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Abstract: Cumulative data link cytokine storms with coronavirus disease 2019 (COVID-19) severity.
The precise identification of immune cell subsets in bronchoalveolar lavage (BAL) and their correlation
with COVID-19 disease severity are currently being unraveled. Herein, we employed iterative
clustering and guide-gene selection 2 (ICGS2) as well as uniform manifold approximation and
projection (UMAP) dimensionality reduction computational algorithms to decipher the complex
immune and cellular composition of BAL, using publicly available datasets from a total of 68,873
single cells derived from two healthy subjects, three patients with mild COVID-19, and five patients
with severe COVID-19. Our analysis revealed the presence of neutrophils and macrophage cluster-1 as
a hallmark of severe COVID-19. Among the identified gene signatures, IFITM2, IFITM1, H3F3B, SAT1,
and S100A8 gene signatures were highly associated with neutrophils, while CCL8, CCL3, CCL2, KLF6,
and SPP1 were associated with macrophage cluster-1 in severe-COVID-19 patients. Interestingly,
although macrophages were also present in healthy subjects and patients with mild COVID-19, they
had different gene signatures, indicative of interstitial and cluster-0 macrophage (i.e., FABP4, APOC1,
APOE, C1QB, and NURP1). Additionally, MALAT1, NEAT1, and SNGH25 were downregulated in
patients with mild and severe COVID-19. Interferon signaling, FCγ receptor-mediated phagocytosis,
IL17, and Tec kinase canonical pathways were enriched in patients with severe COVID-19, while PD-1
and PDL-1 pathways were suppressed. A number of upstream regulators (IFNG, PRL, TLR7, PRL,
TGM2, TLR9, IL1B, TNF, NFkB, IL1A, STAT3, CCL5, and others) were also enriched in BAL cells from
severe COVID-19-affected patients compared to those from patients with mild COVID-19. Further
analyses revealed genes associated with the inflammatory response and chemotaxis of myeloid cells,
phagocytes, and granulocytes, among the top activated functional categories in BAL from severe
COVID-19-affected patients. Transcriptome data from another cohort of COVID-19-derived peripheral
blood mononuclear cells (PBMCs) revealed the presence of several genes common to those found in
BAL from patients with severe and mild COVID-19 (IFI27, IFITM3, IFI6, IFIT3, MX1, IFIT1, OASL, IFI30,
OAS1) or to those seen only in BAL from severe-COVID-19 patients (S100A8, IFI44, IFI44L, CXCL8,
CCR1, PLSCR1, EPSTI1, FPR1, OAS2, OAS3, IL1RN, TYMP, BCL2A1). Taken together, our data reveal
the presence of neutrophils and macrophage cluster-1 as the main immune cell subsets associated
with severe COVID-19 and identify their inflammatory and chemotactic gene signatures, also partially
reflected systemically in the circulation, for possible diagnostic and therapeutic interventions.
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1. Introduction

As part of the continuing efforts to further understand the mechanisms underlying viral
infection and disease severity, unraveling the role of the immune system is imperative to develop
possible therapeutic interventions. The spread of severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) causing coronavirus disease 2019 (COVID-19) continues to devastate many communities
and economies, placing healthcare systems under mass pressures. In cases with severe or fatal
outcomes, a hyper-production of cytokines is often observed as a result of an overreaction of the
immune system to the infection, causing an imbalance known as cytokine storm [1]. The consequences
of a cytokine storm can range from alveolar injury to multi-organ failure, sepsis, or even death. Due to
the resulting devastating effects on the host, many studies are now focusing on how cytokine storms
can be minimized, as increasing evidence has shown cytokine storms to be in direct association with
more severe cases of COVID-19 [2].

Based on previous studies conducted after the emergence of prior coronaviruses, including
SARS-CoV-1 and the Middle East respiratory syndrome coronavirus (MERS-CoV), the entry receptor
for SARS-CoV-2 was identified as human angiotensin converting enzyme 2 (hACE2) [3]. Viral entry
was found to be facilitated through distinct hotspots on hACE2, forming energetically stable tunnel
structures for viral binding on hACE2-positive host cells [4]. hACE2 expression on the apical
surface of polarized human airway epithelia positively correlates with coronavirus infection, whereas
undifferentiated cells expressing little ACE2 had lower rates of infection [5]. Other tissue groups
with ACE2 expression, and therefore susceptible to coronavirus infection, include lung, heart, kidney,
and gastrointestinal tract [6,7]. Korber et al. reported a SARS-CoV-2 variant harboring the D614G spike
protein amino acid change as the most prevalent form in the COVID-19 global pandemic. Interestingly,
the authors reported the G614 variant to be associated with higher viral loads in patients but not with
increased disease severity [8].

Recognition of a foreign infection triggers innate immune responses leading to mass recruitment
of immune cells to the sites of infection. Studies have shown that higher plasma levels of Interleukin
2 (IL2), Interleukin 7 (IL7), Interleukin 10 (IL10), Granulocyte colony-stimulating factor (GCSF),
Interferon gamma-induced protein 10 (IP10), monocyte chemoattractant protein 1 (MCP1), Macrophage
Inflammatory Proteins 1A (MIP1A), and Tumor Necrosis Factor Alpha (TNFα) were found in intensive
care unit (ICU) patients compared to non-ICU patients [9,10], supporting the evidence which attributes
severe cases of COVID-19 to an intense immune response. Emerging data have increased our
understanding of hallmarks of severe cases of COVID-19. Shi et al. showed a decrease in the number
of circulating CD4+ cells, CD8+ cells, B cells, and natural killer (NK) cells, as well as a decrease
of monocytes, eosinophils, and basophils [11]. In addition to this, both human monocytes and
macrophages express ACE2 and can be directly infected with SARS-CoV-2, increasing the transcription
of pro-inflammatory genes associated with increased COVID-19 severity [1].

Interestingly, Pujhari et al. suggested that more than 70% of COVID-19 deaths are attributed to
clotting-associated complications, emphasizing the role of cytokine storms, activation of neutrophils,
and release of neutrophil extracellular traps as possible mechanisms contributing to blood clotting
disorders [12]. Neutrophilia-induced lung injury in severe COVID-19 patients was also reported by
Wang et al., who observed lesions after the second week of disease onset, coinciding with neutrophilia
progression [13].

A deep analysis of our complex immune system is important to identify key players involved
in COVID-19 severity. Single-cell analysis is therefore a valuable approach that has been utilized to
elucidate phenotypic and expressional differences between cell subsets involved in the peripheral
immune response in relation to COVID-19 infection [2,14]. In our current study, publicly available
single-cell data from bronchoalveolar lavage (BAL) comprising a total of 68,873 single cells derived
from two healthy subjects, three patients with mild COVID-19, and five patients with severe COVID-19
were subjected to iterative clustering and guide-gene selection 2 (ICGS2) and AltAnalyze algorithms,
identifying gene signatures associated with COVID-19 severity and revealing the presence of neutrophils
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and macrophage cluster-1 as hallmarks of severe COVID-19. Further computational analyses
identified several functional categories to be enriched in BAL from severe cases of infection, including
inflammatory response, chemotaxis of myeloid cells, phagocytes, and granulocytes. Changes in BAL
cells were further extrapolated to peripheral blood mononuclear cells (PBMCs) from a second cohort
of COVID-19 patients. Deepening our understanding of the specific cell subsets responsible for severe
outcomes in patients and expanding our knowledge on how these subsets contribute to the overall
immune response according to their genes signatures will bring us closer to identifying possible
therapeutic interventions for the treatment of COVID-19, in particular of those cases associated with
severe complications.

2. Materials and Methods

2.1. Single-Cell Data Retrieval and Bioinformatics

A schematic presentation of the experimental and bioinformatics workflow for transcriptome analysis
from BAL and PBMCs from COVID-19 patients and healthy subjects is provided in Supplementary Figure
S1. Read count matrices (.H5) were retrieved from the SRP250732/GSM4475052 dataset. Expression values
were first normalized to counts per ten thousand (CPTT) and were then subjected to the ICGS2 algorithm
to identify cell types using Pearson correlation >0.2. Detailed description of the computational algorithm
employed can be found in Venkatasubramanian et al. [15]. ICGS2 and AltAnalyze pipelines were
found to outperform state-of-the-art scRNA-Seq detection workflows when applied to well-established
benchmarks, as they combine multiple complementary subtype detection methods; Hierarchical
Ordered Partitioning And Collapsing Hybrid (HOPACH, sparse non-negative matrix factorization,
cluster ‘fitness’, support vector machine) to resolve rare and common cell states. ICGS2 identified cell
clusters through a complex process of PageRank down-sampling, feature selection ICGS2, dimension
reduction and clustering (sparse NMF, SNMF), cluster refinement (MarkerFinder algorithm), and
finally cluster re-assignments using support vector machine (SVM). The top 500 genes with the highest
dispersion were initially identified, followed by pairwise correlations of variable genes. Dimension
reduction with sparse NMF was employed to improve the delineation of cell clusters following
HOPACH clustering. The MarkerFinder algorithm was subsequently applied to identify rigorously
defined cell clusters with unique gene expression for downstream cell cluster assignment, which
identified genes that are positively correlated with an idealized cluster-specific expression profile.
Cell cluster assignment was finally achieved from the marker genes identified for sufficiently fitting
clusters, based on the cells assigned to the specific SNMF.

2.2. Gene Set Enrichment and Modeling of Gene Interactions Networks

Average gene expression levels across all cells (bulk) from each sample were subjected to
comparative analysis (i.e., severe vs. healthy, severe vs. mild, and mild vs. healthy) using AltAnalyze
v.2.1.3 pipeline. Differentially expressed genes were imported into the Ingenuity Pathways Analysis
(IPA) software (Ingenuity Systems; www.ingenuity.com/) and were subjected to functional annotations
and regulatory network analysis using upstream regulator analysis (URA) to analyze upstream
molecules, which are connected to genes in the dataset via a set of either direct or indirect relationships
with respect to their expression changes. Mechanistic networks (MN) takes URA further via the
generation of plausible directional networks from these regulators, employing the IPA computational
algorithm. Downstream effects analysis (DEA) identifies biological processes (disease) and functions,
which are casually affected by the deregulation of genes in datasets and predicts the outline of biological
process, whether upregulated or downregulated. IPA uses precise algorithms to predict functional
regulatory networks from gene expression data and provides a significance score for each network
according to the fit of the network to the set of focus genes in the database. The p-value is the
negative log of P and represents the possibility that focus genes in the network are found together by
chance [16,17].

www.ingenuity.com/
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Figure 1. Representative single-cell analysis of bronchoalveolar lavage (BAL) from healthy subjects. 
(a) Representative single-cell analysis of BAL from healthy subjects employing the iterative clustering 
and guide-gene selection 2 (ICGS2) algorithm depicted as heat map. The text on the left indicates 
enriched cell-type markers from the default gene-set enrichment analysis and corresponding “Z” 
score p value. (b) Uniform manifold approximation and projection (UMAP) dimensionality reduction 
visualization of cell clusters corresponding to data presented in panel a. 

2.2. Gene Set Enrichment and Modeling of Gene Interactions Networks 

Average gene expression levels across all cells (bulk) from each sample were subjected to 
comparative analysis (i.e., severe vs. healthy, severe vs. mild, and mild vs. healthy) using AltAnalyze 
v.2.1.3 pipeline. Differentially expressed genes were imported into the Ingenuity Pathways Analysis 
(IPA) software (Ingenuity Systems; www.ingenuity.com/) and were subjected to functional 

Figure 1. Representative single-cell analysis of bronchoalveolar lavage (BAL) from healthy subjects.
(a) Representative single-cell analysis of BAL from healthy subjects employing the iterative clustering
and guide-gene selection 2 (ICGS2) algorithm depicted as heat map. The text on the left indicates
enriched cell-type markers from the default gene-set enrichment analysis and corresponding “Z”
score p value. (b) Uniform manifold approximation and projection (UMAP) dimensionality reduction
visualization of cell clusters corresponding to data presented in panel (a).
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2.3. RNA-Seq Analysis of PBMCs from COVID-19 Patients

Raw sequencing data (fastq) from COVID-19 PBMCs were retrieved from the SRP262058 dataset
and were subsequently pseudo-aligned to the Gencode release 33 index; reads were subsequently
counted using KALLISTO 0.42.1 [18], as we described before [19,20]. Normalized transcripts per
million (TPM) expression values were subsequently subjected to differential analysis and hierarchical
clustering as described before [21]. A volcano plot was used to illustrate the most differentially
expressed genes (log 2-fold change) vs. log10 p value.

2.4. Statistical Analyses

Statistical analyses and graphing were performed using Microsoft excel 2016 and GraphPad Prism
8.0 software (GraphPad, San Diego, CA, USA). Two-tailed t-test was used for comparative groups;
p-values ≤ 0.05 (two-tailed t-test) were considered significant. For IPA analyses, the activation z-score
was utilized to infer the activation states of the indicated network and functional categories. A Z score
of −2.0 ≥ Z ≥ 2.0 was considered significant.

3. Results

3.1. Single-Cell Transcriptome Analysis of BAL Revealed Variable Cellular Composition in Severe and Mild
COVID-19 Patients Compared to Healthy Subjects

ICGS2 algorithm was employed to decipher the cellular composition of BAL from two healthy,
three mild, and five severe COVID-19 patients. Clustering patterns from representative healthy subjects
identified seven cell clusters enriched in T cells, lung macrophages (perivascular interstitial, Cluster-0,
Cluster-1, alveolar), neutrophils, and dendritic cells (Figure 1a). Figure 1b displays an alternative
visualization, dimensionally reducing the data from Figure 1a via UMAP. Cell clusters exhibited a
significant overlap between different gene signatures of different cell populations from healthy subjects.

ICGS2 analysis of patients with mild COVID-19 revealed distinct cell composition compared
to the healthy control. Representative data from mild-COVID-19 BAL were mostly consistent of
lung macrophages (cluster −0, −1, and −2), CD19, CD4, CD4 Th1, CD8, and NK cells, as well as
lung and bronchial epithelial cells (Figure 2a). Figure 2b illustrates the data from a representative
mild-COVID-19 patient using UMAP. Clusters 1, 2, 6, and 21 display significant distinction from other
clusters, while the majority of other clusters were found centered around UMAP-X; 0, UPMA-Y; 5.

We subsequently characterized the cellular composition from severe-COVID-19 patients.
Single-cell analysis of a representative severe-COVID-19 patient highlighted a massive enrichment in
neutrophils and macrophages, especially cluster-1 (Figure 3a). Similar to what found for mild-COVID-19
patients, BAL from severe-COVID-19 patients also included lung epithelial and bronchial cells. Top
enriched markers in severe-COVID-19 BAL were spermidine/spermine N1-acetyltransferase 1 (SAT1),
involved in the catabolic pathway of polyamine metabolism, LY8E, Spi-1 proto-oncogene (SPI1),
Fc fragment of IgE, high-affinity I, receptor for gamma polypeptide involved in allergic reactions
(FCER1G), and transforming growth factor beta 1 (TGFB1). A UMAP visualization of cell clusters
corresponding to panel (a) is presented in Figure 1b.
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Figure 2. Representative single-cell analysis of BAL from a mild COVID-19 patient. (a) Representative 
single-cell analysis of BAL from a mild-COVID-19 patient employing the ICGS2 algorithm depicted 
as heat map. (b) UMAP dimensionality reduction visualization of cell clusters corresponding to data 
presented in panel a. 

We subsequently characterized the cellular composition from severe-COVID-19 patients. Single-
cell analysis of a representative severe-COVID-19 patient highlighted a massive enrichment in 
neutrophils and macrophages, especially cluster-1 (Figure 3a). Similar to what found for mild-
COVID-19 patients, BAL from severe-COVID-19 patients also included lung epithelial and bronchial 
cells. Top enriched markers in severe-COVID-19 BAL were spermidine/spermine N1-
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Figure 2. Representative single-cell analysis of BAL from a mild COVID-19 patient. (a) Representative
single-cell analysis of BAL from a mild-COVID-19 patient employing the ICGS2 algorithm depicted
as heat map. (b) UMAP dimensionality reduction visualization of cell clusters corresponding to data
presented in panel (a).
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avoid over-representation from different samples, equal number of single cells were randomly 
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Figure 3. Representative single-cell analysis of BAL from a severe-COVID-19 patient. (a) Representative
single-cell analysis of BAL from a severe COVID-19 patient employing the ICGS2 algorithm depicted
as heat map. (b) UMAP dimensionality reduction visualization of cell clusters corresponding to data
presented in panel (a).

3.2. Combination Analysis of Single-Cell Transcriptomes of BAL from Severe- and Mild-COVID-19 Patients
Compared to Healthy Subjects

For a more comprehensive and comparative look into the single-cell transcriptome data and
to avoid over-representation from different samples, equal number of single cells were randomly
selected from each sample, hence, a total of 16,310 cells were subjected to ICGS2 analysis (Figure 4a,
Supplementary Table S1). Firstly, we observed single cells from each of the three severity subsets
to largely cluster together, with some overlap in the mild and severe cases. Whereas control and
milder cases presented upregulation in gene markers associated with lung perivascular interstitial
macrophages and lung macrophage cluster-0, single cells from the severe, and to a lesser extent, mild
cases showed an upregulation in cell markers pertaining to lung neutrophils, lung CCR7, and dendritic
cells (DCs), indicating a distinct immune response. Interestingly, severe-COVID-19 patients displayed
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a remarkable enrichment in neutrophils and macrophage cluter-1 compared to mild-COVID-19 patients
and healthy controls. UMAP illustration of cell distribution from the same study group is shown in
Figure 4b, with selected cell clusters being marked.
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Figure 4. Combined single-cell analysis of BAL from severe- and mild-COVID-19 patients compared to
healthy subjects. A total of 16,310 BAL-derived single cells from two healthy subjects, three patients
with mild COVID-19, and five patients with severe COVID-19 were subjected to singl- cell analysis.
Data are displayed as heat map (a) with the enriched cell population indicated on the left. (b) UMAP
dimensionality reduction visualization of cell clusters corresponding to data presented in panel a with
selected enriched cell populations indicated. MΦ: macrophages.

3.3. Enriched Gene Markers in Patients with Mild or Severe COVID-19 Compared to Healthy Subjects

The ICGS2 algorithm identified gene signatures with the strongest correlation with the indicated
cell types. We subsequently explored the expression of selected gene markers indicative of neutrophils,
macrophage (MΦ) cluster 1, macrophage cluster 0/interstitial, and noncoding RNAs (ncRNAs) in a
total of 68,873 single cells derived from the same cohort of patients with varying COVID-19 severity.
Representative gene signatures of each cell population are shown in Figure 5a–d. Neutrophil-derived
signature (IFITM2, IFITM1, H3F3B, SAT1, and S100A8) exhibited significantly higher expression
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(p < 0.0001) in severe cases compared to normal, with the mild cases exhibiting intermediate expression
between the normal and the severe cases (Figure 5a). The macrophage cluster-1-derived signature
(CCL8, CCL3, CCL2, KLF6, and SPP1) was confirmed to be significantly higher in severe cases of
COVID-19 compared to control and mild cases (Figure 5b). Patients with devere and mild COVID-19
exhibited substantial reduction in the expression of FABP4, APOC1, APOE, C1QB, and NURP1, all
associated with interstitial and macrophage cluster-0 (Figure 5c). MALAT1, NEAT1, and SNHG25 long
noncoding RNAs (lncRNAs) were downregulated in mild and severe COVID-19 BAL cells. Further
downregulation of MALAT1 and NEAT1 was observed in mild-COVID-19 BAL cells, while SNHG25
was markedly downregulated in both mild- and severe-COVID-19 BAL cells (Figure 5d).
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Figure 5. Expression of enriched gene markers in patients with mild or severe COVID-19 compared to
healthy subjects. Expression of gene signatures derived from neutrophils (a), macrophage (MΦ) cluster
1 (b), macrophage cluster 0/interstitial (c), and noncoding RNAs (ncRNA) (d) in a total of 68,873 single
cells derived from two healthy subjects, three patients with mild COVID-19, and five patients with
severe COVID-19. Data are presented as violin plots. N: control, M: mild, S: Severe. Statistical analysis
revealed significant differences in gene expression (p ≤ 0.0001) when comparing S vs. M, S vs. N, and
M vs. N for the indicated genes.

3.4. Canonical and Upstream Regulator Pathway Analyses Highlighted Activation of Innate Immune Response
in BAL Cells from Severe COVID-19

The average gene expression levels across all cells in each sample were subjected to differential
expression analysis comparing patients with severe (Supplementary Table S2) and mild COVID-19
(Supplementary Table S3) to healthy subjects. Differentially expressed genes were subsequently
subjected to comparative canonical pathway analysis in IPA, revealing modest enrichment in a number
of canonical pathways including innate immunity associated with interferon signaling, FC gamma,
IL17, and Tec kinase signaling in severe-COVID-19 BAL cells, while PD-1 and PDL-1 pathways
were suppressed (Figure 6a). Furthermore, pathways associated with adaptive immune responses
were predominantly signaling pathways that contribute to the regulation of activated effector T-cell
functions such as iCOS–iCOSL, Th1, protein kinase C-theta (PKC theta), calcium-induced T lymphocyte
apoptosis and dendritic cell maturation pathways, which were downregulated in both severe- and
mild-COVID-19 BAL cells (Figure 6a). Similarly, an in-depth comparative analysis of severe- and
mild-COVID-19 BAL transcriptome data showed significant enrichment of several upstream regulators.
In particular, IFNG, PRL, TGM2, TLR9, PAF1, IL1B, TNF, and NFKB were activated in severe-COVID-19
BAL cells (Figure 6b). However, several other upstream regulators were suppressed in severe- and
mild- COVID-19 BAL cells compared to healthy individuals.
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Figure 6. Identification of canonical pathways and upstream regulator networks associated with severe
and mild COVID-19. Differentially expressed genes in patients with severe vs. control and mild
vs. control COVID-19 were subjected to canonical and upstream regulator analysis using ingenuity
pathways analysis (IPA). (a) Comparative analysis of significantly altered canonical pathways in mild-
and severe-COVID-19 BAL transcriptome data. (b) Comparative analysis of significantly altered
upstream regulatory networks in mild- and severe-COVID-19 BAL transcriptome data. Red indicates
activated, while blue indicates suppressed pathways. Activation Z score is depicted according to the
color scale.
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We subsequently sought to identify the pathways and functional categories unique to
severe-COVID-19 BAL cells. Differential gene expression analysis of BAL cells from severe- compared
to mild-COVID-19 patients revealed 53 upregulated and 34 downregulated genes (Supplementary Table
S4). Mechanistic network analysis elucidates the pragmatic alterations in appropriate gene expression
through upstream regulator prediction. The activated mechanistic networks in patients with severe
COVID-19 highlighted the predicted relationship between IL1A, IL1B, and TNF, and their regulation in
gene datasets based on Z scores. Herein, the main IL1B upstream regulator activated 16 downstream
molecules including two upstream regulators, TNF and IL1A, and inhibited two downstream genes,
HLA-DRA and APOE. Similarly, TNF activated 16 and inhibited 6 downstream target genes, among
those 9 genes (upregulated CCL3, CCL4, ILR1, DUSP1, BCL2A1 and downregulated APOE) including
IL1A upstream regulator, which were common between IL1B and TNF. Furthermore, the upstream
regulator IL1A was predicted to activate seven downstream targets, among which, four shared with
IL1B (M2A, CXCL8, CXCL2, TNF, and CCL8) and two shared with TNF (NFKBIA and FOS) (Figure 7a).
Similarly, another mechanistic network illustrates the relationship between CCL5, TLR7, and TLR9.
Mainly, the upstream regulator TLR7 was predicted to activate 11 downstream targets including two
upstream regulators, TLR9 and CCL5. Further analysis with TLR9 revealed direct activation of two
downstream targets (IFITM1 and NAMPT) shared with CCL5 and another target, ISG20, which is
shared with TLR7 through seven intermediated targets, including the main upstream regulator CCL5.
Interestingly, CCL5 is predicted to exert the same stimulatory effect on CCL2 as TLR9 and TLR7 and
have distinct effects on four more downstream targets (Figure 7b).
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3.5. Disease and Functional Analysis of Differentially Expressed Genes in BAL from Severe- and Mild-
COVID-19 Patients Indicated the Activation of Innate Immune Responses

In order to understand the downstream functional effects of upstream regulators in severe- and
mild-COVID-19 BAL cells, we employed IPA downstream effector analysis. Our analysis predicted the
various disease and functional activities based on the deregulated upstream regulator molecules in
the dataset portrayed as a vertical heat map. Comparative analysis revealed common deregulated
disease activities and functions in BAL cells from patients with severe and mild COVID-19, including
the downregulation of RNA virus replication, viral infection, replication of influenza, and hepatitis C
and vesicular stomatitis virus, and the upregulation of multiple sclerosis inflammatory response and
activation of myeloid cells and phagocytes (Supplementary Table S5). Comparatively, many disease
and functional pathways were upregulated only in severe-COVID-19 BAL cells, including chemotaxis,
cell adhesion, cell movement, migration of myeloid cells, phagocytes, granulocytes, monocytes, and
cell movement of NK cells. Interestingly, activation of total lymphocyte and T lymphocyte pathways
were downregulated. Therefore, our downstream effector analysis revealed the augmentation of
innate immune responses in severe-COVID-19 patients (Figure 8a). Disease and function analysis of
BAL from severe- vs. mild-COVID-19 patients revealed a number of activated functional categories
(Supplementary Table S6). Of particular interest, our regulator effector analysis in severe-COVID-19
BAL cells revealed activation of CCL2, CCL3, CCL3L1, CCL4, CCL7, CCL8, CXCL8, SPP1, S100A8,
and S100A9, and inhibition of MT-ND1 and FN1 upstream regulators which is predicted to trigger
the chemotaxis of phagocytes and cellular movement of neutrophils in severe-COVID-19 BAL cells
(Figure 8b,c).

3.6. Similarities in Transcriptome Data from BAL and PBMCs from COVID-19 Patients

To further highlight if the observed changes in BAL cells can be reflected in the circulation,
we explored PBMCs transcriptome data from an independent cohort of seven COVID-19 patients
and six healthy controls, revealing commonalities for several genes differentially expressed in BAL
and PBMCs. Hierarchical clustering based on differential gene expression (log2) (Figure 9a and
Supplementary Table S7) highlighted the enrichment in functional categories (GO) involved in defense
responses to viruses, killing cells of other organisms, and activation of innate (complement) immune
functions and classical pathways in PBMCs from COVID-19 patients. Other upregulated functions in
COVID-19 patients included processes related to acute inflammatory responses, response to interferon
gamma, pattern recognition receptor activity, antigen binding, and platelet activation, as well as
negative regulation of viral genome replication. On the other hand, the most enriched functional
category in the healthy group was positive regulation of NK cell-mediated immunity, suggesting a
possible suppression of this cell population in the periphery of COVID-19 patients. Interestingly, when
comparing PBMCs and the BAL-derived data from the two independent cohorts, we observed 11
genes (IFI27, IFITM3, IFI6, ISG15, IFIT3, RSAD2, MX1, IFIT1, OASL, IFI30, and OAS1) that were found
in all three categories, PBMCs, BAL from severe-COVID-19 patients, and BAL from mild-COVID-19
patients. In addition, there were 14 commonly upregulated genes (S100A8, IFI44L, IFI44, CXCL8,
CCR1, PLSCR1, EPSTI1, FPR1, OAS2, IL1RN, TYMP, BCL2A1, GAPDH, and OAS3) in severe-Covid-19
BAL cells and PBMCs, and one gene in common (C1QC) for BAL and PBMCs form mild cases of
COVID-19. (Figure 9b). Volcano plots depicting selected genes common to BAL and PBMCs, indicating
the upregulated (red) and downregulated (blue) genes, are shown in Figure 9c. The upregulated
genes included S100A8, S100A9, IFI27, EPSTI1, and EPSTI1. These genes encode calcium-binding
proteins that play important roles in the regulation of inflammatory immune responses. Constitutively
expressed in neutrophils and monocytes, they could lead to the induction of neutrophil chemotaxis
and adhesion. Such commonalities displayed in BAL and in the circulation could provide us with
potential biomarkers to target in the development of therapeutic interventions against viral infections.
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Figure 9. Similarities in transcriptome data from BAL and peripheral blood mononuclear cell (PBMCs)
in COVID-19 patients. (a) Hierarchical clustering summarizing differential gene expression (log2)
in PBMCs from COVID-19 and normal controls, highlighting enriched functional categories (GO).
(b) Venny diagram illustrating the aberrantly expressed genes in common in severe- and mild-Covid-19
BAL and PBMC, with 11 genes in common to the three categories. (c) Volcano plot depicting selected
genes common to BAL and PBMCs, indicating upregulated (red) and downregulated (blue) genes.

4. Discussion

BAL has been widely used in diagnosing lower respiratory airway infections [22] and has recently
provided us with data on the pulmonary microenvironment during COVID-19 infection. Utilizing
single-cell gene expression data from patients with COVID-19 at varying severity in combination with
modern computational analysis identified rigorously defined cell clusters, revealing the presence of
neutrophils and macrophages cluster-1 as hallmarks of severe COVID-19. Our data are in agreement
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with the work of Liao et al., who reported the presence of proinflammatory monocyte-derived
macrophages in the BAL fluid from patients with severe COVID-9 employing the same dataset [2].
Gene signatures highlighted interferon-induced transmembrane (IFITM) protein 1 and 2 (IFITM1 and
IFITM2), which have been associated with other viruses including influenza and West Nile Virus [23,24].
We recently reported on the upregulation of several IFITM family members in bronchial epithelial
cells infected with SARS-CoV-2 [25]. The involvement of such gene signatures emphasizes the link
between innate immune response and effects of COVID-19 on interferon gamma signaling. Histone
structure and regulation also play a key role in the gene regulation of any transcript. Modifications in
histones such as HAT1, HDAC2, and KDM5B were revealed by network analysis, identifying these
histones as potential regulators of the SARS-CoV-2 receptor ACE2 in the human lung. In a cohort
of 700 lung transcriptome samples, increased expression of ACE2 and the effect of histone protein
modifications in these patients are suggested to induce a severe COVID-19 phenotype [26]. H3 histone,
family 3B (H3F3B), associated with neutrophils in our data, has been described in several cancers such
as chondroblastoma [27] and hepatocellular carcinoma [28] and in ovarian cancer cell lines [29], where
point mutations or upregulation in expression of its corresponding gene caused dysregulations and
transcriptional changes leading to disease onset and progression. Another study showed that CCL8
was detected at high levels in the peritoneal fluid of patients who exhibited anastomotic leakage after
colorectal surgery [30]. Elevated levels of SPP1 expression were also found to correlate with highly
aggressive lung adenocarcinoma [31]. Zuo et al. described the role of neutrophil extracellular traps
(NETs) released by neutrophils in order to regulate infection; however, when in excess, they contribute
to inflammation and cytokine release, leading to thrombosis in the lungs and respiratory failure in
patients with severe COVID-19 [32]. Such evidence backs our findings and confirms the associations
between these gene signatures and processes such as the involvement of neutrophils and macrophages
in inflammation in several disease types, including viral infection.

Pathological changes are associated with increased vascular permeability induced by the binding
of SARS-CoV-2 to ACE2 receptors on endothelial cells, followed by the recruitment of activated
neutrophils, macrophages, and other immune cells, which collectively result in increased production
of inflammatory cytokines including IL-6, IL-8, G-CSF, MCP1, IL-2, TNF-α, and IL-1β [33,34]. Some of
these cytokines further amplify the inflammatory loop and induce the recruitment of more inflammatory
cells, while others initiate and activate the coagulation-mediated cascade [33]. In turn, persistent
unresolved inflammation leads to endothelial cell dysfunction, Disseminated intravascular coagulation
(DIC), alveolar dysfunction, severe acute respiratory distress syndrome (ARDS), and ultimately
multi-organ failure and death [33,35]. Higher levels of several inflammatory cytokines including
TNF-α, IL-6, and IL-1 and inflammatory chemokines such as CCL2, CCL3, and CXCL10 are associated
with disease severity and death in COVID-19 patients [36]. TNF-α and IL-1β induce vasodilation and
permeability, which allows immune cells to reach the sites of damage, while IL-β and IL-6 induce
complement and opsonization. Different chemokines and cytokines, including CCL2, 3, 5, CXCL8, 9, 10,
IFNγ, TNFα, IL-1-β, IL-1RA, IL-6, IL-7, IL-8, IL-12, IL33, GCSF, GMCSF, IP10, MCP1, MIP1α, MIP1β,
PDGFB, and VEGFA, contribute to cytokine storms [37,38]. These chemokines are primarily involved
in the recruitment of other leukocytes to tissues, while pro-inflammatory cytokines are involved in
effector functions causing damage to cells [39,40]. The resulting intense immune response is extensively
documented in ARDS affecting the lungs but leads to multi-organ dysfunction (MODS) and failure
via tissue damage and ultimately to death in severe SARS-CoV-2 infections. In line with this, high
cytokine levels have been reported in critically ill COVID-19 patients [9].

Ingenuity pathway analysis revealed enrichment of interferon signaling, suggested by
Felgenhauer et al. to be a potential key player in the management of COVID-19, since IFNs type I and
III inhibited SARS-CoV-2 in a dose-dependent manner [41]. In other reports, increased IFN type I and II
production in response to viral infection was found to impair lung epithelial regeneration throughout
the duration of recovery from viral infection [42]. The idea of targeting Fcγ receptor (FcγR) pathways
identified in our ingenuity pathway analysis is in agreement with a study by Chakraborty et al., which
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reported a global analysis of antibodies produced during SARS-CoV-2 infections [43]. Reduced Fc
glycosylation in COVID-19 patients led up to a 10-fold higher affinity for FcγRIIIa, which is abundant
on monocytes, macrophages, and NK cells, in turn promoting pro-inflammatory cytokine production
and cytotoxic effector cell activity [44]. Activation of such pathways could be a contributing factor to
severe COVID-19 and provide potential biomarkers for targeted therapy.

Other functional categories in BAL associated with severe-COVID-19 patients include
inflammatory response and chemotaxis of myeloid, phagocytes, and granulocytes, among the most
activated. This is expected in these cases, as viral recognition by macrophages initiates the recruitment
of other immune cells through IL-6, TNF-α, IL-1β, and type-1 interferon signaling [36].

Emerging evidence highlights the roles played by lncRNAs during the course of viral infection.
Gene signatures from three lncRNA gene markers (MALAT1, NEAT1, and SNHG25) were found to
be downregulated in mild and severe cases of COVID-19, compared to normal controls. Studies on
MALAT1 in inflammatory injury following lung transplant interestingly showed that the silencing
of MALAT1 alleviated inflammatory injury by inhibiting neutrophil chemotaxis and immune cell
infiltration to the site of infection [45]. The downregulation of MALAT1 in our analysis could indicate a
role for this lncRNA as an agent for the regulation of neutrophil chemotaxis that is rife in severe cases,
in efforts to naturally alleviate inflammatory injury in COVID-19-positive cases. NEAT1 lncRNA has
also been associated with viral infection, namely, HIV-1. Its knockdown, as shown by Zhang et al., led
to enhanced viral production and inflammation by promoting the export of HIV-1 mRNA transcripts
in HeLa cells [46].

Interestingly, when comparing data from BAL to those from PBMCs in the circulation, several genes
were identified in common as aberrantly expressed, highlighting the potential of using PMBCs in the
circulation as liquid biopsies in order to identify initial clues surrounding the immune microenvironment
upon infection. Several of the commonly upregulated genes in BAL and PBMCs from COVID-19
patients were indicative of an interferon response. Upregulated genes included S100A8, S100A9,
IFI27, EPSTI1, and EPSTI1. These genes encode calcium-binding proteins that play an important
role in the regulation of inflammatory immune responses. Constitutively expressed in neutrophils
and monocytes, they could lead to the induction of neutrophil chemotaxis and adhesion, as we have
previously reported in Calu-3 human lung epithelial cells [47]. Our data are concordant with those
of Wilk and colleagues who also reported the presence of an interferon-stimulated gene signature
and neutrophils in the circulation of patients with acute respiratory failure requiring mechanical
ventilation [14]. Such commonalities displayed by BAL and the circulation could provide us with
potential biomarkers to target in the development of therapeutic interventions against viral infections.

Taken together, our data revealed the presence of neutrophils and macrophage cluster-1 as
the main immune cell subsets associated with severe COVID-19 and identified their inflammatory
and chemotactic gene signatures, as well as possible upstream regulators and potentially affected
mechanistic networks throughout the course of SARS-CoV-2 infection. We also identified commonalties
in transcriptome data from BAL and PBMCs in COVID-19 patients. Further functional studies are
needed to expand our understanding of how neutrophils and macrophage cluster-1 specifically
affect the immune system and of the downstream consequences this has upon SARS-CoV-2 infection.
However, this study provides an interesting introduction for the potential identification of possible
immune-based therapeutic interventions.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4409/9/11/2374/s1,
Figure S1: Schematic presentation of the experimental and bioinformatics workflow for transcriptome analysis
of BAL and PBMCs from COVID-19 patients and healthy subjects, Table S1: Marker genes associated with the
indicated cell clusters in healthy, mild- and severe-COVID-19 BAL cells, Table S2: Differentially expressed genes
in BAL cells from mild-COVID-19 patients vs. healthy subjects, Table S3: Differentially expressed genes in BAL
cells from severe-COVID-19 patients vs. healthy subjects, Table S4: Comparison of upstream analysis of BAL
cells from severe- COVID-19 patients vs. control and mild- COVID-19 patients vs. control, Table S5: Disease and
function comparison between severe and mild cases of COVID-19, Table S6: Comparison of disease and function
between severe-Covid-19 patients vs. control and mild- Covid-19 patients vs. control, Table S7: Differentially
expressed genes in PBMCs from COVID-19 patients vs. control.
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