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Henryk Josiński ,1 Adam Świtoński ,1 Agnieszka Michalczuk,1 Piotr Grabiec,2

Magdalena Pawlyta,2 and Konrad Wojciechowski2

1Institute of Informatics, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland
2Centre for Research and Development, Polish-Japanese Academy of Information Technology, Aleja Legionów 2,
41-902 Bytom, Poland

Correspondence should be addressed to Henryk Josiński; henryk.josinski@polsl.pl
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*e ability of the locomotor system to maintain continuous walking despite very small external or internal disturbances is called
local dynamic stability (LDS). *e importance of the LDS requires constantly working on different aspects of its assessment
method which is based on the short-term largest Lyapunov exponent (LLE). A state space structure is a vital aspect of the LDS
assessment because the algorithm of the LLE computation for experimental data requires a reconstruction of a state space
trajectory. *e gait kinematic data are usually one- or three-dimensional, which enables to construct a state space based on a uni-
or multivariate time series. Furthermore, two variants of the short-term LLE are present in the literature which differ in length of
a time span, over which the short-term LLE is computed. Both a state space structure and the consistency of the observations based
on values of both short-term LLE variants were analyzed using time series representing the joint angles at ankle, knee, and hip
joints. *e short-term LLE was computed for individual joints in three state spaces constructed on the basis of either univariate or
multivariate time series. Each state space revealed walkers’ locally unstable behavior as well as its attenuation in the current stride.
*e corresponding conclusions made on the basis of both short-term LLE variants were consistent in ca. 59% of cases determined
by a joint and a state space. Moreover, the authors present an algorithm for estimation of the embedding dimension in the case of
a multivariate gait time series.

1. Introduction

Stability means the ability to return to a stable state after
having been subjected to some form of perturbation. Fo-
cusing on gait, if infinitesimally small perturbations, natu-
rally occurring tiny variations in the walking surface and/or
natural noise in the neuromuscular system, are concerned,
then the ability of the locomotor system to keep the gait
smooth by attenuating them is called local dynamic stability
(LDS) [1]. *e aforementioned disturbances are the cause of
slightly different conditions at the beginning of successive
strides. As a consequence, the LDS can be assessed using
a measure of the extreme sensitivity to initial conditions.

Gait stability is of great importance for older people who
are considered prone to falls. It requires constantly working

on different aspects of LDS assessment method, which is
derived from the dynamical systems theory. *e method is
based on a trajectory in a state space which is reconstructed
from time series generated by a dynamical system. *e
dynamical properties of a system in the true state space are
preserved under the reconstruction process, which enables
to analyze the system’s behavior using the reconstructed
trajectory, with particular emphasis on system’s sensitivity to
initial conditions.

*e authors intended to investigate how a state space
structure affects the LDS. *e input data for constructing
a state space were time series describing the movement at
a single joint. *e authors created state spaces on the basis of
one- or three-dimensional time series for hip, knee, and
ankle joints separately and used the reconstructed trajectory
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for the LDS assessment according to the approach briefly
described in the next section.

2. Materials and Methods

2.1. .eoretical Background. A symptom of extreme sensi-
tivity to initial conditions is the exponential rate of di-
vergence of trajectories from their starting points which are
located in a state space very close to each other. *is rate,
which is called the largest Lyapunov exponent (LLE), is
defined as follows:

λ1 � lim
t⟶∞

1
t

· ln
d(t)

d t0( 
 , (1)

where t0 is the initial time instant and d(t) represents
a distance between corresponding points on initially nearby
trajectories at any time instant t. From the perspective of gait
analysis, a positive LLE value indicates locally unstable
behavior (i.e., trajectories diverge; however, due to the
presence of the attractor the distance between them cannot
grow without limit). *e higher the LLE, the greater the
system’s sensitivity to extremely small perturbations during
gait and thus the lower the LDS. *e LLE, which estimates
the local stability immediately after a potential perturbation,
is called the short-term largest Lyapunov exponent. *e
short-term LLE is computed over a time span of a length
either corresponding to one step [2–4] or one stride [1, 5, 6]
using the Rosenstein algorithm [7]. *e idea behind this
method is that pairs of segments of the state space trajectory
reconstructed on the basis of experimental data repeatedly
imitate two initially neighboring trajectories, which makes it
possible to trace the divergence of them. A comprehensive
and precise description of the component methods leading
finally to the determination of LLE was included in the work
of Perc [8].

A state space structure is an important aspect of the LDS
assessment. *e reconstruction procedure is based on two
parameters: time delay τ (reconstruction delay, lag) and
embedding dimension m. For a time series, which is
composed of N points x1, x2, . . . , xN , an m-element
vector of delay coordinates of the point xi on the recon-
structed trajectory is given by [xi, xi+τ , xi+2·τ , . . . , xi+(m−1)·τ],
where i � 1, 2, . . . , M � N− (m− 1) · τ (the reconstructed
trajectory consists of M points) [9].

For a multivariate time series, which is composed of K

univariate time series of equal length N, the reconstruction
parameters are defined by a time delay vector [τ1, τ2, . . . , τK]

and an embedding dimension vector [m1, m2, . . . , mK].
*erefore, the state space dimensionality m is a sum of all
mk, k � 1, 2, . . . , K, and the m delay coordinates of the point
xi form a vector [x1,i, x1,i+τ1, . . . , x1,i+(m1−1)·τ1, x2,i, x2,i+τ2,

. . . , x2,i+(m2−1)·τ2, . . . , xK,i, xK,i+τK
, . . . , xK,i+(mK−1)·τK

], where
i � 1, 2, . . . , M � N–max

k
(mk–1) · τk  [10, 11].

2.2. Review of the Previous Work. Concentrating on the
importance of analyzing LDS and utilizing its results, some
other pieces of research deserve a mention, e.g., Terrier et al.
[12] investigated LDS in patients with chronic impairments

after foot and ankle injuries, Bruijn et al. [13] discussed the
relationship between gait stability and arm swing, and
Dingwell and Marin [5], as well as England and Granata [6],
analyzed the influence of gait speed on LDS. Several studies
[14, 15] indicate that LDS is associated with the fall risk.
Moreover, LDS may be used as a potential fall predictor to
differentiate fall-prone adults [16]. LDS turned out to be
sensitive to age-related degeneration [2]. *e authors of [3]
show that dance training might improve LDS of normal
walking of the elderly. Another important aspect of LDS is its
suitability for monitoring of geriatric or neurological pa-
thologies in their early phases [2]. Comprehensive reviews of
measures assessing the stability of human locomotion were
prepared by Hamacher et al. [17], Bruijn et al. [18], and Van
Emmerik et al. [19].

*e discussion of state space structures in the context of
motion data was initiated by Gates and Dingwell [20] who
focused on univariate time series based on Euler angles
describing rotational motion of a shoulder. *e authors
conclude that the comparison between outcomes for dif-
ferent state spaces should be made with caution; however,
the trends identified in the analyzed data remain relevant.
Besides, the authors do not recommend the tested PCA-
based reduction of a state space dimensionality. In [21],
a multivariate time series, which represented movement at
hip, knee, and ankle joints in the sagittal plane, was applied
to analyze quiet standing balance. As far as the total em-
bedding dimension for a multivariate time series is con-
cerned, Vlachos and Kugiumtzis [10] presented two
modified variants (FNN1 and FNN2) of the false nearest
neighbors method [22], which were adjusted to a multi-
variate time series. According to FNN1, the same embedding
dimension is applied to all the component time series. *e
FNN2 method is an exhaustive algorithm. *e third method
proposed in [10] was based on the criterion of prediction
error minimization (PEM), whereas Zhang et al. [23] sug-
gested applying a maximal joint entropy criterion. *e
consequences of a fixed time delay and/or a fixed embedding
dimension were investigated by van Schooten et al. [4].
Hamacher et al. [2] evaluated multiple state space definitions
differing in signal type (linear acceleration and angular
velocity), signal dimension (one-dimensional and three-
dimensional), and location of an inertial sensor (trunk and
forefoot). Piórek et al. [24] used a quaternion-based in-
terpretation of body segments’ rotations and replaced
a multivariate time series of Euler angles by a quaternion
angle time series. Moreover, they showed a correlation
between LLE values computed for time series consisting of
(1) quaternion angles and (2) joint angles in a group of
young individuals for hip, knee, and ankle joints in different
variants of walking speed and ground inclination. *e same
set of experimental data was also analyzed using a new
quaternion-based variant of the approximate entropy
measure [25]. A systematic review of methodological ap-
proaches of the LLE quantification was prepared by Meh-
dizadeh [26].

It should also be pointed out that the range of appli-
cations of the LLE as a measure of sensitivity to infinitesimal
changes in initial conditions goes beyond the gait analysis.
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For instance, Jagrič et al. [27] analyzed the irregularity in
short electrocardiographic (ECG) recordings in a similar
manner to predict successful defibrillation in patients with
ventricular fibrillation. A higher level of irregularity was
interpreted as an indicator of patients who may be subjected
to effective defibrillation.

2.3. .e Goal of the Research. As mentioned above, the
examined state space structures were constructed on the
basis of time series built of joint angles at hip, knee, and
ankle joints. *ree time series, which are related to the given
joint, represent specific types of movement in sagittal,
frontal, and transverse planes. For instance, movements at
hip joint are called flexion/extension, abduction/adduction,
and internal/external rotation, respectively. However,
analysis of human gait focuses often on the sagittal plane to
which the vast majority of the work during gait is assigned
(ca. 74%, 85%, and 93% in case of hip, knee, and ankle joints,
respectively) [28]. All the planes can be included using a state
space based on a multivariate times series. At the previous
research stage, which was extensively described in [29], the
authors only used one state space that was based on mul-
tivariate time series composed of experimental data recorded
in the CAREN extended environment (http://www.
motekforcelink.com/product/caren/). Various experi-
ments’ scenarios (i.e., variants of gait) were proposed which
differed from each other with respect to walking speed,
platform slope, and optional external perturbation. *e
results presented here are based on the same set of exper-
iments. However, this time both the comparison of the LDS
in three pairs of the “opposed” scenarios (i.e., gait variants
which differ in one of the aforementioned aspects) and the
statistical analysis were made for ankle, knee, and hip joints
separately. Moreover, two additional structures of a state
space were taken into consideration. *e state spaces based
either on a multivariate times series or on a univariate time
series, which represents joint angles in the sagittal plane, will
be described in Section 2.4.

Finally, three state space structures, which were con-
structed for each joint separately, were used to verify if the
differences in LLE values between the opposed scenarios are
significant for individual joints.

*e authors also present a modification of the LDS
computationmethod, i.e., an algorithm for estimation of one
of its crucial parameters, embedding dimension, for the case
of a multivariate gait time series, in which the parameter is
not estimated for each of the component time series sepa-
rately, but holistically.

*e following research questions are addressed in the
paper:

(i) Are there any significant differences in the local
dynamic stability between compared gait variants,
which can be revealed using the individual state
spaces?

(ii) Is the predominant role of sagittal plane preserved
in a state space which is based on amultivariate time
series?

(iii) Does the length of the time span, over which the
short-term LLE is computed, influence the differ-
ence in the local dynamic stability between com-
pared gait variants?

2.4. .e Research Procedure. *e research procedure was
composed of the following steps:

(1) Data acquisition and preprocessing.
(2) Estimation of the reconstruction parameters.
(3) Trajectory reconstruction.
(4) Estimation of the short-term LLE, taking into con-

sideration both the aforementioned time span
variants.

Inspired by reports in the literature, the authors decided
to incorporate three different state space structures into
research. *e UniS state space is reconstructed on the basis
of a univariate time series describing a movement at a joint
in the sagittal plane. *e next two spaces—MultiFull and
MultiFNN—are reconstructed on the basis of a multivariate
time series which is composed of three univariate time series.
Each of the series is related to movement at a given joint in
one of the motion planes: sagittal, frontal, and transverse.
*e MultiFull space is built on the basis of three pairs of
independently determined parameters (mk, τk), k � 1, 2, 3,
resulting in space dimensionality m � m1 + m2 + m3. *e
average mutual information (AMI) method [30] was used in
each case to determine time delays, whereas the false nearest
neighbors (FNN) method was utilized to estimate embed-
ding dimensions. *e number of bins required by the AMI
was determined according to the Sturges formula [31], and
according to Kennel et al.’s example [22], the following
values were assigned to the first (Rtol) and the second (Atol)
criterion of the FNN for designating a point as a “false”
neighbor: Rtol � 15, Atol � 2. However, in the case of
MultiFNN, a variant of the FNN adjusted to multivariate
time series was applied which takes into consideration the
quota of work done during gait in individual motion planes.
Based on this criterion, the planes are ordered descending as
follows: sagittal, frontal, and transverse [28].

*e dimensionality of MultiFNN space is determined
holistically, i.e., on all three time series treated as a whole.
Starting from 1, the embedding dimension is gradually
increased by inserting successive elements to the vector of
delay coordinates. *e coordinates are taken from cyclically
changed component time series S, F, and T (the symbols “S,”
“F,” and “T” stand for sagittal, frontal, and transverse planes,
respectively), with appropriate time delay (τS, τF, τT) for
each time series. *e time series describing a movement in
the sagittal plane is the first one used in each cycle. *e stop
criterion is met when the percentage of the “false” nearest
neighbors falls below a given threshold (e.g. 1%) (a neighbor
of a given point P in a space of dimensionality d turns out to
be “false,” when it is no longer a neighbor of P in a space of
dimensionality d + 1). As a result, the number of coordinates
taken from the S time series (mS) cannot be lower than the
number of coordinates from the F series (mF) which, in
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turn, cannot be lower than the number of coordinates from
the T series (mT): mS ≥mF ≥mT. By that means, the method
to some extent takes into account the domination of an
anterior-posterior movement in gait.

*is research is a part of an extensive project carried out
in cooperation with the University of the *ird Age (U3A).
*e project focuses on elderly people that would like to
remain active over the age of 65. Table 1 presents charac-
teristics of 14 U3A students, who agreed to participate in the
experiments (12 women, 2 men), including median, mean,
and standard deviation (SD) values of age, height, weight,
and the body mass index (BMI).

*e authors state that the study has been approved by the
Ethical Committee and all the subjects gave informed
written consent to participate in the research after they were
briefly introduced to the research protocol.

*e CAREN extended system, which was used as the
research environment, guaranteed not only fully immersive
virtual scenery and 6 DOF motion platform but also safety
and comfort of the participants. Besides, during the ex-
periments, the walkers were under constant medical su-
pervision. It is worth mentioning that the U3A students
willingly took part in the experiments, especially when the
research environment turned out to be so immersive, at-
tractive, and safe at the same time, as the CAREN extended
system is.

*e participants performed six scenarios of self-paced or
fixed speed treadmill walking on level ground or on inclined
platform, which are briefly presented in Table 2.

In each scenario, the subjects walked through a virtual
forest. *e CAREN treadmill’s self-paced mode enables the
subject to initiate gait and walk at her/his own pace which
determines the instant walking speed. *e treadmill adjusts
then its speed to adapt to the subjects’ pace. *e self-paced
mode was used in Normal, Perturbation, Up, and Down
scenarios. *e CAREN output data include the instant
walking speed, so the values referring to the Normal sce-
nario were averaged, thereby determining the basis
(PWSs—subject’s mean preferred walking speed) for the
imposed constant walking speed used in Faster and Slower
scenarios (1.2 · PWSs and 0.8 · PWSs, respectively). A single
external disruption used in the Perturbation scenario was
a sudden vertical jerk of a platform with a constant am-
plitude for all the participants. *e perturbation was in-
duced unexpectedly by the staff member, who supervised
the experiment, at time instants which were similar for all
the subjects.

*e participants practiced each scenario until they were
able to walk comfortably. Next, three trials were recorded
using the integrated Vicon motion capture system at the
frequency of 100Hz giving together 18 gait sequences for
every subject (several exceptions were caused by fatigue).
Every time series, which is analyzed by means of the LLE,
should include the equal number of strides as well as the
equal number of data points [18]. So, the sequences were
long enough to contain 50 strides as the assumed final
length.

*e recorded data were initially filtered and optionally
repaired (e.g., in view of occluded markers) using the Vicon

software.*e beginning of each stride was demarcated based
on precisely marked occurrence of the “heel-strike” event. A
stride interval varied not only across subjects but also across
experiments’ scenarios. Mean and standard deviation values
of the stride interval for different scenarios are included in
Table 3.

Where necessary, the time series were cropped to 50
strides. Next, every stride was separately normalized using
linear interpolation to contain 100 points. Subsequently, the
time series were subject to estimation of reconstruction
parameters. It deserves a mention that the most frequently
occurring values for the dimensionality of the MultiFNN
state space are 7, 8 (UniS: 4, 5;MultiFull: 14, 15). Afterward,
the short-term LLE values were calculated using the
reconstructed trajectory and taking into account two vari-
ants of a time span

(i) of a length equal to 50 which is equivalent to one
step, i.e., a half of a stride (the short-term LLE is then
labeled by λS0.5)

(ii) of a length equal to 100 which is equivalent to one
stride (λS1)

*e mean period parameter as the threshold for tem-
poral separation of the nearest neighbors on two different
segments of the reconstructed state space trajectory, which
repeatedly imitate two initially neighboring trajectories, was
estimated as the reciprocal of the mean frequency of the
power spectrum [7]. In each iteration, one segment starts
from the next point of the reconstructed trajectory. Taking
into account the temporal separation mentioned above, the
nearest neighbor of this starting point on the adjacent orbit
becomes the first point of the second segment. *e length of
the segments was set to 1000. *e Euclidean distance for
each pair of two corresponding points on both segments is
computed and stored to finally determine the average log-
arithmic divergence of the neighboring trajectories which is
required to estimate the LLE value.

Finally, the results were aggregated across all the six
scenarios, three state space structures, and individual joints.
All the computations were performed using MATLAB and

Table 2: Scenarios of experiments.

Scenario Type of walking Platform
slope (°)

Normal Self-paced 0
Perturbation Self-paced 0
Faster At fixed treadmill speed (1.2 · PWSs) 0
Slower At fixed treadmill speed (0.8 · PWSs) 0
Up Self-paced +5
Down Self-paced −5

Table 1: Participants’ characteristics.

Age (years) Height
(m)

Weight
(kg)

BMI
(kg/m2)

Median 71 1.65 70 25.86
Mean± SD 70.64± 3.52 1.66± 0.07 76.12± 15.57 27.66± 5.18
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MySQL DBMS. *e statistical analysis of the results focused
on investigating if differences between the short-term LLE
values in three pairs of compared scenarios (Normal-Per-
turbation, Faster-Slower, Up-Down) are significant for in-
dividual joints, taking into account that the short-term LLE
values were computed using different state space structures.
*e complete analysis was performed in Excel using the Real
Statistics Resource Pack (https://www.real-statistics.com/).

3. Results

Examples of times series representing a movement in the
sagittal plane, recorded for a 75-year-old woman performing
the Normal scenario are presented in Figure 1(a) (the red
line corresponds to the left ankle joint, the blue line to the left
knee joint, and the green one to the left hip joint). Each of
these series was independently used for trajectory re-
construction in UniS state space. *e corresponding 3D
projections of the reconstructed trajectories are presented in
Figure 1(b) (left ankle joint), Figure 1(c) (left knee joint), and
Figure 1(d) (left hip joint).

*e final results are presented as box plots. On each box,
the boundary between the areas of different colors indicates
the median, the × symbol denotes the mean, the edges of the
box are the 25th and 75th percentiles, the “whiskers” indicate
the most extreme values which are not outliers, i.e., the
smallest value that is larger than or equal to
Q1 – 1.5 · (Q3 −Q1) and the largest value that is less than or
equal to Q3 + 1.5 · (Q3 −Q1), where Q1 and Q3 denote the
25th and 75th percentiles, respectively, and the outliers are
individually marked by circles. Figures 2–4 include box plots
for λS0.5 computed inUniS,MultiFull, andMultiFNN spaces,
respectively. Analogically aggregated results for λS1 are
presented in Figures 5–7. Each figure comprises six sub-
figures corresponding to six trial scenarios: (a) Normal, (b)
Perturbation, (c) Faster, (d) Slower, (e) Up, and (f) Down.
Each subfigure includes separate box plots for ankle, knee,
and hip joints on both sides of a body (“L,” left; “R,” right).

4. Discussion

Some general remarks, which were formulated at the earlier
stage of research [29], will be briefly reminded here for
clarity of further considerations. First, it is worth men-
tioning that the positive values of both short-term LLE
variants calculated for a uni- or multivariate time series
utilizing each of the considered state spaces confirm that
the elderly are locally unstable during gait; however, the
LLE values are lower than our results for young subjects
reported in [24]. Besides, the relationship between the
corresponding LLE values (λS0.5 > λS1 > 0) indicates that
locally unstable behavior is gradually attenuated by the
locomotor system. Secondly, comparisons between the

Faster and Slower scenarios (e.g., in Figures 2(c) and 2(d),
3(c) and 3(d), 4(c) and 4(d), 5(c) and 5(d)) as well as
between Up and Down scenarios (e.g., in Figures 2(e) and
2(f ), 4(e) and 4(f )) suggest that both walking slower and
walking downwards are more stable than their opposed
variants.

*e main goal of the statistical analysis is to investigate if
the differences between the opposed scenarios for individual
joints are significant, taking into consideration that the
short-term LLE values were computed in two variants using
different state space structures.

For a given joint J (ankle, knee, and hip), measure M

(λS0.5 and λS1), state space S (UniS, MultiFull, and Mul-
tiFNN), and the pair of opposed scenarios Sc1 and Sc2
(Normal-Perturbation, Faster-Slower, and Up-Down), a null
hypothesis H0(J, M, S) is formulated as follows:
P(Sc1 > Sc2) � P(Sc2 > Sc1). *e null hypothesis assumes
that with respect to joint J, measure M, and state space S, the
probability of an observation randomly selected from the
group related to the Sc1 scenario exceeding an observation
randomly selected from the group representing the Sc2
scenario equals the probability of an observation randomly
selected from the group related to the Sc2 exceeding an
observation randomly selected from the group representing
the Sc1.

*e expected conclusions are placed in the alternative
hypotheses, according to which observations in one group tend
to be greater than observations in the other group, e.g.,H1(knee,
λS0.5, UniS): P(Faster > Slower) > P(Slower >Faster) (see
Figures 2(c) and 2(d)).

*e selection of an appropriate statistical test for veri-
fication of hypotheses should be preceded by the analysis of
distribution for both measures λS0.5 and λS1 independently,
taking into account each dataset related to a pair (scenario,
joint) separately. Totally, 216 cases were considered (3
joints∗ 2 body sides∗ 6 scenarios∗ 3 state spaces∗ 2
measures� 216 datasets).

*e outcome of the Shapiro–Wilk test of normality at
significance level of 5% turned out to be negative in 74 from
216 cases (ca. 34%). *us, the verification of the hypotheses
requires a nonparametric test without any assumptions
related to the distribution of scores.

With regard to the outcomes of the Shapiro–Wilk test,
the hypotheses were verified for both measures in-
dependently using the nonparametric Mann–Whitney–
Wilcoxon test at significance level of 5%. Because the
number of null hypotheses is large (3 joints∗ 3 pairs of
scenarios∗ 3 state spaces∗ 2 measures� 54), the results of
their verification are presented symbolically. Each of
Tables 4–9 represents a pair (measure M, state space S) and
includes “�” if for a given pair of scenarios Sc1, Sc2 and
a given joint J the null hypothesis H0(J, M, S):
P(Sc1 > Sc2) � P(Sc2 > Sc1) was not rejected. Otherwise, one
of the symbols “<,” “>” determines a one-sided alternative
hypothesis (H1(J, M, S): P(Sc1 > Sc2)<P(Sc2 > Sc1) or
H1(J, M, S): P(Sc1 > Sc2)>P(Sc2 > Sc1)), in favor of which
the corresponding null hypothesis was rejected.

*e total number of rejected null hypotheses for indi-
vidual pairs of scenarios is as follows: Normal-Perturbation:

Table 3: Mean stride interval values for six scenarios (s).

Normal Perturbation Faster Slower Up Down
Mean 1.0924 1.0853 0.9590 1.4226 1.2316 1.0079
SD 0.1085 0.1063 0.0998 0.2746 0.1537 0.1222
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2, Faster-Slower: 11, and Up-Down: 10. *us, there are no
significant differences in the local dynamic stability between
Normal and Perturbation scenarios. *e platform jerks were
probably too mild and too infrequent to have an impact on
the short-term LLE.

As far as two other pairs of scenarios are concerned, the
high number of rejected null hypotheses indicates that the
sensitivity to tiny local perturbations in both compared
scenarios is different.*e lower values of the short-term LLE
for the Slower scenario suggest that this variant of walking is
conducive to greater stability and this observation is con-
sistent with a common impression that elderly people,
scared of fall, try to walk more carefully. During slow gait,
the movement of limbs is more accurately controlled by the
central nervous system.

Independently of the LDS measure and the applied state
space, the significant differences between Faster and Slower
scenarios are always visible in the case of a knee joint. LDS
for the knee joint is lower in faster walking due to more
frequent loss of body balance, more frequent bending of the
knee, and the largest lateral knee movements.

A similar remark refers to a hip joint as regards the Up-
Down pair where the hip joint is responsible for bending and
straightening the torso. *e lower values of the short-term
LLE for the Down scenario are supposedly caused by
a slightly rigid way of walking downwards and involuntary
straightening.

*e lower values for hip joints for MultiFull and Mul-
tiFNN spaces in comparison to UniS space result from using

a multivariate time series and thus adding information about
movement in frontal and transverse planes.

*e verification outcomes for UniS and MultiFNN
spaces are very consistent (in 8 from 9 cases for each
measure). It can be explained by the domination of
movement in the sagittal plane during gait. *e MultiFNN
space is based only on a subset of delay coordinates from
a multivariate time series as opposed to the MultiFull space
which includes all of them. Consequently, in the case of
MultiFNN space, the delay coordinates, which were de-
termined on the basis of a component time series describing
a movement at a joint in the sagittal plane, play a pre-
dominant role. In both cases, in which the result of verifi-
cation is different forUniS andMultiFNN ({hip, λS0.5, Faster-
Slower}, {ankle, λS1, Faster-Slower}), the null hypothesis was
not rejected forUniS, while it happened forMultiFNNwhich
was presumably caused by additional information related to
other motion planes. Greater discrepancies between UniS
and MultiFull (7 different verification results) as well as
between MultiFNN and MultiFull (5 different verification
results) suggest that MultiFull includes redundant
information.

Inspired by the close connection between UniS and
MultiFNN, the authors conducted next tests to assess
a statistical significance of differences between datasets re-
lated to individual state spaces (for λS0.5 and λS1 separately).
*e deviation of individual datasets from normal distribu-
tions and the lack of homogeneity of their variances were
showed by the Shapiro–Wilk test and the Levene test,
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Figure 1: (a) Time series representing a movement in sagittal plane (red line: left ankle joint, blue line: left knee joint, and green line: left hip
joint); (b–d) 3D projections of corresponding reconstructed trajectories for: (b) left ankle joint; (c) left knee joint; (d) left hip joint. Each of
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Figure 2: Box plots for λS0.5 computed inUniS state space for different scenarios: (a)Normal; (b) Perturbation; (c) Faster; (d) Slower; (e)Up;
(f )Down. All values are positive. *e platform jerks seem to have no effect. *e walking speed seems to affect the knee joint primarily, while
the platform inclination seems to have the greatest impact on the hip joint.
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Figure 3: Continued.
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respectively. In consequence, a significant difference be-
tween all three datasets was identified by means of the
nonparametric Kruskal–Wallis test. Afterward, the Nemenyi
test and the pairwise Mann–Whitney test indicated that the
following pairs of datasets: UniS-MultiFull and MultiFull-
MultiFNN are significantly different and confirmed that the
pair UniS-MultiFNN is not significantly different; however,
only in the case of λS0.5 (p values were 0.99 for the Nemenyi

test and 0.50 for the pairwise Mann–Whitney test). *e risk
of committing a type I error was reduced by using the
Bonferroni correction.

*erefore, although each examined state space reveals
locally unstable behavior during gait as well as its attenu-
ation in the current stride, a direct comparison of the short-
term Lyapunov exponents computed for different state
spaces bears the risk of a wrong conclusion.
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Figure 4: Box plots for λS0.5 computed inMultiFNN state space for different scenarios: (a) Normal; (b) Perturbation; (c) Faster; (d) Slower;
(e)Up; (f )Down. All values are positive.*e platform jerks seem to have no effect.*ewalking speed seems to affect the knee joint primarily,
while the platform inclination seems to have the greatest impact on the hip joint.
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Figure 3: Box plots for λS0.5 computed in MultiFull state space for different scenarios: (a) Normal; (b) Perturbation; (c) Faster; (d) Slower;
(e)Up; (f )Down. All values are positive.*e platform jerks seem to have no effect.*e walking speed still seems to affect the knee joint in the
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Figure 5: Box plots for λS1 computed in UniS state space for different scenarios: (a) Normal; (b) Perturbation; (c) Faster; (d) Slower; (e) Up;
(f ) Down. All values are positive but smaller than the corresponding λS0.5 values: locally unstable behavior is gradually attenuated by the
locomotor system. *e platform jerks seem to have no effect. *e walking speed seems to affect the knee joint primarily, while the platform
inclination seems to have the greatest impact on the hip joint.
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Figure 7: Box plots for λS1 computed inMultiFNN state space for different scenarios: (a)Normal; (b) Perturbation; (c) Faster; (d) Slower; (e)
Up; (f )Down. All values are positive but smaller than the corresponding λS0.5 values: locally unstable behavior is gradually attenuated by the
locomotor system. *e platform jerks seem to have no effect. *e walking speed seems to affect the knee joint primarily, while the platform
inclination seems to have the greatest impact on the hip joint.
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Figure 6: Box plots for λS1 computed in MultiFull state space for different scenarios: (a) Normal; (b) Perturbation; (c) Faster; (d) Slower;
(e) Up; (f ) Down. All values are positive but smaller than the corresponding λS0.5 values: locally unstable behavior is gradually attenuated by
the locomotor system. *e platform jerks seem to have no effect. *e previously indicated dependencies for individual joints are no longer
visible.

Table 4: Results of verification of statistical hypotheses for λS0.5 and
UniS.

Normal-Perturbation Faster-Slower Up-Down
Ankle joint � � �

Knee joint � > <
Hip joint � � >

Table 5: Results of verification of statistical hypotheses for λS1 and
UniS.

Normal-Perturbation Faster-Slower Up-Down
Ankle joint < � >
Knee joint � > �

Hip joint � � >
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A similar remark refers to another test in which the
accepted hypotheses based on λS0.5 were juxtaposed with
their counterparts based on λS1. In 16 of 27 (ca. 59%) cases
(where each case was determined by a joint and a state
space), the hypotheses were consistent. It means that the
length of a time span, over which the short-term LLE is
computed, must be taken into account when comparing the
results of different studies.

It should also be noted that the structure of a state space
affects the computation time which comprises the following
operations on a uni- or multivariate time series: in-
terpolation, estimation of time delay(s) and embedding
dimension(s), reconstruction of the state space trajectory,
and computation of the short-term LLE. *e mean com-
putation time values for individual state spaces are presented
in Table 10. *e computer parameters were as follows:
Aspire X5950, Intel Core i5, 3.2GHz, RAM 4GB.

As expected, the mean computation time is maximal for
the MultiFull space (owing to the estimation of three em-
bedding dimensions) and almost three times smaller for the
MultiFNN space (embedding dimension was estimated only
once). *e mean computation time for the MultiFNN space
turned out to be even slightly smaller than in the case of the
UniS which is based on a univariate time series.

It is worth mentioning that some other studies which
require the LLE computation and are based on a univariate
time series could benefit from adding one or more time series
to input data used for a state space construction. For instance,
dynamic features of eye movement [32] were originally an-
alyzed only using the values of the first derivative of horizontal
eye displacements during a fixation. A two-dimensional time
series could be created which would also include velocity in
the vertical direction while maintaining the dominant role of
horizontal eye displacements. Another example is motion
data-based quality assessment of completion of rehabilitation
exercises maintaining mobility of the hip in case of cox-
arthrosis [33] where the complex procedure of the LLE
computation using a multivariate time series could replace or
expand the results of the RQA (recurrence quantification
analysis) measures’ application for a time series describing
a hip joint movement in the sagittal plane.

5. Conclusions

*e method of computation of the local dynamic stability
requires a proper reconstruction of a state space trajectory.
*e authors intended to investigate how a state space
structure affects the short-term LLE as themeasure related to
the local dynamic stability. One of the state spaces was
constructed using an algorithm which estimates the em-
bedding dimension holistically in the case of a multivariate
gait time series while taking into account the quota of work
done during gait in individual motion planes. It should also
be mentioned here that a direct comparison of the short-
term LLE computed for different state spaces is burdened
with the risk of a wrong conclusion. Due attention should
also be paid to the length of the time span, over which the
short-term LLE was estimated.

*e improved method of LDS assessment will be used in
experiments focused on finding easy-to-measure, objective
biomarkers that could classify PD (Parkinson’s disease)
patients in early (preclinical) stages of the disease. Identi-
fication of the first deviation from the norm in patient’s
physical movement like walking, which is often unobserv-
able to a neurologist, might help follow disease progression,
make more adjusted treatment, and lead to modification of
disease course.

Data Availability

*e motion capture data (joint angles) used to support the
findings of this study are available from the corresponding
author upon request.
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Table 6: Results of verification of statistical hypotheses for λS0.5 and
MultiFull.

Normal-Perturbation Faster-Slower Up-Down
Ankle joint � > >
Knee joint � > �

Hip joint � > �

Table 7: Results of verification of statistical hypotheses for λS1 and
MultiFull.

Normal-Perturbation Faster-Slower Up-Down
Ankle joint � > �

Knee joint � > �

Hip joint � � >

Table 8: Results of verification of statistical hypotheses for λS0.5 and
MultiFNN.

Normal-Perturbation Faster-Slower Up-Down
Ankle joint � � �

Knee joint � > <
Hip joint � > >

Table 9: Results of verification of statistical hypotheses for λS1 and
MultiFNN.

Normal-Perturbation Faster-Slower Up-Down
Ankle joint < < >
Knee joint � > �

Hip joint � � >

Table 10: Mean computation time values for individual state
spaces (s).

UniS MultiFull MultiFNN
30.96 80.89 28.30
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