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Abstract

Background: This study compared TB diagnostic tools and estimated levels of misdiagnosis in a resource-limited setting.
Furthermore, we estimated the diagnostic utility of three-TB-associated predictors in an algorithm with and without Direct
Ziehl-Neelsen (DZM).

Materials and Methods: Data was obtained from a cross-sectional study in 2011 conducted at Mubende regional referral
hospital in Uganda. An individual was included if they presented with a two weeks persistent cough and or lymphadenitis/
abscess. 344 samples were analyzed on DZM in Mubende and compared to duplicates analyzed on direct fluorescent
microscopy (DFM), growth on solid and liquid media at Makerere University. Clinical variables from a questionnaire and DZM
were used to predict TB status in multivariable logistic and Cox proportional hazard models, while optimization and
visualization was done with receiver operating characteristics curve and algorithm-charts in Stata, R and Lucid-Charts
respectively.

Results: DZM had a sensitivity and specificity of 36.4% (95% CI = 24.9–49.1) and 97.1%(95% CI = 94.4–98.7) compared to
DFM which had a sensitivity and specificity of 80.3%(95% CI = 68.7–89.1) and 97.1%(95% CI = 94.4–98.7) respectively. DZM
false negative results were associated with patient’s HIV status, tobacco smoking and extra-pulmonary tuberculosis. One of
the false negative cases was infected with multi drug resistant TB (MDR). The three-predictor screening algorithm with and
without DZM classified 50% and 33% of the true cases respectively, while the adjusted algorithm with DZM classified 78% of
the true cases.

Conclusion: The study supports the concern that using DZM alone risks missing majority of TB cases, in this case we found
nearly 60%, of who one was an MDR case. Although adopting DFM would reduce this proportion to 19%, the use of a three-
predictor screening algorithm together with DZM was almost as good as DFM alone. It’s utility is whoever subject to HIV
screening all TB suspects.
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Introduction

Tuberculosis (TB) remains a disease of major global public

health concern in spite of the efforts to combat it. The WHO

estimates that about three million people who developed TB in

2012 were missed by the national notification systems [1]. Experts

in the field emphasize that a successful international and national

TB control program ought to be hinged on accurate diagnosis of

active TB cases [2,3]. Although case detection in developing

countries likes Uganda has increased over the years, some resource

limited settings like Mubende have continued to register poor case

detection levels [4]. There are various TB diagnostic tools

available [5], however, there is a universal recognition of

limitations with the commonly used tools.

Direct smear microscopy (DZM) which uses Ziehl-Neelsen as

the acid-fast dye is the most commonly used of the WHO

PLOS ONE | www.plosone.org 1 June 2014 | Volume 9 | Issue 6 | e100720

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0100720&domain=pdf


recommended diagnostic tool for tuberculosis in low and middle-

income countries [3,6]. This is mainly because it is cheap, easy to

operate and rapid [6]. However, the test has a low sensitivity, with

a detection limit of between 5,000–10,000 bacilli/ml of sample [7–

9]. For patients with a low bacillary load, as seen in HIV patients

and infants, true positive cases can easily be missed [10–12]. It has

been suggested that the low sensitivity of DZM could partly be due

to the fact that facilities in high incidence areas where the test is

used as a sole diagnostic tool are usually resource limited, and thus

leading to high workload on personnel [10–12]. Over the years

there have been better diagnostic techniques, however their

adaptation to resource poor settings remains a challenge. For

example the low sensitivity of DZM can be improved by sputum

concentration and/or use of direct fluorescence microscopy

(DFM) which uses auramines as the acid-fast dye [13,14]. This

test has an added advantage of requiring only one or two sputum

specimens rather than three to reach an acceptable level of

performance, which in effect reduces the diagnostic time [13,14].

Several studies documenting the diagnostic gain of DFM have

recommended its implementation [5,13]. Unfortunately, most of

these studies have been performed at validation stages and only a

few have documented its performance in routine practice. It is

therefore important to document the performance of DFM

compared to DZM in a resource limited clinical setting so as to

inform policy makers on proper implementation of TB diagnostics

[14].

Culture of mycobacteria on solid media has been considered the

gold standard for tuberculosis diagnosis. The minimum detection

limit of 10 mycobacteria/ml significantly surpasses the minimum

detection limit given by DZM [15]. Unfortunately, the growth of

TB bacilli requires a protracted period of 4–8 weeks, delaying

appropriate treatment in the absence of a confirmed diagnosis.

The Mycobacteria growth indicator tubes (MGIT) on the other

hand is a fully automated, non-invasive system for recovery of

mycobacteria in liquid culture medium but has a draw-back of

being expensive [16]. Previous laboratory studies have shown a

higher and faster recovery of mycobacteria from sputum

specimens than culture on solid medium [17,18] but the crucial

diagnostic value is better harnessed if deployed in large diagnostic

facilities. This is because of the infrastructure, high skill and

maintenance requirements all of which are scarce in rural settings.

It is noteworthy that, under and over diagnosis contributes to

further spread of the disease and wastage of scarce resources on

inappropriate treatment respectively. It is therefore crucial to find

a cost effective sequences and/or combination of these tools to

strike a balance between these two attributes. The use of an

algorithm/screening-sequence that combines both the clinical

picture and diagnostic tools could guide physicians in establishing

this balance. There have been multitudes of conflicting evaluation

reports on the efficiency of the 2007 WHO diagnostic algorithms

for TB diagnosis in different settings [8,19–21].

Therefore it is critical to continuously refine diagnostic protocols

in resource-limited settings. This will not only improve case

detection, but also identify areas within the diagnostic chain that

are most likely to lead to over and under diagnosis (misdiagnosis).

Therefore the aim of this study was to compare diagnostic tools

used at the Mubende regional referral hospital with an extra set of

tools used during a research study period in order to:

a) Assess the performance of direct Z&N microscopy (DZM) in

detecting TB cases from clinical specimens.

b) Estimate the utility of three TB-associated predictors in an

algorithm with and without DZM.

To achieve these, results from direct smear microscopic

examination of sputum, lymph node and abscess aspirates at

Mubende regional referral hospital were compared to results from

duplicates analysed using fluorescent microscopy (DZM), culture

on LJ media and MGIT at the Mycobacteriology Laboratory,

Department of Medical Microbiology, Makerere University

[22,23]. Only TB cases caused by bacteria in the Mycobacterium

tuberculosis Complex (MTC) were considered in this analysis

[22,23]. It should also be noted that DZM is the only diagnostic

tool used at Mubende regional referral hospital. Although the

hospital has radiology facilities, these are mainly used for

orthopaedic purposes.

Materials and Methods

Ethical considerations
Full ethical clearance (ref: HS 879) was obtained from the

Uganda National Council for Science and Technology (UNCST).

Prior to this study, healthcare authorities and the research team

were briefed about the ethical issues. Due to logistical and facility

setup, oral consent was obtained from participating patients

(documented on the information sheets), something that was in

line with the research ethical mandate given by UNCST.

Furthermore, data were anonymised before analyses as stipulated

by the UNCST guidelines of research involving human as research

participants (2.2/b-e/2007).

Study site
Mubende district is located in the central region of Uganda,

inhabited by approximately 750,000 people of whom an estimated

64% live below the poverty line in population dense urban and

peri-urban areas [24]. Piot’s model on TB treatment and health

seeking suggests that only 20% of examined individuals seeking

care at a health facility will be diagnosed [25]. In this regard,

according to socio- anthropological studies on mycobacterial

infections in the Uganda [26], it is estimated that only 35% of the

Ugandan population, especially in the Uganda cattle corridor

(where Mubende districts is located), seeks health care from

allopathic practitioners [26]. This status quo would suggests that

only a fraction of TB cases make it to hospitals which probably

explains the low TB case detection level of 37% in Mubende

district [4].

Study design and population
This study was part of a wider study of the molecular

epidemiology of TB in Mubende district of Uganda conducted

by the same authors and described elsewhere [22,23]. Briefly, data

was obtained from a cross sectional study conducted between

February and July 2011. The participating patients had to have

presented with cervical lymphadenitis/abscesses and/or a cough

that had persisted for at least two weeks at Mubende regional

referral hospital. The national tuberculosis program (NTP) is only

run at this referral hospital in the Mubende district and all

persistent ailments are treated here. This implies that the majority

of residents in this district who met the study’s criteria would most

likely be treated at this facility.

Sample collection
Sputum and/or lymph node aspirates were collected using

standard procedures as described by Muwonge et al. [23]. One

appropriate sample was collected from patients that had either a

cough or lymphadenitis/abscess, or both from patients that had

both clinical presentations. A total of 344 samples from 344

patients were taken in duplicates. One of the duplicates was
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delivered to the diagnostic laboratory within Mubende regional

referral hospital for DZM and the other was delivered to the bio-

safety level 3 (BSL3) Mycobacteriology Laboratory, Department of

Medical Microbiology, Makerere University. Here direct fluores-

cent microscopy (DFM), culture and drug resistance tests (DST)

were carried out (Figure 1). A questionnaire was also administered

to each patient to retrieve information about the patients’ socio-

economic welfare, as an addition to the clinical information (Table

S1).

Diagnostic Tools
Direct Ziehl-Neelsen smear microscopy (DZM). At

Mubende regional referral hospital, direct smears from each

sample were examined with the Ziehl-Neelsen (ZN) method

(Figure 1). A sample smear prepared on slide, air-dried and heat

fixed. It was flooded with 1% carbol fuchsin and heated (steaming

NOT boiling) for five minutes. This was then washed with water

and decolorized using 3% acid-alcohol followed by a brief wash

with water. It was then stained with 0.3% methylene blue for 30–

60 seconds and then washed with water and air-dried. This slide

was then visualized under a light microscope (Olympus CX31)

using a 103 magnification. A positive sample was defined as one

that showed acid-fast rods in a 300 fields of the slide as

recommended by WHO [27–29].

Direct fluorescent smear microscopy (DFM). Smears

were made from the duplicate samples and stained for fluorescent

microscopy according to standard method [5,28]. The light source

used was a Light Emitting Diode (LED) (Fraen Corporation Srl,

Via delle Querce, Trivolzio(Pv) Italy). Thereafter the bacillary load

was established. Bacillary load is a measure of culture forming

units as seen with the aid of staining dye and is used to quantify the

number of bacilli in a sample [27–29]. If a sample contains 10–99

Figure 1. Sampling and sample analysis flow chat.
doi:10.1371/journal.pone.0100720.g001
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acid fast bacilli (AFB) per 100 fields it is categorized as +1, and if it

contains 1–10 AFB/field in 50 fields this is categorized as 2+, while

if a sample contains .10 AFB/field in 20 fields it is categorized as

3+ [27,30].

Mycobacterial culture. The sputum samples were processed

according to standard procedures [18,31], inoculated on blood

agar, Lowenstein Jensen (LJ) (BD BBLTM; Franklin Lakes, NJ,

USA) slants incubated for up to eight weeks and in Mycobacterium

Growth Indicator Tube (BD BBL MGIT960, Franklin Lakes, NJ,

USA) incubated for six weeks as described [22,23]. The criteria for

verification of isolates belonging to the MTC and the drug

resistance procedures were as described [5,18]. Note that the use

of blood agar was for contamination detection. Culture contam-

ination was considered if a DZM AFB negative sample grew on

blood agar (Table S2).

Drug susceptibility profile. The drug susceptibility profiles

were obtained from previously published data by the same author

for the relevant patients [22,23]. The susceptibility to four drugs

used as first line therapy namely; Streptomycine, Rifampicine,

Isoniazid and Ethambutol of DZM false negative cases were

identified and used for the public health component of this study.

Data management and analysis
Information obtained from the questionnaires, HIV status from

individual health record and corresponding TB results for each

patient were entered in Excel 2007. The data were then exported

to Stata (Stata ver. 11/SE for Windows, Stata Corp, College

station) and R software version 2.15.3 (http://cran.r-project.org/)

for appropriate statistical analyses.

Estimation of diagnostic test characteristics and

agreement. Assessment of diagnostic characteristic was done

using the diagt command in Stata (Stata ver. 11/SE for windows,

Stata Corp, College station) considering DZM and DFM as the

tests to be evaluated and culture on LJ media as the reference test

(gold standard). The kappa measure of agreement between

diagnostic tests was also calculated.

Survival analysis of time to detection of bacilli on

MGIT960. Survival analysis was done using the survival package

in the R software environment, the same excel data set was

converted into a CSV file and imported into R for the survival

analysis. The time (T = 19 days) denotes the maximum time to

detection in this study, but the total time of observation was 6

weeks (42 days). Using the Surv function within the survival analysis

package an event was defined as becoming positive and time to

detection measured in days. Note that the censor time is set at

T = 19. Kaplan-Meier graphs were generated for each explanatory

Table 2. Diagnostic performance of DZM&DFM against culture on LJ (gold standard) in detection of bacilli in clinical samples
obtained from patients at Mubende referral hospital, Uganda.

Evaluated test Gold standard

DZM/DFM* DZM/LJ DFM/LJ

Positive Negative Positive Negative Positive Negative

Positive 25 7 24 8 53 8

Negative 36 276 42 270 13 270

Estimate (95%CI) Estimate (95%CI)

Sensitivity (%) 36.4(24.9–49.1) 80.3(68.7–89.1)

Specificity (%) 97.1(94.4–98.7) 97.1((94.4–98.7)

Positive predictive value (%) 75.1(56.6–88.5) 86.9(75.8–94.2)

Negative predictive value (%) 86.5(82.2–90.1) 95.4(92.3–97.5)

Kappa agreement measure (%) 41.6(36.6–46.6) 79.7(74.3–85.1)

*DFM is used as the gold standard with DZM. Note that the rest of the comparison is done with Results on LJ media as the gold standard. The status (+/2) of the
reference tool will be the column status while the test tool is the row. For example (DZM/DFM) = row (+/2)/col(+/2).
doi:10.1371/journal.pone.0100720.t002

Table 3. Shows factors associated with DZM false negative results.

Variable Level Odds ratio (95% CI) p-value

HIV status Negative – –

Positive 6.53(2.29–18.58) 0.00

Unknown 0.38(0.12–1.21) 0.10

Tobacco usage Non smokers – –

Smokers 2.32(1.07–5.01) 0.03

Sample type Sputum – –

Lymph node aspirate 0.52(0.22–1.26) 0.15

Abscess aspirate 6.32(1.87–21.33) ,0.01

AUC = 0.84.
doi:10.1371/journal.pone.0100720.t003

Screening Algorithm for Tuberculosis in Resource Limited Settings

PLOS ONE | www.plosone.org 5 June 2014 | Volume 9 | Issue 6 | e100720



variable in the descriptive survival analysis. A Cox proportion

hazard model was built from explanatory factors that showed

significant variation in time to detection and fulfilled the model

assumptions. The post model evaluation was done using standard

procedures.

Diagnostic/screening algorithm. The diagnostic/screen-

ing algorithm in this study is a layout of a logistic regression model

that contains some of the WHO recommended predictors [3,28].
The analysis in this study explored the model (algorithm) case

prediction in each of the sub-populations formed by the different

combinations of clinical and diagnostic aspects so as to give an

estimate of the likely-hood of case detection. In order to estimate

the utility (predictive ability) of this diagnostic algorithm, features

of the clinical history and DZM results were used as predictors of

true disease status (culture on LJ results) in a multivariable logistic

regression model. The model was built in a forward step-by-step

approach that resembles the events leading to a physician

requesting for DZM test in Mubende referral hospital. At each

step the proportions of true cases and predicted cases (Probability

of being a case) are calculated and presented in an algorithm tree/

chart. Logit(pTB) = b0+bX1+ b2X2+ b3X3….

Where pTB is the predicted probability of being TB positive on

LJ media, x1, x2 and x3 are the predictors in the model while b0 is

the intercept term and b1, b 2 and b3 are regression coefficients.

All the predictor variables included in the final model gave at

least P = 0.25 in the univariable logistic regression. In order to

maximize the number of true cases classified when DZM is used in

this algorithm, a receiver operating characteristic curves (ROC)

analysis was done to identify the lowest probability cut-off with the

highest sensitivity and specificity. The final model validation and

post estimation analysis were done using the standard statistical

methods in Stata.

Results

344 individuals were examined, 206 (60%) were male and 138

(40%) were female, with an average age of 31.5 (18.5–44.3) years,

height of 155.7 (153.8–157.4) cm and weight of 50.4 (49.2–51.55)

kg. Forty-seven percent of the patients were married and 41%

single, the rest widowed, divorced or too young to be categorized.

Summary of DZM, DFM and culture results
The descriptive results of DZM, DFM and culture are given in

Table 1. Acid-fast bodies (AFB) were identified 32 (9.3%) samples

from 344 patients examined by DZM at the Mubende regional

referral hospital. Samples from 61 patients (18%) had AFB on

DFM, and growth on LJ media detected 66 cases (19%) (Table 1).

Most of the cases detected by DZM had a bacillary load of +3.

Of the DZM positive patients, 19 (59.3%) and 13 (40.6%) were

male and female respectively. The same trend is reflected

throughout the test on the rest of the diagnostic tools. A majority

of the DZM positive samples were recovered from HIV infected

middle-aged patients. A prospective follow-up of the specimen

analysis from DZM through DFM and then culture showed a

steady increase in the number of positive cases detected (Table 1).

It is noteworthy that the culture contamination proportion was 6/

344 or approximately 2% of the cultured samples showed culture

contamination (Table S2).

Diagnostic features and comparison of tests
DZM was able to detect 36.4% of the true TB cases in this

study. This test had a sensitivity and specificity of 36.4% (95%

CI = 24.9–49.1) and 97.1% (95% CI = 94.4–98.7) when compared

to the gold standard respectively. The comparison with DFM as
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the gold standard against DZM showed that DZM picked up 25 of

61 cases positive on DFM. The low sensitivity of DZM was also

reflected in the low kappa agreement measure against the gold

standard. It is noteworthy that there was no significant difference

in false positives recovered when DZM was compared to the gold

standard (Table 2).

DFM detected 53 of the 66 cases detected by the gold standard

and therefore had a sensitivity and a specificity of 80.3% (95%

CI = 68.7–89.1) and 97.1% (95% CI = 94.4–98.7) respectively.

Figure 2. Kaplan-Meier plots showing the Time to detection (TTD) of bacilli on MGIT960 (Y-axis = s(t) which is the survival function,
X-axis is the TTD in days). Top row first graph shows the time to detection of all the 344 patients without any covariate structure considered.
Second, third and fourth show the TTD when HIV status, Smoking and alcohol consumption are considered as covariates respectively. Bottom row:
The first, second, third and fourth graph show the TTD for the combination of (patients who consume alcohol and smoke), (patients who smoke,
consume alcohol and are HIV positive), (HIV negative patients who neither consume alcohol nor smoke) and bacillary load levels respectively.
doi:10.1371/journal.pone.0100720.g002

Table 5. Cox proportional hazard model of the time to detection of M. tuberculosis bacilli on MGIT960 based on 344 patients at the
Mubende referral hospital.

Variable Level Coefficients (95% CI) Hazard Ratio (95% CI) p-value

HIV status Negative – –

Positive 2.94 (1.54–5.59) 18.9 (4.66–267) 0.001

Unknown 0.27 (0.11–0.59) 1.31 (1.12–1.80) 0.001

Tobacco usage Non smokers – –

Smokers 1.94 (1.19–3.17) 6.96 (3.29–23.8) 0.007

Alcohol usage Non consumers – –

Consumers 1.88 (1.10–3.20) 6.55 (3.00–24.5) 0.019

doi:10.1371/journal.pone.0100720.t005
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This too is reflected in the high kappa agreement measure against

the gold standard. Consequently, DFM produced a higher positive

and negative predictive value than DZM (Table 2). It should be

noted that although MGIT 960 recovered more positive cases

(n = 69) than culture on LJ media (n = 66) (Table S2), given that

these two agreed on 60 cases, the latter was considered as the gold

standard for this study.

DZM-false negative cases
A significant proportion of HIV positive cases gave false

negative results on DZM. In fact the odds of false negative results

among HIV positive patients were six times those of HIV negative

patients (Table 3). Smoking also appears to be associated with false

negative result, this is because the odds of false negative DZM

results among smokers were twice those of non-smokers. Similarly,

sample type (clinical presentation) was also associated with false

negative results i.e. the odds of an abscess aspirate giving a false

negative results was almost six times that of a sputum sample

(Table 3). The drug susceptibility profiles of DZM false negative

cases showed that eight cases were resistant to at least one drug

used in the first line treatment against TB in Mubende district

(Table 4). Of these one was resistant to both Rifampicin and

Isoniazid, hence classified as multidrug resistant (MDR).

Evaluation of time to detection on MGIT960
The time to detection, (TTD) of bacilli on MGIT 960 is

presented in Figure 2 and the hazard ratios are given in table 5. In

general, the majority of patients’ time to detections was 2–4 days,

but the maximum time to detection was 19 days. From the

Kaplan-Meier plots the time to detection on MGIT960 appears to

be a function of bacillary load in a specimen (Figure 2). The Cox

proportional hazard model shows that the hazard of becoming a

Figure 3. The diagnostic algorithm chart showing the case proportions formed by clinical and diagnostic combinations with data
from Mubende regional referral hospital, AUC is the area under the curve, PP = predicted probability of being TB case, TS = total
number of true TB cases in each covariate pattern based on the gold standard, N = the total number of individual in a specific
covariate pattern (sub-population formed by combining clinical factors), TCC = total number of TB-cases accurately classified my
the model. The adjusted case predictions are made at a probability cut off P = 0.199 as established in figure 3, the broken lines shows pathways that
are most likely to increase numbers of false positive cases.
doi:10.1371/journal.pone.0100720.g003
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positive culture on MGIT960 conditional on the patient present-

ing with a cough persistent for at least two weeks and/or

lymphadenitis/an abscess is ,19 times higher if the patient is also

HIV positive and ,7 times higher if they are a smoker or consume

alcohol (Table 5).

Diagnostic/screening algorithm
A patient from whom sputum and/or a lymph node or abscess

aspirate was taken must have presented with a cough that had

persisted for at least two weeks and/or lymphadenitis or an

abscess. This clinical facet alone contained 38, 18 and 9 true TB

cases proportion-wise respectively. However if this were to be used

alone as predictor in this algorithm (Model), the model would not

be able to classify any cases regardless of the high AUC (Figure 3).

(The author has chosen to follow HIV positive smokers for the

purposes of explaining). When this clinical picture was combined

with the patient’s tobacco smoking status, the number of true TB

cases among smokers was 19, 8 and 6 respectively. At this step the

model would be able to accurately classify 6 of the 66 true cases

with AUC = 0.66. If the HIV status of these patients was then

added to the model, the total number true cases among HIV

positive smokers were 11, 5, and 3 respectively. At this step the

model could accurately classify 22 of the 66 true cases. At this

point if the physician asked the patient to take a DZM test, the

number of true cases among DZM positive, HIV positive smokers

was 5, 3 and 1 respectively. At this point the model could

accurately classify 33 of the 66 true cases with AUC = 0.88. The

optimized probability cut-off with the highest sensitivity and

specificity is present in (Figure 4). After adjusting the cut-off

probability the model with the same AUC = 0.88 could classify 52

of the 66 true TB cases (Table 6 and Figure 3). This however

increased the number of false positive cases up to 50. The

pathways that are most likely to bring in false positive cases are

highlighted as broken lines (Figure 3).

Discussion

Direct smear microscopy (DZM) is the principal method of TB

diagnosis in resource-limited settings like Mubende district,

Uganda [3,6,32]. This is because it is a cheap procedure that

can deliver results in less than a day [32]. There is a common

agreement on the limitation of this test, some of which include a

low sensitivity, especially on specimens with a low bacillary load

[7,8,13]. The findings in this study are in agreement with these

previous reported on DZM characteristics. For example the

findings show that the greatest proportion of high bacillary load

samples (+3) were identified on DZM. This means that of those

that sought health care under the set criterion, DZM would most

likely pick up the highly symptomatic active TB patients [21]. On

the other hand, although not statistically significant, more of the

low bacillary load samples (+1 and +2) were recovered by tools not

used at this facility (DFM and culture).

One of the positive attributes of DZM is that it has a high

specificity, and in this study a specificity of 97.1% was observed.

Therefore it adequately classifies true negative cases, leaving little

room for wastage of scarce resources on inappropriate treatment

[32]. This limited frequency of false-positive results by DZM

normally outweighs the advantages of high detection rates in

mycobacterial culture considering the importance of timely

diagnosis with regards to TB in resource-limited settings [5]

[27]. This would not necessarily be the case for DFM [5]. On the

other hand, the low kappa agreement between DZM and culture

on LJ media highlights the significantly high possibility of missing

Figure 4. The receiver operating characteristics curve (ROC) showing the lowest cut-off probability with the highest specificity and
sensitivity for the diagnostic/screening algorithm, this probability is used to adjust the case classification in figure 2. The Solid line
represents DZM on its own at AUC = ,66%, the dotted line shows the model with DZM and the three predictors at AUC = , 88%.
doi:10.1371/journal.pone.0100720.g004
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of TB cases thus a low sensitivity. In this regard, DZM alone was

able to correctly classify only 24 of the 66 true cases, so in the

absence of a rigorous screening procedure nearly two thirds of the

cases had a possibility of being missed. Studies have in the recent

past documented the phenomenon of smear-negative TB cases

[10,13,19,33] especially among HIV infected patients. This

phenomenon was also explored in this study using a logistic

regression model to determine associated factors. The findings

reveal that an HIV positive patient was more likely to give a false

negative result on DZM than an HIV negative patient. The

finding supports Corbett’s conclusion that HIV was largely

associated with the increased burden of undiagnosed TB in

Zimbabwe [21]. This status quo would be counterproductive to

the current tuberculosis control program in Uganda, as it

contributes to further spread of the disease [32]. The sample

type, which was a proxy for either the patient’s pulmonary or

extra-pulmonary tuberculosis status was also associated with DZM

false negative results. In other words, a sample from the extra-

pulmonary compartment specifically from an abscess was more

likely to produce a false negative result on DZM. Although the

direct link between extra-pulmonary tuberculosis and false

negative results is not well documented, studies have shown that

these two phenomena are associated with HIV infection [34,35]. It

should however be note that the observed association in this study

is based on a small proportion of patients with abscesses, so a

larger number is needed to validate the association. Smokers were

on the other hand more likely to give DZM false negative result

than non-smokers. Although this finding is in agreement with

previous studies [36], other reports have documented it as delayed

AFB conversion within smokers [37]. Analysis of drug suscepti-

bility profiles of the DZM false negative cases shows that some of

these were infected with M. tuberculosis bacilli which were resistant

to at least one of the four drugs used as first line treatment for

tuberculosis, one of them was categorized as case multi drug

resistant (MDR) tuberculosis. This finding has public health

implications, because among the would-be under-diagnosed group

was an individual who had the potential of spreading MDR-TB to

the public.

The comparison of DFM with the gold standard reveals that it

has much better diagnostic characteristics than DZM, with an

over 50% increment in case detection. This is in agreement with

reports in Kenya [38] and India [39], although the later

documented a 26% increment. On the other hand Toman’s

[27] only reported a slight difference in sensitivity between the two

methods but his conclusions on false positive cases between the

two tools is in agreement with the current study. The higher

agreement of DFM and culture on LJ media also means that more

patients could get results and start treatment much faster if DFM

had been used in this setting. Therefore although it would require

financial and skills input, an upgrade from DZM to DFM would

significantly improve the case detection especially of smear

negative HIV positive TB cases at Mubende regional referral

hospital. This has also been recommended elsewhere [10,13,38].

In reality, this diagnostic test was only carried out on a duplicate

sample transported to the Mycobacteriology Laboratory, Depart-

ment of Medical Microbiology, Makerere University located in

Uganda’s capital city. Although DFM has been rolled out in some

referral hospitals in last one year, in general it is still not widely

used in health facilities in rural areas. The greatest challenge to

using DFM in resource poor settings is the fact that such areas are

underfunded, with over-worked personnel who receive a huge bulk

of diagnostic specimens every day [11,12]. Therefore, unless this is

addressed, the diagnostic benefits of DFM could be missed if andT
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when rolled out because the quality of the smear declines with time

[27].

It would be idealistic to expect that all resource-limited settings

are able to roll out programmes to use DFM in all diagnostic

centres given the extra cost associated with it. For those facilities

that would not immediately adopt it, the utility of a diagnostic

algorithm/screening procedure with and without DZM in it was

explored in this study.

WHO recommends several diagnostic algorithms for different

case scenarios, however, the 2006/7 international standards for

tuberculosis care is the most used [28]. The use of the clinical

history like HIV status and symptoms can greatly increase the

probability of detecting TB cases [40], although cases are bound to

be missed if these are used in isolation [21]. The findings

demonstrate that if the clinical presentation of; either cough,

lymphadenitis or abscess alone was used to predict TB status, no

cases would be accurately classified in this algorithm. However, a

cough persistent for at least two weeks on its own has been

reported to have a sensitivity of 55% among people living with

HIV [8]. On the other hand in Ethiopia, it has been documented

that if this type of cough were considered alone one could miss up

to 56% of the cases [41]. In the current study when the first clinical

presentation was combined with the patients tobacco smoking

status the algorithm could accurately classify six TB cases, in effect

six cases identified by this model are attributable to knowing the

patients smoking status. Access to the patient’s HIV status

accurately classifies another sixteen cases. To put this in context

at this point the screening algorithm could accurately classify two

cases less of what DZM could when used on its own. The TB

diagnostic utility of the HIV status has been reported in the recent

past [8,21,29,42] and although there is a common recognition that

HIV screening of all suspected TB cases would greatly improve

case detection, it can only be adopted when simple and cheap HIV

diagnostics are available in these settings [1,21]. Adding the DZM

results to this screening algorithm would accurately classify 33 of

the 66 true TB cases, that is to say the model gives DZM a 13.6%

(9/66) increment in case classification. The number of true cases

classified was maximized to 52/66 (42% increment in case

classification) by taking a specificity trade-off that inherently comes

with DZM. Although this adjusted screening algorithm would

improve case classification, the choice of such a screening

algorithm over adopting DFM would come with a problem of

over-diagnosing. This optimisation produced up to 50 false

positive cases. According to estimates produced [43] on TB

control in rural Uganda, if such a choice was taken in Mubende

district, it could have potentially cost the control programme up to

(506351 = £17,550) in inappropriate TB management during the

study period. However, the screening chart highlights the

pathways that are most likely to produce these false positive cases.

It is noteworthy that although the same analysis was not done with

DFM as the test of choice, its diagnostics characteristics in this

algorithm can be inferred from the current analysis. For example:

From this analysis the gold standard gives a point of reference with

regards to disease status (n = 66), therefore the three clinical

predictors together with DZM give us a measure of how close we

can get to detecting these 66 cases. With this in mind, if DFM

alone detects 53 of the 66 cases and DZM and DFM have the

same false positive rate, it was inferred that DFM would detect

significantly more cases when used with the three predictors. The

adjusted cut-off probability would however be different in this

case. The clinical implication of this is that it is possible to arrive at

an accurate diagnosis of TB with this screening algorithm using a

single sample hence early treatment commencement.

Establishing bacillary load is a crucial but laborious process,

which in some cases could result in ocular complications in over-

worked laboratory technicians in high TB density areas [11,12].

Therefore exploring diagnostic tool combinations that can reduce

the workload is also a crucial factor in the TB control strategy.

Analysis of MGIT 960 results reveals an association between time

to detection and bacillary load of samples, in other words the

higher the bacillary load the shorter the time to detection. This is

in concordance with previous reports [17]. The use of clinical

features as proxies for bacillary load shows that time to detection of

bacilli was significantly associated to the following; HIV status,

cigarette smoking and alcohol consumption. It might be possible to

combine the clinical picture and time to detection to make

inferences about bacillary load, which then eliminates the extra

work put into microscopic bacillary quantification. Therefore if

and when MGIT960 is introduced it is worthwhile exploring the

possibility of using this technique so as to reduce the strain put on

laboratory technicians in establishing bacillary load.

The limitation to this study were; 1) the number of patients used

was lower than other studies that have compared diagnostics in

resource limited settings. The sample size used however gave

enough statistical power to detect differences. 2) a single sample per

patient was used for the analysis. The WHO algorithms prescribe

the use of three samples of sputum in classifying certain disease

status. However, given that this was a cross sectional research study,

the findings should be viewed as a cross sectional representation of

the dynamics in this areas, although can be a reflection of what is

happening in other resource limited settings with the same

characteristics. Note that, all sputum sample collected were

collected at times prescribed by WHO. Therefore the interpreta-

tions drawn from this work should take these issues in consideration.

The utility of a diagnostic test/tool/algorithm usually depends

on the disease incidence in the population, the sensitivity and

specificity of the test, tool and or algorithm, the physical risk and

the associated cost implications. In this regard clinical symptoms

are not any different from diagnostic tests with the exception of

subjectivity. The challenge in clinical settings is establishing the

optimum predictors (clinical questions) since the factors that

govern diagnostic tools vary in populations of different geograph-

ical locale. Therefore findings in this study suggest that availing

resources for screening TB suspects for HIV might be the only

limiting factor in adopting such screening algorithms in resource

limited settings.

Conclusion

The study supports the concern that using DZM alone risks

missing majority of TB cases, in this case we found nearly 60%, of

who one was an MDR case. Although adopting DFM would

reduce this proportion to 19%, the use of a three-predictor

screening algorithm together with DZM was almost as good as

DFM alone. It’s utility is whoever subject to HIV screening all TB

suspects.
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