierarchical
clustering relationships in Fig. 3a in the manner described in
Supplementary Fig. 5. We found that classifying the LAEs into six
groups, viz., (1) bulk-like, (2) weakly strained, (3) moderately
strained, (4) strongly strained, (5) moderately under-coordinated
and (6) highly under-coordinated (as shown in Fig. 3a), is suffi-
cient for accurate prediction of GB thermal conductivities. A
summary of predictive performance using alternative numbers of
LAE groups is also provided as Supplementary Fig. 5 and Sup-
plementary Note 5.

Numbers of LAEs per unit area of a GB, Nm, for each LAE
group (m= 1–6) were used as predictor variables, and fitting
carried out using multiple linear regression (see the Methods
section for details). As examples, Fig. 6a, b show the structures of
Σ5(310)/[001] and Σ327ð17 19 2Þ=½111� STGBs, the Gaussian
weighting function, G(x), and plots of their Nm values for each
LAE group. These show that there are only highly distorted LAEs
in the vicinity of the high-angle Σ5(310)/[001] GB whereas there
are both bulk-like and moderately distorted LAEs in the vicinity
of the low-angle Σ327ð17 19 2Þ=½111� GB.

The predictor model was trained using data from 70 randomly
chosen symmetric GBs, and then validated using data from the
remaining 22 GBs, including all four asymmetric tilt GBs.
Figure 6c shows a parity plot of overall thermal conductivities
calculated using perturbed MD against values predicted by the
model. The root mean squared error (RMSE) and R2 value are
1.28Wm−1K−1 and 0.93, respectively, for the training data, and
1.30Wm−1K−1 and 0.92, respectively, for the test data. These
results demonstrate that GB thermal conductivity can be
predicted with high precision from their local atomic structures
alone, regardless of whether the GB is under standard or high
pressure, a tilt, twist or twin GB. The prediction model also
reliably estimated thermal conductivities of the asymmetric tilt
GBs, confirming its good transferability as well as the efficacy of
including a wide range of GB types in the training dataset. In
addition, as seen in Fig. 6d, the regression coefficient is very high
in the case of LAE group 1, where LDFs are very small (70.0 on
average), i.e., the local environments are very similar to those in
the crystal bulk, and very low for the other LAE groups
decreasing gradually as LDF increases. These results again suggest
that introducing GBs with relatively small structural distortions
(e.g., low-angle GBs with dense GB cores) is an effective strategy
for reducing thermal conductivity dramatically.

Discussion
Similar to point defects such as vacancies, impurity atoms and
interstitial atoms44, GBs are known to limit phonon MFPs by
causing diffuse scattering, and this is consistent with the results of
our perturbed MD simulations. GBs can be thought of as
extended planar defects or clusters of point defects, typically a few
nanometres wide, so that deviations from the ideal lattice in the
vicinity of GBs, as reflected in their LAEs and LDFs, are typically
much larger than for isolated defects, making them able to scatter
long-wavelength phonons much more effectively, resulting in
much shorter MFPs in a polycrystal than in single crystal (in
which MFPs are on the order of hundreds of nanometres or
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several micrometres in the case of single crystal MgO45). Con-
structing an ML model with data from MD simulations of GBs
shows that these effects can be predicted accurately from analysis
of LAEs calculated with only a short cutoff (~4.5 Å).

The correlation between GB structure and thermal con-
ductivity identified in this study should enable polycrystalline
materials to be designed with more precisely controlled thermal
conductivities, e.g., by identifying GBs with the desired micro-
scopic behaviour for a given application and facilitating their
formation in the material with appropriate synthesis methods and
conditions. Although it is still very difficult to engineer GB
structures directly at the atomic level, it is possible to increase the
probability of their formation by tailoring grain orientation
through thermal treatment, mechanical processing, use of sub-
strates, and so on, as grains coming into contact within a nar-
rower range of orientations are more likely to exhibit a particular
GB structure with the desired LAEs. It should also be possible to
examine the effect of dopants on GB thermal conductivities using
this model, assuming suitable potential parameters are available
for performing MD simulations, although the number of simu-
lations required may increase substantially as a result of the
increased degrees of freedom (dopant concentration, segregation
sites and so on). Nevertheless, extending the ML method devel-
oped in this study to more complex crystal structures and com-
pounds should enable a more comprehensive understanding of
GB structure-property relationships to be obtained, so that the

next-generation of thermal materials can be designed more effi-
ciently and effectively.

The method presented here, in which the relationship between
thermal conductivity and local atomic distortions is identified
through ML with a multidimensional dataset, can be readily
applied to other structure-property relationships because of the
universality of the SOAP descriptor, whether the cause of the
distortion is point defects (isolated or clustered), dislocations,
GBs, heterointerfaces or surfaces. When used in conjunction with
a large dataset of defective structures such as those generated by
atomistic materials modelling46–48 using reliable interatomic
potentials, quantification of complex structure-property rela-
tionships using ML techniques with SOAP-derived metrics has
the potential to provide deeper insights into complex interface
phenomena and greatly accelerate materials design of a broad
range of technologically important materials. In some situations,
however, it may be necessary to include directional information
in the model so that properties more sensitive to anisotropy or
that are highly directional can be predicted accurately. Methods
for including directional information are discussed briefly in
Supplementary Note 3 as a stimulus for future work.

In summary, we have used ML with data derived from the
SOAP descriptor and perturbed MD to quantify the relationship
between local atomic structure and overall thermal conductivity
in standard- and high-pressure STGBs, twin, twist and asym-
metric tilt GBs of MgO. The LDF, a simple metric based on the
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SOAP descriptor, was found to correlate well with atomic thermal
conductivity in a non-linear fashion. The prediction model con-
structed based on this insight revealed that even small structural
distortions at GBs can reduce thermal conductivity dramatically,
suggesting that the thermal conductivity of a polycrystalline
material may be closely controlled by tailoring the number and
distribution of such GBs through GB engineering. Although the
importance of structural disorder at GBs has been posited by
earlier researchers20,49, to the best of our knowledge this is the
first study to demonstrate quantitatively the correlation between
structural distortion and suppression of thermal conductivity at
the atomic level.

Methods
GB model construction. Eighty-one standard-pressure STGBs of MgO constructed
previously25 were used together with an additional three (001) twist GBs, four [001]
asymmetric tilt GBs, and four high-pressure STGBs generated using the method
described previously25,50. Simulated annealing (SA) of initial structures was per-
formed to obtain the stable atomic configurations of the GBs using equilibrium MD
methods encoded in the Large-scale Atomic/Molecular Massively Parallel Simulator
(LAMMPS) programme51. Initial configurations were constructed by tilting or
twisting two half-crystals by a specific angle, and sandwiching an amorphous block
of MgO between them. The amorphous block was obtained from a separate MD
calculation by heating a perfect crystal of MgO to 8000 K. The rigid-ion Bucking-
ham potential for MgO reported by Landuzzi et al.52 was used in all cases.

SA simulations commenced with the GB model heated to 4000 K, and the
temperature was decreased gradually to 50 K over 330 ps. This gradual cooling
from high temperature allowed the atoms in the amorphous region to diffuse and
find energetically favourable positions, so that a low-energy ordered GB structure
was obtained for each initial configuration. The final atomic configuration for each
GB model was obtained by performing geometry optimisation (at 0 GPa) using the
General Utility Lattice Program (GULP)53 on the structures obtained from SA
simulations. In several cases, metastable GB structures (GBs with higher energies
than the most stable form for that GB orientation at 0 GPa with atoms trapped in
higher-energy local minima) were also obtained. These GB structures became lower
in energy than the stable GB structures when geometry-optimised at higher
pressures using GULP, so these were included as examples of high-pressure STGBs
when developing the ML model.

We repeated the SA simulations 10 times for each symmetric GB and 50 times for
each asymmetric GB using different initial velocity distributions to confirm that the
most energetically stable atomic arrangement had been obtained. Structures of the Σ5
(310)/[001] GB were found to be in agreement with that determined using first-
principles calculations54, and a few dislocation core structures, which can be seen in
low-angle STGBs with [001] and ½1�10� rotation axes, e.g., Σ41(540)/[001] and
Σ51ð1 1 10Þ=½1�10� GBs, were found to be in excellent agreement with those observed
by scanning transmission electron microscopy25,55. This gives us confidence that we
successfully identified the lowest-energy (ground-state) structures. These GB models
are available as Supplementary Data 1 in LAMMPS format. Two GB structure models
are illustrated in Supplementary Fig. 6 as examples.

The excess volume per unit area of each GB, ΔVGB, was calculated using the
following equation:

ΔVGB ¼ VGB � NGB

NSC VSC

2A
¼ VGB � NGB=ρSC

2A
ð1Þ

where VGB and VSC are the volume of the GB model and unit cell, respectively,
NGB and NSC are the number of atoms in the GB model and unit cell, respectively,
and ρSC is the number density of the unit cell.

SOAP descriptor. SOAP vectors of all atoms in MgO GBs were calculated using
the Python-based software DScribe56. The SOAP descriptor is derived by fitting a
set of spherical harmonics and radial basis functions to the 3-dimensional density
distribution generated by placing Gaussian-smeared atomic densities on atoms
within a specified cutoff radius about a central atom. The coefficients of the fit form
a rotationally invariant power spectrum57 which is compiled into a SOAP vector
for that atom which contains all the information needed to reconstruct the LAE.
Compiling SOAP vectors of atoms in the GB model into a matrix known as the
local environment representation allows each particular GB structure to be
described quantitatively and uniquely38,41. One of the advantages of the SOAP
descriptor is that it also makes it possible to compare LAEs quantitatively, so that a
dissimilarity (or, conversely, similarity) metric can be defined between two atoms33

which varies smoothly with a change in neighbouring atom positions38. In this
study, we used a non-normalised dissimilarity metric, d, defined as

dij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pi � pi þ pj � pj � 2pi � pj

q
ð2Þ

where pi and pj are the SOAP vectors of two atoms i and j. If pi and pj are the
SOAP vectors of a GB atom and its equivalent crystal bulk atom, the dissimilarity

metric represents how much the LAE of the GB atom differs from that of the bulk
atom. We refer to this as the local distortion factor, LDF, defined as

LDF ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pGB � pGB þ pbulk � pbulk � 2pGB � pbulk

p ð3Þ
where pGB and pbulk are the SOAP vectors of a GB atom and an atom in the crystal
bulk, respectively. A cutoff of 4.461 Å, corresponding to the average of the fourth
and fifth nearest neighbour distances in MgO, was selected after preliminary testing
of cutoffs both shorter and longer.

To compare LAEs and GB excess volume quantitatively, we defined the term
total distortion factor, TDF, to be the sum of all LDFs at a GB normalised to the GB
cross-sectional area, A,

TDF ¼
X
i

LDFi=2A ð4Þ

where i is the index of an atom in the GB model. TDF is divided by two because
each GB model produces two GBs under periodic boundary conditions. The
calculated TDF and GB excess volume exhibited a linear relationship, especially in
the case of high-angle tilt GBs formed under standard pressure (see Supplementary
Fig. 7 and Supplementary Note 6). We also calculated the LDFs and TDFs using
cutoffs of 3.313 and 3.923 Å, and confirmed that the relationship between TDF and
excess volume was not overly sensitive to the choice of cutoff. Using large cutoff
radii (~10 Å or greater) made it difficult to identify the GB core structure because it
resulted in many more atoms being classified as having under-coordinated atoms
in their spheres of influence.

The maximum degree of spherical harmonics, lmax, and the number of radial
basis functions, nmax, were set to 9 and 12, respectively. In test calculations, it was
found that the linear relationship between TDF and excess volume was insensitive
to lmax (even 0 produced similar results) but nmax needed to be sufficiently large to
achieve a good linear fit. We used spherical Gaussian type orbitals (as defined in
Himanen et al.56) as radial basis functions, with a Gaussian width of 0.5 Å. Another
implementation of the SOAP descriptor, the QUIP code58, was also tested, and
produced essentially the same linear relationship as DScribe (see Supplementary
Fig. 8), indicating that the results reported here do not depend strongly on the
particular implementation of the SOAP descriptor.

To extract a unique set of LAEs from each GB model in Fig. 2a, we performed
complete-linkage clustering as implemented in Scipy59 so that all combinations of
atoms in each LAE group had d values below a threshold value of 30.0. The
threshold value was carefully chosen to maximise the performance of the prediction
model without compromising interpretability of the classification groups. We also
tested normalised forms of the SOAP vectors and other dissimilarity metrics such as
the SOAP kernel and Gaussian kernel, but found that they make interpretation of
the hierarchical clustering results difficult and reduce the predictive performance of
the model. Further details are given in Supplementary Methods.

Thermal conductivity calculations. Overall thermal conductivities across the GB
planes and grain interiors, which we refer to as effective thermal conductivities,
were calculated using the perturbed MD method60 for a few high-pressure tilt, twist
and asymmetric tilt GB structures at 300 K. Custom-written code was added to
LAMMPS for this purpose. In this method, lattice thermal conductivity in the x
direction is calculated according to

κlattice ¼
1

FextT
lim
t!1hJxit ð5Þ

where Fext is the magnitude of the perturbation, T is the absolute temperature and
Jx is the heat flux in the x direction. The microscopic heat flux is defined by Irving
and Kirkwood61 to be

J ¼
X
i

Ji ¼
X
i

1
2V

miv
2
i Iþ

X
j

ϕijI

( )
vi �

X
j

Fij � vi
� �

rij

" #
ð6Þ

where Ji is the atomic contribution of atom i to the heat flux, V is the volume of the
GB model (supercell), mi and vi are the mass and velocity of atom i, respectively, ϕij
is the interatomic potential energy between atoms i and j, I is a unit tensor of
second rank and Fij is the force exerted by atom j on atom i. By substituting Eq. 6
into Eq. 5, atomic thermal conductivities κi, which are the atomic contributions to
overall lattice thermal conductivity, can be calculated according to

κlattice ¼
X
i

κi ¼
X
i

1
FextT

lim
t!1hJi;xit ð7Þ

where Ji, x is the contribution of atom i to the heat flux in the x direction. As seen in
Eq. 6, atomic thermal conductivities are proportional to the inverse of the supercell
volume, and thus must be normalised by multiplying the supercell volume for
comparison between GB models. In addition, because the intensities in the thermal
conductivity map in Figs. 4 and 5 also depend on the number of atoms in the depth
direction, Gaussian-smeared atomic thermal conductivities projected onto the two-
dimensional planes were divided by the cell depth. This procedure for calculating
thermal conductivity is the same as reported in our previous work on STGBs25: For
each GB orientation, models were constructed with three different half-crystal
widths (distances between GB planes of as close to 4, 5 and 6 nm as feasible for that
particular misorientation) by altering the number of bulk layers. MD simulations
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were then performed in the NPT ensemble for 100 ps with a timestep of 1 fs for
each model to determine its equilibrium cell dimensions at 300 K. Next, an NVT
ensemble was applied for 100 ps with temperature scaling, followed by 300 ps using
a Nosé-Hoover thermostat, to ensure thermal equilibrium had been reached.
Perturbed MD simulations were then performed on the equilibrated GB models for
1.1 ns and the average heat flux of the last 1.0 ns used to calculate the thermal
conductivity. The first 0.1 ns of data was discarded because this was the time
needed for the system to transition from thermal equilibrium to a steady state
under the perturbation. For each model, perturbed MD simulations were per-
formed with at least four different magnitudes of the perturbation (after confirming
the response was within the linear regime) and the average thermal conductivity
calculated. The effective thermal conductivity for a width of exactly 5 nm was then
extracted from a linear regression fit to these averaged thermal conductivities.
Atomic thermal conductivities, plotted in Figs. 4 and 5, were extracted from the GB
models with half-crystal widths of about 5 nm. Further details on the perturbed
MD method are also available elsewhere60,62–64.

Machine learning. LAEs identified for each GB model using the complete-linkage
algorithm were grouped and classified using Ward’s minimum variance method of
hierarchical clustering42 as implemented in SciPy59, again using the dissimilarity
metric d in Eq. 2, as it is equivalent to the Euclidean distance. We also tested several
other methods, such as the average method, but Ward’s method was found to
perform the most reliably and consistently. With this method, LAEs in the various
GB structures were grouped into six different categories within three supergroups
based on their level of lattice distortion.

The prediction model for thermal conductivity was constructed using the
number of LAEs per unit area of a GB in each LAE group m, Nm, as input variables.
Values of Nm were weighted by a Gaussian function, G, of the distance, x, of the
LAE’s atom from the GB plane according to

Nm ¼ 1
A

Xn
i

G xð Þ ¼ 1
A

Xn
i

1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p exp � x2

2σ2

� �
ð8Þ

where A is the GB cross-sectional area, n is the number of atoms in the LAE group, i
is the index of an atom in the LAE group, and σ is the variance (set to 1.5 Å). Nm

corresponds to the number density of atoms in the vicinity of the GB plane
decomposed into the contribution of each LAE group.

Fitting was performed using regularised multiple linear regression (Ridge
regression) as implemented in scikit-learn65. Ridge regression shrinks the
regression coefficients, β, to prevent overfitting to the training data, by penalizing
their size according to

β ¼ argmin
β

Xt
i

yi � β0 �
Xp
j

xijβj

 !2

þλ
Xp
j

β2j

( )
ð9Þ

where t is the number of training data, yi is the ith observed value, p is the number
of input variables, xij is the jth component of the input variable for the ith training
datum, β0 and βj are the intercept and the jth regression coefficients, respectively,
and λ is the regularization parameter66. Because thermal conductivity should be
zero when all Nm are zero, i.e., there are no atoms in the vicinity of the GB plane, in
this study the intercept β0 was set to zero. For training data, 70 of the symmetric
GB models were randomly selected with the proviso that each class of GB (namely,
the six types of tilt GBs grouped by rotation axis, low-angle tilt GBs (open or
dense), high-angle tilt GBs, twist GBs and high-pressure GBs) was represented at
least once. The model was trained using λ= 3 × 10−4, determined through cross-
validation. The remaining 18 symmetric GBs and all four asymmetric tilt GBs were
used as test data to estimate the predictive performance. Input values Nm were not
standardised because this was found to reduce the predictive performance of
the model.

Data availability
GB models used in this study are available as Supplementary Data 1. Effective thermal
conductivities of all the GB models used in multiple linear regression are summarised in
Supplementary Tables 1 to 9. All other data that support the findings of this study are
available from one of corresponding authors S.F. upon request.

Code availability
Details of computer codes used in this study are provided in Supplementary Methods.
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