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ABSTRACT
Objective  The human gut microbiota plays important 
roles in human health but is also known to be highly 
diverse between populations from different regions. 
Yet most studies inadequately account for this regional 
diversity in their analyses. This study examines the extent 
to which geographical variation can act as a confounding 
variable for studies that associate the microbiota with 
human phenotypic variation.
Design  Population-based study.
Setting  China.
Participants  2164 participants from 15 province-level 
divisions in China.
Primary and secondary outcome measures  We 
analysed the impact of geographic location on associations 
between the human gut microbiota and 72 host factors 
representing a wide variety of environmental-level, 
household-level and individual-level factors.
Results  While the gut microbiota varied across a wide 
range of host factors including urbanisation, occupation 
and dietary variables, the geographic region (province/
megacity) of the participants explained the largest 
proportion of the variance (17.9%). The estimated effect 
sizes for other host factors varied substantially by region 
with little evidence of a reproducible signal across different 
areas as measured by permutational multivariate analysis 
of variance and random forest models.
Conclusions  Our results suggest that geographic 
variation is an essential factor that should be explicitly 
considered when generalising microbiota-based models to 
host phenotype across different populations.

INTRODUCTION
The human gut microbiota plays important 
roles in human health with demonstrated 
associations with many diseases including 
obesity, diabetes, inflammatory bowel 
disease, cardiovascular disease and cancer.1–6 
However, the associated microbiota patterns 
are not always consistent across studies, espe-
cially studies from different countries.7 For 
example, some US-based studies reported 
that obesity was associated with higher 

abundance of Firmicutes and lower abundance 
of Bacteroidetes in gut microbiota,4 8 but such 
patterns have not generally been reproduc-
ible.9–12 The reasons for such discrepancies 
across studies remain poorly understood. In 
this manuscript, we explore the hypothesis 
that geographic regions directly impact the 
reproducibility of microbiota patterns with 
host phenotypes.

Geography has been shown to be one of 
the strongest explanatory factors of human 
gut microbiota variation13–15 and regional 
variation has been shown to relate to how 
the microbiota contributes to disease. 
For example, He et al found that the esti-
mated effect size of the association between 
geographic location with the gut microbiota 
was higher than that of metabolic diseases 
within a single province in China, and 
that metabolic disease models built on gut 
microbiota composition from one region 
failed to predict disease in other regions.16 
Another study from Europe and India also 
found that the geographical location was 
the most influential factor on microbiota 
variation, with a much larger association 
with community composition than the 
difference between healthy and inflamma-
tory bowel disease subpopulations.14 Both 

Strengths and limitations of this study

►► This is one of the largest studies surveying geo-
graphical variation in relation to gut microbiota 
within a single country.

►► We analysed 72 host factors, including biomarkers, 
diet, physical activity and lifestyle and environmen-
tal data.

►► We focused on the Chinese population, which may 
show different patterns of geographical variation 
than western cohorts.
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studies suggested that geography is an essential factor 
that cannot be neglected when linking gut microbiota 
and diseases.

The China Health and Nutrition Survey (CHNS) is 
a population-based cohort that includes 2164 partic-
ipants from 15 geographic locations across China, 
including 12 provinces and 3 megacities (autonomous 
cities with populations of more than 20 million people) 
and provides a wide range of data, including sociode-
mographic and environmental data, biomarkers derived 
from fasting blood, as well as highly detailed diet, phys-
ical activity and lifestyle data. The CHNS offers an 
opportunity to examine within-country regional differ-
ences in gut microbiota. In contrast, previous microbial 
studies13 14 have compared highly urbanised countries to 
rural areas in less developed countries on different conti-
nents and across diverse ethnic populations. By contrast, 
the CHNS includes a large diversity in geographic areas 
within a single country across a gradient of variation in 
urbanisation and economic status. Using this unique 
CHNS data, we initially examined one-way (univariate) 
associations between the human gut microbiota with 
geographic region (measured as province or megacity) 
as well as a variety of individual-level, household-level 
and environment-level factors. We found that geograph-
ical region has substantially more pronounced associa-
tions with microbial community composition than any 
other host factor. While we found a substantial number 
of associations of other host factors with the microbiota, 
none of these associations appeared robustly repro-
ducible across provinces. These results demonstrate 
the difficulty of generalising associations of the micro-
biota across wide geographical regions and suggest 
that geographical region should be explicitly consid-
ered when designing epidemiological studies of the 
microbiota.

METHODS
Cohort description
We used data from the China CHNS, a prospective 
household-based study across 12 provinces of China 
(Heilongjiang, Liaoning, Jiangsu, Shandong, Henan, 
Hubei, Hunan, Guangxi, Guizhou, Zhejiang, Yunnan 
and Shaanxi) and 3 megacities (Beijing, Shanghai and 
Chongqing). The CHNS was designed to provide repre-
sentation of rural and urban areas varying substantially 
in geography, economic development, public resources 
and health indicators and is the only large-scale, longitu-
dinal study of its kind in China17. A stratified, multistage, 
clustered sampling design was used to select the sample 
within each province/megacity. More detailed survey 
procedures can be found elsewhere.17 Microbiota samples 
were collected in 2015 as well as data on host factors and 
diet that were used to test for associations. The CHNS 
metadata have been widely published17 18 and the descrip-
tion can be found in online supplementary information.

Metadata description
Geographic region was measured as the province or 
megacity where samples were collected (online supple-
mental figure S1). We used a validated community-level, 
multidimensional 12-component urbanisation index19 
derived from household and community surveys (eg, 
sanitation, transportation, housing infrastructure, social 
services) to define low and high urbanisation. We used a 
range of dietary measures derived from three consecutive 
24 hours dietary recalls and household food inventory 
using a Chinese food composition table20; the method for 
energy intake was validated by doubly labelled water (r2 
men: 0.56, women: 0.60).21 Total physical activity was esti-
mated from self-reported 7-day recalls of occupational, 
transportation, domestic and leisure activities to define 
low, medium and high activity level. Fasting blood was 
collected via venipuncture from which cardiometabolic 
biomarkers were assayed (eg, diabetes, inflammatory, 
dyslipidaemia markers). Blood pressure, anthropom-
etry and bioelectrical impedance data were collected 
according to standardised protocols. Other sociode-
mographic (eg, income, assets, education) and lifestyle 
behaviours (eg, tobacco and alcohol use) were collected 
via self-report.

Sample collection and sequencing
Faecal samples were collected from adult participants 
aged 18–80 years of age who received adequate training 
and instructions regarding the collection process prior 
to stool collection with one sample per participant. All 
samples were immediately frozen at −20°C after collec-
tion, transported through a cold chain to the central 
laboratory within 24–48 hours and stored in −20°C 
freezers until being processed at the central sequencing 
facility. For sequencing analysis, 2164 faecal samples were 
randomly selected from participants who did not have a 
bowel disorder or diarrhoea and did not take antibiotics 
recently or specific bacteria products in the last 4 weeks.

Bacterial DNA was extracted by a bead-beating proce-
dure with TIANGEN DNA extraction kits (TIANGEN 
Biotech, Beijing, China), according to the manufac-
turer’s recommendations. The DNA concentration 
of each sample was adjusted to 50 ng/µL for 16s ribo-
somal RNA (rRNA) genes. To characterise the taxo-
nomic profile of the gut microbiota, primers 515F/806R 
(5′-GTGCCAGCMGCCGCGGTAA-3′/5′-​GGACTACHVG-
GGTWTCTAAT-3′) were used to amplify the V4 region 
of 16s rRNA gene with a 6-bp barcode unique to each 
sample. The PCR products were combined in equimolar 
ratios. A TruSeq DNA PCR-Free Library Preparation Kit 
(Illumina, California, USA) was used for library construc-
tion and libraries were sequenced using the Illumina 
HiSeq PE-250 platform. Samples were randomised for 
sequencing so that batches of sequence data were not 
related to specific province/megacity.

The sequencing generated 149 948 266 reads, approxi-
mately 69 292 reads per sample. All samples passed quality 
control. The raw sequencing reads were processed with 
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the Quantitative Insights Into Microbial Ecology (QIIME) 
pipeline.22 The forward and reverse reads were merged 
with fastq-join and filtered with a minimum quality score 
of 20. As a result, 96.9% sequences passed quality filtering. 
Totally 62 859 operational taxonomic units (OTUs) were 
respectively picked with open-reference method based 
on a threshold of 0.97 and 15 152 chimeric OTUs were 
detected with ChimeraSlayer23 and removed. SILVA data-
bases (Release 128) were used as references for assigning 
taxonomy. The resulting tables of taxonomic abundances 
were respectively rarefied to 12 500 sequences per sample 
to correct the different sequencing depth. Results under 
a normalisation based on simple proportions24 were 
essentially identical (data not shown). We decided to use 
rarefaction for correcting different sequencing depth in 
the main manuscript, because it has been argued that 
rarefying is less vulnerable to the influence of library 

size in principal coordinates analysis (PCoA) ordina-
tions and permutational multivariate analysis of variance 
(PERMANOVA) analyses.25

Statistical analysis
Bray-Curtis distances between samples were calculated 
using genera abundance and visualised with PCoA. 
PERMANOVA was used to test for associations and esti-
mate the percentage of variation in the human gut micro-
biota explained by each individual host factor including 
geographic region, demographic information, lifestyle, 
diet and the health of subjects, with separate models run 
for each host factor (online supplemental table S1A). 
We also compared our results in China with an Amer-
ican cohort, using data from the American Gut Project 
(AGP),26–28 which we analysed through the same pipe-
line. A list of host factors and their statistical tests are 
provided in online supplemental table S1B. All p values 
were adjusted with the Benjamini-Hochberg method to 
adjust for multiple comparisons and significance was 
assessed with a threshold of False Discovery Rate (FDR) 
less than 0.05. A description of AGP subjects is provided 
in online supplemental table S1C and additional details 
on the specific host factors for the AGP can be found else-
where.26 28 We also examined the geographic variation of 
each individual taxa using Analysis of Compositions of 
Microbiomes with Bias Correction (ANCOM-BC) with 
the parameters as the author recommended, and taxa 
with presence <10% were excluded.29

In addition, due to the large differences in microbial 
community by region, for each of the 71 non-region-
related host factors, we ran a two-way PERMANOVA 
model with terms for the host factor, province/megacity 
and interaction between the host factor and province/
megacity. Significance for the interaction terms here was 
defined as an FDR value less than 0.1. To further examine 
and estimate these differences between provinces/megac-
ities, we also built 15 univariate PERMANOVA models for 
each host factor, with one for each province or megacity. 
Any participant missing specific host factor data were 
excluded from analysis of that specific host factor.

As a compliment to the PERMANOVA models, we used 
a random forest approach (with Python package ‘scikit-
learn’) to test the reproducibility of models across regions. 
We first tested the performance of microbiota-based random 
forest models for factors other than province/megacity. For 
the other 71 host factors collected, 7 had more than 90% 
missing observations for at least one geographic region and 
were therefore excluded from the random forest models. 
To test the strength of the associations within each province 
and across provinces/megacities, we built random forest 
models for each of these 64 host factors and assessed the 
model performance of predicting the host factors using true 
positive rates for categorical factors and relative root mean 
square error for continuous variables. Additional details of 
the random forest models are found in online supplemental 
information.

Table 1  Characteristics* of CHNS microbiota study 
participants

Participants

N 2164

Age, year 51.8 (14.0)

Female, % 50.2

Province/megacity, %

 � Beijing 6.05

 � Liaoning 6.52

 � Heilongjiang 10.86

 � Shanghai 6.47

 � Jiangsu 6.75

 � Zhejiang 6.56

 � Shandong 6.05

 � Henan 6.38

 � Hubei 6.19

 � Hunan 6.56

 � Guangxi 5.96

 � Guizhou 6.33

 � Yunnan 6.01

 � Chongqing 6.84

 � Shaanxi 6.47

Urban population†, % 39.2

Urbanisation index‡ 75.4 (17.5)

BMI, kg/m2 24.4 (4.1)

*Mean (SD) or percentage.
†Government urban/rural status (according to National Bureau of 
Statistics of China).
‡Community-level, multidimensional 12-component urbanisation 
index derived from household and community surveys, range 
from 29.2 to 104.4 in this cohort. (Jones-Smith JC,Popkin BM. 
Understanding community context and adult health changes 
in China: development of an urbanicity scale. Social Science & 
Medicine. 2010;71(8):1436-46.)
BMI, body mass index; CHNS, China Health and Nutrition Survey.
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Patient and public involvement
Participants in this study gave informed consent for participa-
tion. However, the participant and public were not involved 
in the design or conduct of the study.

RESULTS
Study cohorts
The China CHNS is an ongoing international collaboration 
designed to track how the health and diet of Chinese society 
has been impacted by large-scale societal change associated 
with recent urbanisation and economic growth.17 As part of 
this survey, we defined a cohort that included 2164 subjects 
from 15 provinces/megacities with 849 urban and 1315 rural 
residents (table 1). We used next-generation sequencing to 
capture gut microbial profiles via faecal samples (see the 
Methods section). This generated 16s rRNA gene sequences 
with an average sequencing depth of 69 292 sequences per 
subject.

Geographic variation is the major factor driving microbiota 
variance
To compare the strength of host factors in association with 
the gut microbiota, in an initial analysis, we examined the 
associations between the gut microbiota and host factors in 
this study with a separate univariate PERMANOVA test for 

each host factor. Using PCoA ordination based on Bray-
Curtis dissimilarity, the 15 provinces/megacities showed 
profound separation in the microbial community, with the 
95% CI of each region clearly separated (figure 1A). A similar 
PCoA visualisation that showed strong separation by province 
was produced by weighted UniFrac (data not shown) indi-
cating that choice of dissimilarity metric did not drive these 
differences.

With a false discovery rate of 0.05, 62 host factors variables 
were significantly associated with the gut microbiota, with R2 
ranging from 17.9% to 0.075% (online supplemental table 
S1A). Province/megacity explained 17.9% of the overall 
variance, which is by far the strongest explanatory factor in 
the univariate models among all the host factors collected 
(figure 1B). In contrast, each of other host factors explained 
less than 1% of the variance with the strongest associations 
observed for occupation (0.96%), community availability of 
toilets (0.87%), government urban/rural status (according to 
National Bureau of Statistics of China) (0.59%), percentage 
of calories from animal source (0.58%) and percentage of 
fat from animal source (0.51%). Compared with the CHNS 
cohort, a PERMANOVA test on the AGP showed much less 
separation of the microbial community by state (figure 1C), 
with the participants’ states explaining 5.01% of the vari-
ance seen across 1282 subjects (figure 1D). Other significant 

Figure 1  The geographic variation of human gut microbiota in our CHNS cohort and the AGP. (A) PCoA ordinations of 
microbial composition in the CHNS cohort coloured by provinces/megacities. Ellipses indicate 95% confidence limits. (B) The 
estimated effect sizes of major host factors driving microbial variation in the CHNS cohort as measured by R2 in PERMANOVA 
tests. (C) The PCoA ordinations of microbial composition in the AGP cohort coloured by states. Ellipses indicate 95% 
confidence limits. (D) The estimated effect sizes of major factors driving microbial variation in the AGP cohort as measured by 
R2 in PERMANOVA tests. AGP,American Gut project; CHNS, China Health andNutrition Survey; PCoA, principal coordinates 
analysis; PERMANOVA, permutational multivariate analysis of variance.
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covariates in the AGP included race, antibiotic history and age 
(figure 1D and online supplemental table S1B). It is a natural 
hypothesis that regions of China that are further apart in 
geographic distance would have a more distinct microbiota. 
Therefore, we next tested whether geographical distance 
was associated with microbial variation. However, the Bray-
Curtis dissimilarity matrix was not significantly correlated 
with distances between province capitals or megacity centres 
(Mantel test, p=0.169).

While PERMANOVA tests hypotheses at the commu-
nity level, it does not provide information about individual 
taxa. Due to the large differences, we observed in microbial 
community composition by province/megacity (figure  1a 
and b), we evaluated differences by province/megacity for 
each taxon with ANCOM-BC with province/megacity as the 
only term. At all taxonomic levels from phyla to genus, there 
were numerous taxa with statistically significant associations 
with province/megacity (online supplemental table S2A-e). 
Thus, it is likely that the regional variation we observed is at 
the broad community level instead of being driven by a small 
set of individual microorganisms. It is also possible, however, 
that challenges related to the relative abundance nature of 
sequencing data make it difficult to reliably identify potential 
indicator species. When examining the abundance of each 
taxa within each province, we found that the 15 provinces/
megacities showed distinct patterns in taxonomic profiles 
at all five taxonomic levels, from phylum to genus (figure 2 
and online supplemental table S2-5). These large differences 
emphasise that each province/megacity may have its own 
gut microbiota ‘fingerprint’ that have presumably formed in 
response to geographic and cultural differences.

Geographic variation interacts with a broad category of host 
factors
Because geographical region had by far the largest associa-
tion with microbial community composition, we next built 
a series of 71 expanded two-way PERMANOVA models for 
each host factor with terms for the host factor (eg, age, 
BMI, occupation) as well as a term for province/megacity 
and an interaction term between the host factor and prov-
ince/megacity. In these expanded PERMANOVA models, 
62 showed heterogeneity (ie, were significant at a 10% FDR 
threshold for the interaction term) with regards to province/
megacity (online supplemental table S3). This large number 
of significant interactions with province/megacity suggests 
that each province/megacity tended to have unique associ-
ations between host factor categories and the microbiota. As 
we would expect based on the above analysis, there were large 
differences in the strength of the associations of host factors 
in different regions as revealed by one-way PERMANOVA 
models built for each province (online supplemental table 
S4 and figure 3). For example, community-level urbanisation 
index explained 36% of the microbiota variance in Beijing 
but only 3.2% in Liaoning. The host factors in this cohort 
were generally well balanced between regions (online supple-
mental table S5), but we cannot rule out the influence of the 
regional extent of host factors on their associations with the 
microbiota.

Geographic variation limits the generalisability of models built 
on the gut microbiota
In order to further explore differences between provinces, 
we next built a series of random forest models. When 
building separate models within each province (see the 
section Methods), we found that 34 of 64 host factors showed 
significantly improved performance when compared with 
a control in which the outcome labels (host factors) were 
shuffled (leftmost two plots in each panel in figure  4). 
These results demonstrate detectable associations between 
host factors and the gut microbiota within each province/
megacity in our dataset. Binary urbanisation status, sanita-
tion index and continuous urbanisation index were among 
the factors predicted with the highest accuracy rates (online 
supplemental table S6A and B).

We next tested across provinces/megacities by building 
models in each province/megacity and using those 
models to predict results in the other province/megaci-
ties. These predictions across provinces/megacities were 

Figure 2  Significant variation of the genera compositions 
across provinces/megacities analysed with Analysis of 
Compositions of Microbiomes with Bias Correction (ANCOM-
BC). Keys indicate z-scores of the relative abundance of 
genera. Only genera with relative abundance >0.01% are 
shown in the figure. The legend for region numbers is shown 
in figure 1. The ANCOM-BC outputs are shown in online 
supplemental table S2.
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not significantly better than control models in which the 
outcomes were randomised (rightmost two plots in each 
panel in figure  4). The lack of distinguishable differ-
ence between models with shuffled and unshuffled data 
confirms that the associations we observed within each 
province/megacity were not broadly reproducible across 
regions.

DISCUSSION
There is increasing evidence that geographic location 
is strongly associated with human gut microbiota varia-
tion.13 14 16 However, this evidence has largely come from 
comparisons across countries and continents at varying 
levels of urbanisation, including populations of different 
ancestral backgrounds. The large area and relative homo-
geneity of racial composition make China an ideal place 
to study geographic, cultural, sociodemographic and 
environmental variation while minimising confounding 
by race. The sampling of 15 provinces/megacities and 
well-characterised CHNS data allowed examination of 
geographic interactions with a variety of individual-level, 
household-level and community-level factors to test for 
cross-region consistency of microbiota-factor associations. 
Using these unique data, we found associations of micro-
bial community composition with host factors within each 
province/megacity but little evidence of reproducible 
associations across regions.

In our dataset, geographic location was the strongest 
explanatory factor for microbial variation, with the 15 
provinces/megacities capturing 17.9% of overall gut 

microbiota variation, while all the other individual-
level, household-level and community-level factors each 
explained less than 1% of the variation. This is consistent 
with the previous findings suggesting that geography is 
one of the strongest factors associated with gut micro-
bial variation.14 16 The much higher estimated effect size 
observed for province/megacity compared with other 
factors suggests that geographic variance was compar-
atively more important than dietary (eg, calorie intake, 
macronutrients composition) or other individual-level 
lifestyle behaviours (eg, physical activity), or community-
level factors (eg, urbanisation, sanitation, access to 
infrastructure).

The much stronger effect size of region compared 
with urbanisation in our study (figure  1a,b) suggests 
that microbial variation may relate more to sociocul-
tural traditions and lifestyles (eg, dietary traditions, life-
style behaviours) and regional habitats (eg, local food 
production, soil composition and climate) rather than 
urbanisation. This is further confirmed by the distinct 
clustering observed for the microbiota in the three 
megacities sampled (Beijing, Shanghai and Chongqing) 
(figure 1A). Chongqing showed a higher dissimilarity to 
other regions, but the regional effect remained signifi-
cant even when Chongqing was excluded from the anal-
ysis (data not shown).

Our Chinese dataset showed stronger associations 
between regions and microbial variation than in our 
comparative analysis using data from the AGP, which 
showed a lower estimated effect size of US state in relation 

Figure 3  Variation of estimated effect sizes (R2) of the associations between major host factors and microbial composition in 
different provinces/megacities. To scale these values for visualisation, for each host factor (rows) PERMANOVA R2 values were 
z-transformed (to yield the number of SD from the mean) as shown by the key (insert) with no colour indicating an adjusted p-
value (FDR)>0.1. Only factors significant in more than two provinces are shown in the figure. The legend for region numbers is 
shown in figure 1. PERMANOVA, permutational multivariate analysis of variance.
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to microbial variation (5.01%). This could be associ-
ated with the higher regional variability of diet, lifestyle 
and other cultural aspects as well as economy in China 

compared with the USA. However, these two datasets were 
different in many systematic factors including sampling 
strategies and sequencing designs and that may explain 

Figure 4  Within-region and cross-region performance of random forest models predicting host factors from microbial 
composition. The top panel shows the performance of random forest classification of categorical factors with y axes as true 
positive rates (TPR). The rest of the panels show the performance of random forest regression of continuous factors with y axes 
as relative root mean square error (rRMSE). The leftmost plots in each panel are within-region models with training and testing 
data from the same region. The second to left plots are the same models with randomly shuffled factor categories as outcome 
labels. The third from left plots are cross-region models (between) with training data from one province/megacity and testing 
data from each of the other 14 regions. The rightmost plots are the same cross-region models with the host factors randomly 
shuffled as outcome labels. The TPRs and rRMSEs of models were compared with t-tests, and their means, SD and statistics 
are shown in online supplemental table S6.

https://dx.doi.org/10.1136/bmjopen-2020-038163


8 Sun S, et al. BMJ Open 2020;10:e038163. doi:10.1136/bmjopen-2020-038163

Open access�

some of the differences observed between the two studies. 
For example, the number of subjects in each geographic 
region is more heterogeneous in the AGP than in our 
cohort. In addition, the AGP is a citizen-science initiative, 
which may have had more variation in sample handling 
than in our study. It is true, however, that China is in a 
different stage of urbanisation relative to the USA, and 
the greater diversity of culture and environments across 
provinces in China may explain why province is a stronger 
explanatory factor in our dataset than state is in the AGP. 
Future studies that process samples from China and 
America under a common pipeline would provide clarity 
as to whether differences in sampling or differences in 
culture explain differences between our study and the 
AGB.

Our study suggests that the distinct provincial micro-
bial structures may respond differently to diet, lifestyle 
and other host factors. For example, some genera that 
consist of lineages known to produce short‐chain fatty 
acids (SCFAs) varied significantly across provinces/
megacities including Blautia, Bacteroidetes, Roseburia and 
Faecalibacterium (figure 2 and online supplemental table 
S2).30 SCFAs are not only important for gut health but 
can also enter the systemic circulation and affect meta-
bolic activities including glucose homeostasis and insulin 
sensitivity,31 and they are also thought to play important 
roles in suppressing inflammation, fat accumulation and 
colonic diseases.32–34 The regional variations in these 
genera that we observed suggest that subpopulations 
from different geographic locations may have variable 
levels of susceptibility to certain diseases. Furthermore, 
the poor consistency of cross-region associations between 
microbial variation and host factors suggest that this 
regional influence may modify the effects of individual-
level, household-level and community-level factors on the 
structure of the gut microbiota. Our study was limited to 
16s rRNA gene data, and shotgun metagenome data may 
provide a more detailed look of the regional variation of 
gut microbiota. Although this is one of the largest cohorts 
surveying the geographic variation of gut microbiota, it 
is possible that the statistical power is not sufficient for 
some of host factors in individual regions. The p value 
adjustment for multiple hypotheses may lead to conserva-
tive estimates of the associations between microbiota and 
host factors because of the number of factors included. 
Future studies using the cultural and geographical diver-
sity in China will generate a better understanding of the 
underlying mechanisms of regional microbial patterns 
and how they interact with other factors to drive health 
outcomes

CONCLUSION
Our study suggests that geographic region in China may 
be a major factor underlying gut microbiota variation and 
that health outcomes linked to the microbiota are likely 
different in different regions of China. Future studies 
of microbial variation will be strengthened by explicitly 

using geographic variation to compare how different gut 
microbiota create different phenotypes in non-Western 
populations.
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