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Abstract
Purpose: Ferroptosis plays a crucial role in the initiation and progression of mel-
anoma. This study developed a robust signature with ferroptosis-related genes 
(FRGs) and assessed the ability of this signature to predict OS in patients with 
skin cutaneous melanoma (SKCM).
Methods: RNA-sequencing data and clinical information of melanoma pa-
tients were extracted from TCGA, GEO, and GTEx. Univariate, multivariate, and 
LASSO regression analyses were conducted to identify the gene signature. A 10 
FRG signature was an independent and strong predictor of survival. The predic-
tive performance was assessed using ROC curve. The functions of this gene sig-
nature were assessed by GO and KEGG analysis. The statuses of low-risk and 
high-risk groups according to the gene signature were compared by GSEA. In 
addition, we investigated the possible relationship of FRGs with immunotherapy 
efficacy.
Results: A prognostic signature with 10 FRGs (CYBB, IFNG, FBXW7, ARNTL, 
PROM2, GPX2, JDP2, SLC7A5, TUBE1, and HAMP) was identified by Cox re-
gression analysis. This signature had a higher prediction efficiency than clinico-
pathological features (AUC = 0.70). The enrichment analyses of DEGs indicated 
that ferroptosis-related immune pathways were largely enriched. Furthermore, 
GSEA showed that ferroptosis was associated with immunosuppression in the 
high-risk group. Finally, immune checkpoints such as PDCD-1 (PD-1), CTLA4, 
CD274 (PD-L1), and LAG3 were also differential expression in two risk groups.
Conclusions: The 10 FRGs signature were a strong predictor of OS in SKCM and 
could be used to predict therapeutic targets for melanoma.
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1   |   INTRODUCTION

Malignant melanoma, which is increasing in incidence 
worldwide, is the most aggressive form of skin cancer. 
There were approximately 106,110 new cases of mela-
noma and 7180 deaths from melanoma in the United 
States in 2021.1 Over the last two decades, the range of 
available systemic treatment options for melanoma has 
expanded and include immunotherapy (CTLA-4, PD-1, 
LAG-3, and PD-L1 inhibitors), MEK, and targeted ther-
apy (BRAF inhibitors).2–6 However, the prognosis of 
advanced or metastatic melanoma is poor,7 and the de-
mand for novel biomarkers to improve melanoma early 
diagnosis and prognosis has increased in the recent 
years.8 Moreover, despite improvements in staging, the 
prognosis of advanced melanoma is heterogeneous, with 
high variability in the overall estimate among stages III 
and IV.9,10 Thus, the development of novel signatures 
that can significantly improve melanoma diagnosis and 
increase the accuracy of predicting melanom prognosis 
is needed.

Ferroptosis is a form of programmed cell death 
caused by iron-dependent lipid peroxidation11 and has 
a crucial role in inhibiting tumor cell proliferation, inva-
sion, and metastasis.12 Ferroptosis can trigger immune 
responses, especially in malignant tumors resistant to 
conventional therapies.13–15 Ferroptosis has a dual role 
in cancer because ferroptotic tumor cells release some 
signaling molecules that either promote or inhibit the 
tumor proliferation16–18; however, the role of these mol-
ecules in tumor is incompletely understood.16 A current 
research has demonstrated that lymph protects mela-
noma from ferroptosis, increases melanoma cell viability 
during metastasis, and increases the formation of distant 
metastasis, providing new perspectives for studying me-
tastasis.19 Therefore, identifying ferroptosis-related bio-
markers for the prognosis of skin cutaneous melanoma 
(SKCM) is essential.

Some studies identified prognostic signatures based 
on FRGs in tumors based on public databases.20,21 In this 
respect, a 19-gene signature predicted glioma cell death 
and prognosis,20 and a 10-gene signature predicted OS 
in hepatocellular carcinoma.21 However, no studies have 
identified ferroptosis-related signature that can predict 
OS in patients with SKCM. To identify and validate a 
prognostic signature and improve the diagnosis and ther-
apy of SKCM, TCGA, GTEx, and GEO databases were 
comprehensively searched for novel and previously iden-
tified FRGs. The functions of this signature in the tumor 
microenvironment were assessed through enrichment 
analysis.

2   |   MATERIALS AND METHODS

2.1  |  Data acquisition and processing

The RNA-seq expression profiles of SKCM and normal 
skin tissues were obtained from TCGA and GTEx data-
bases, respectively.22 The GSE65094 gene expression 
dataset and follow-up clinical information were down-
loaded from the GEO. Read counts were normalized 
through scale. The TCGA-SKCM dataset (471 samples) 
and GSE65094 dataset (214 samples) were selected as the 
training and validation sets, respectively. Then, 253 FRGs 
were obtained from the FerrDb database.23

2.2  |  Analysis of DEGs

To identify significant DEGs in melanoma, RNA-seq data 
extracted from TCGA (471 SKCM samples and one nor-
mal skin sample) and the GTEx database (812 normal skin 
samples) were normalized by log2-transformed FPKM and 
merged into one dataset for subsequent analysis. DEGs 
were determined by “limma” package in R.

2.3  |  Signature 
construction and validation

The correlation between FRGs and OS in TCGA training 
set was analyzed by univariate Cox regression analysis 
using the “survival” package. FRGs with p  <  0.01 were 
considered to have prognostic significance. Differentially 
expressed FRGs were identified by overlapping prognos-
tic FRGs and DEGs. A gene signature with 10 FRGs was 
selected by LASSO regression.24,25 LASSO estimates were 
based on 1000-fold cross-validation to avoid overfitting. 
In this model, risk scores were calculated via multiplying 
the expression values of 10 FRGs by their regression coef-
ficients (A), as follows: risk score  =  (expression of gene 
1 × A1 of gene 1) + (expression of gene 2 × a A2 of gene 
2) + (expression of gene N × AN of gene N).

Patients were divided into a low- and a high-risk group 
based upon median risk score. Survival status were displayed 
in the Kaplan–Meier curve. The model predictive ability was 
assessed using heat maps, forest plots, risk score maps, OS 
curves, and ROC curves. Based on prognostic ferroptosis-
related DEGs, PCA, and t-SNE were generated using the 
“stats” and “Rtsne” package of R. External validation of the 
signature was performed using the GSE65904 dataset. This 
dataset was divided into a high- and low-risk group based 
upon the cutoff value of the signature. OS curves were 
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compared between these two groups using Kaplan–Meier 
analysis to validate the signature.

2.4  |  Gene set enrichment analysis

GO and KEGG analyses of FRGs differentially expressed 
were performed using “clusterProfiler” package in R. 
GSEA of GO and KEGG gene sets was performed using 
the GSEA software version 4.1.0. The number of random 
sample permutations in each analysis was set to 1000.

2.5  |  Immune correlation analysis

The ssGSEA was performed to assess the tumor-
infiltrating immune cell subsets and immune-related 
functions.21 The expression of immune checkpoint gene 

might predict therapeutic effect of immune checkpoint 
inhibitors (ICIs).26 Thus, we investigated four ICIs: PD-1 
and PD-L1, CTLA-4, and LAG-3 in melanoma.27 We also 
estimated the relationship between ICIs and risk score 
through the spearman correlation analysis, which in-
tended to assess potential application of FRGs signature 
in immunotherapy.

2.6  |  Validation

A study of single cell malignant melanoma transcrip-
tomes defined two main transcriptional states of mel-
anoma cells: the MITF and AXL gene programs.28 We 
choose the A2058 (MITF) and A375 (AXL) cell lines for 
our study. Human melanoma cell lines (A2058, A375) 
and human epithelial cell line HaCaT were purchased 
from the Shanghai Zhong Qiao Xin Zhou Biotechnology 

Gene Forward sequence (5′–3′) Reverse sequence (5′–3′)

CYBB GTCAAGTGCCCAAAGGTGTC TCTGTCCAGTCCCCAACGAT

IFNG GCAGGTCATTCAGATGTAGCG GTCTTCCTTGATGGTCTCCAC

FBXW7 CTGGGCTTGTACCATGTTCAG GGACAGATGTAATTCGGCGTC

ARNTL AGAGGTGCCACCAATCCATAC CGGTCACATCCTACGACAAAC

PROM2 AGAACGGCGAGCTCTTTGAG CTGCTGATAGGCTTGGTGGAT

GPX2 CAGTCTCAAGTATGTCCGTCCTG CTCGTTCTGCCCATTCACCT

JDP2 GAGGAAGAGGAGCGAAGGAA GTGTCGGTTCAGCATCAGGA

SLC7A5 CCGTGGACTTCGGGAACTAT GTGAACAGGGACCCATTGAC

TUBE1 AGAGTGGTTGGTGATGGTGG TCTCAGTGGTCCCTGCAGAA

HAMP TGACCAGTGGCTCTGTTTTCC TACGTCTTGCAGCACATCCC

T A B L E  1   Primer sequence for qPCR

F I G U R E  1   The process flow of this 
study
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Co.,Ltd. These three cell lines were cultured in DMEM 
(high-glucose) medium (Gibco) containing 10% FBS 
(Gibco) at 37°C with 5% CO2 in an incubator. Total 
RNA of HaCaT, A2058, and A375 cells were extracted 
using RNA-easy kit (Vazyme). The primers used in this 
study were synthesized by GENECREATE (WUHAN 
GENECREATE BIOLOGICAL ENGINEERING, LTD) 
(Table 1). Following, the reverse transcription was con-
ducted with the HiFiScript cDNA synthesis kit (Vazyme) 
to generate cDNA. The qPCR was performed using an 
LineGene 9600 Plus instrument (Bioer Technology) and 
2× SYBR Green Qpcr MasterMix (SEVEN BIOTECH). 
The CT values were normalized to the expression of 
the endogenous housekeeping gene GAPDH, and the 

2(−ΔΔCt) values were calculated for relative quantifi-
cation. The reactions were performed in triplicate. The 
comparisons among multiple groups were conducted by 
one-way ANOVA. Statistical analyses were carried out 
using GraphPad Prism 9.0.0 software.

3   |   RESULTS

3.1  |  Identification of DEGs in SKCM

The total 104 FRGs were identified to match the RNA-seq 
data from the TCGA. Using “limma” package with an ab-
solute log2-fold change (FC) >1 and an adjusted p < 0.05, 

F I G U R E  2   Identification of the prognostic ferroptosis-related DEGs in the TCGA. (A) Forest plot of the prognostic ferroptosis-related 
gene (FRGs) of skin cutaneous melanoma in the TCGA. (B) Venn diagram of the overlapped genes between DEGs and FRGs. (C) Forest 
plots showing the 13 overlapping genes of the prognostic ferroptosis-related DEGs. (D) A heat map of the 13 prognostic ferroptosis-related 
DEGs, four genes of which were upregulated, and the remaining nine genes of which were downregulated in tumor tissue. (E) The 
correlation network of 13 prognostic ferroptosis-related DEGs. The correlation coefficients are represented by different colors
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24 DEGs (17 upregulated and seven downregulated) and 
16 DEGs (13 upregulated and three downregulated) re-
lated to ferroptosis and iron metabolism in SKCM were 
identified in TCGA and ICGC, respectively (Figure 1).

3.2  |  Screening of differentially 
expressed FRGs

The comparison of RNA-seq data of melanoma sam-
ples (n  =  471) and normal skin samples (n  =  813) in 
the TCGA and GTEx databases identified 44 DEGs 
with an absolute log2-FC > 1 and an adjusted p < 0.05 
(FC  ≥  1, FDR  ≤  0.05) (Figure  1). The total 253 FRGs 
were obtained from FerrDb database. The univariate 
Cox proportional hazard regression analysis showed 
that 55 FRGs were significant predictors of OS (p <0.01) 
(Figure  2A). Of these, 13 FRGs were differentially 

expressed (four upregulated and nine downregulated) in 
tumor tissues (Figures 2B–D). The relationship in these 
genes is displayed in Figure 2E.

3.3  |  Construction of a prognostic model 
using the TCGA dataset

A prognostic signature with 10 FRGs (CYBB, IFNG, 
FBXW7, ARNTL, PROM2, GPX2, JDP2, SLC7A5, TUBE1, 
and HAMP) was identified by LASSO Cox regression. The 
risk score was calculated as follows:

Risk score  =  (0.183  ×  expression level of 
PROM2) + (0.057 × expression level of GPX2) + (0.020 × ex-
pression level of SLC7A5)  +  (−0.029  ×  expres-
sion level of CYBB)  +  (−0.222  ×  expression level of 
IFNG) + (−0.242 × expression level of FBXW7) + (−0.202 × ex-
pression level of ARNTL)  +  (−0.061  ×  expression 

F I G U R E  3   Kaplan–Meier curves for overall survival in the high-risk and low-risk groups. (A) The training dataset, (E) validation 
dataset. The survival status, risk score distribution, and risk genes expression in the datasets. (B, C, D) Training dataset, (F, G, H) validation 
dataset. (green and red lines/dots represent low and high risk, respectively)
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level of JDP2)  +  (−0.127  ×  expression level of 
TUBE1) + (−0.084 × expression level of HAMP).

The patients were divided into a high-risk and a low-
risk group according to the median cutoff value. The 
Kaplan–Meier analysis indicated that prognosis was sig-
nificantly worse in the high-risk group than in the low-risk 
group in the training dataset (Figure 3A, p < 0.01). The 
risk score distribution plot and survival status curves indi-
cated that the high-risk group from this dataset had lower 
survival (Figure  3B) and higher risk scores (Figure  3C). 
Moreover, as the risk score increased, the expression of 
protective genes (CYBB, FBXW7, IFNG, ARNTL, JDP2, 
TUBE1, and HAMP) decreased, whereas the expression of 
risk genes (PROM2, GPX2, and SLC7A5) increased in this 
dataset (Figure 3D). Similar results were obtained in the 
validation dataset (Figures 3E–H). The AUC value of the 
risk score (0.754) was higher than those of clinical indica-
tors, such as gender, age, and TNM stage (Figure 4A). PCA 
and t-SNE analyses revealed that samples were distributed 
in two principal components (Figures  4B,C). The FRGs 
genes were differentially expressed between different T 
stages (Figure 4D, p < 0.001).

3.4  |  Independent prognostic value of the 
gene signature

Univariate and multivariate Cox regression analyses of 
clinical characteristics (age, gender, stage, risk score, 

F I G U R E  4   (A) The AUC for risk 
score and clinical features according to 
the ROC curves in the training dataset. 
Clinical feature: Age, gender, stage, and 
T, N, M stage. (B) PCA plot of the training 
dataset. (C) The t-SNE analysis of the 
training dataset. (D) The differential 
expression of ferroptosis-related genes in 
different clinical features. ***p < 0.001

F I G U R E  5   Forest plot of (A) the univariate and (B) 
multivariate Cox regression analysis showing that the age, T 
stage, N stage, and risk score were independent prognostic 
predictors
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and TNM stage) in TCGA were performed to determine 
whether the risk score was an independent predictor of 
OS. In the univariate Cox regression analysis, the risk 
score was significantly correlated with OS in the training 
dataset (HR  =  3.299, 95% CI  =  2.319–4.694, p  <  0.001) 
(Figure  5A). Multivariate Cox regression analysis in-
dicated that age (HR  =  1.011, 95% CI  =  1.000–1.022, 
p = 0.044), T stage (HR = 1.392, 95% CI = 1.180–1.642, 
p < 0.001), N stage (HR = 1.584, 95% CI = 1.252–2.005, 
p < 0.001), and the risk score of the prognostic signature 
(HR = 2.538, 95% CI = 1.778–3.622, p <0.001) were inde-
pendent predictors of OS (Figure 5B).

3.5  |  Functional enrichment analysis

GO and KEGG enrichment analyses of risk genes dif-
ferentially expressed between the high-risk and low-
risk groups were performed to assess the biological 
functions and pathways correlated with risk scores. 

GO analysis indicated that the DEGs were enriched 
in immune-related biological processes, including im-
mune response-activating cell surface receptor signal-
ing pathway, and immune response-activating signal 
transduction; and immune-related molecular functions, 
such as antigen binding, and immunoglobulin receptor 
binding; and immune-related cell components, such as 
external side of plasma membrane and immunoglobulin 
complex (Figure  6A). KEGG pathway analysis showed 
that the DEGs were enriched in ferroptosis-related im-
mune pathways, such as cytokine-cytokine receptor in-
teraction, cell adhesion molecules, chemokine signaling 
pathway, and phagosome (Figure 6B). GSEA indicated 
that genes in low-risk group were significantly enriched 
in immune pathways, including Toll-like receptor sign-
aling pathway, chemokine signaling pathway, natural 
killer cell-mediated cytotoxicity, and antigen processing 
and presentation (Figure 7A–D). These results suggest 
a ferroptosis-related immunosuppressive status in high-
risk group.

F I G U R E  6   GO and KEGG enrichment analysis of DEGs. (A) GO enrichment analysis of the DEGs. (B) KEGG enrichment analysis of 
the DEGs
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3.6  |  Immunity and gene expression

The results of ssGSEA suggested that almost immune cell 
subpopulations and functions were significantly different 
among the low- and high-risk groups (Figure 8A,B). Given 
the importance of ICI in melanoma, we explored the dif-
ference in the expression of immune target genes between 
the two groups. We found the expression of PDCD-1 
(PD-1), CD247 (PD-L1), CTLA4, and LAG3 were signifi-
cantly higher in low-risk group compared with those in 
high-risk group (Figure 8C–F). The results of the spear-
man correlation analysis showed that the risk score was 
negatively correlated with PDCD-1 (R = −0.59, p < 0.001, 
Figure  8G), CD247 (R  =  −0.67, p  <  0.001, Figure  8H), 
CTLA4 (R  =  −0.49, p  <0.001, Figure  8I), and LAG3 
(R = −0.61, p < 0.001, Figure 8J).

3.7  |  The qPCR analyses

In order to further verify the results of 10 differential ex-
pressed genes in the signature, qPCR was used to detect 
these genes expression at the mRNA level in vitro. These 
results of qPCR confirmed that the expression of JDP2, 
TUBE1, PROM2, GPX2, FBXW7, and ARNTL genes in 
A2058 and A375 cell lines (SKCM tumor cells) were sig-
nificantly lower than that in the HaCaT cell line (normal 
skin cells) (Figure  9A–F). Conversely, the expression of 

HAMP, SLC7A5, IFNG, and CYBB genes in A2058 and 
A375 cell lines were significantly higher than that in the 
HaCaT cell line (Figure 9G–J). These findings were con-
sistent with the differential expression of FRGs genes be-
tween normal and tumors tissues, further validating the 
accuracy and reliability of this signature model.

4   |   DISCUSSION

This study identified FRGs by comparing RNA-seq data 
from normal samples of GTEx and tumor samples of 
TCGA. Thirteen differentially expressed FRGs were iden-
tified in TCGA-SKCM cohort by univariate Cox regression 
analysis, and 10 OS-related FRGs in SKCM were selected 
by LASSO. There were significant differences in risk scores 
and survival between the high-risk and low-risk groups in 
the training and validation cohorts, demonstrating the ef-
fectiveness and accuracy of the signature in SKCM. GO, 
KEGG, and GSEA analyses demonstrated that these FRGs 
were significantly enriched in immune-related function 
and immune-related pathways. Compared with previous 
prognostic signature of SKCM, this study is the first time 
to use FRGs for training and validated in an independent 
cohort. This study aimed to provide more information for 
future SKCM studies.

Ferroptosis is an iron-dependent regulatory cell 
death induced by lipid peroxidation.29 Ferroptosis 

F I G U R E  7   Analysis of enriched 
pathways. KEGG analysis (A–D) of Gene 
Set Enrichment Analysis in the low-risk 
groups in skin cutaneous melanoma
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differed from autophagy, apoptosis, and necrosis regard-
ing cellular, molecular, and biochemical mechanisms 
and involves the plasma membrane integrity, cytoplas-
mic and organelle swelling, and moderate chromatin 
condensation.30,31 Ferroptosis has been demonstrated 
to be involved in the pathophysiological processes of 
many diseases, such as ischemia–reperfusion injury, 
neurological disorders, blood diseases, kidney injury, 
and tumors.11

Ferroptosis is used in cancer therapeutics32 and reg-
ulates signaling pathways in melanoma cells.33 In this 
respect, miR-9 inhibited RSL3- and erastin-induced ferro-
ptosis, and miR-9 silencing-induced ferroptosis in these 
cells.34 miR-137- regulated necroptosis in melanoma 
cells, and miR-137 inactivation enhanced the sensitivity 
of these cells to RSL3- and erastin-induced ferroptosis.35 
In immunotherapy, activated CD8+ T cells enhanced 
ferroptosis-mediated lipid peroxidation in tumor cells by 
downregulating the expression of SLC7A11and SLC3A2 
through the release of γ-IFN.36 Melanoma cells depended 

on oleic acid for freedom from acsl3-mediated ferropto-
sis in lymph and increased cell survival and metastatic 
potential.19 These data demonstrate that ferroptosis has 
great potential of in SKCM treatment and prognosis. 
Nonetheless, the physiological mechanisms of ferropto-
sis involved in tumorigenesis and metastasis are unclear.

Some studies identified prognostic FRG signatures 
by searching public databases. For instance, a signature 
improved diagnosis and accuracy of prognosis predic-
tion of hepatocellular carcinoma.37 A 19-gene signature 
accurately predicted the outcome of glioma patients.20 
However, an FRG-based prognostic model for SKCM has 
not been established. The 10-FRG signature developed in 
the present study was strongly correlated with the progno-
sis of SKCM.

The signature contained the genes CYBB, IFNG, 
FBXW7, ARNTL, PROM2, GPX2, JDP2, SLC7A5, 
TUBE1, and HAMP and was a strong predictor of OS in 
training and validation cohort. Differential expression 
of these genes was validated using qPCR. The genes 

F I G U R E  8   Comparison of the immune cell subpopulations and related functions between the different risk groups: (A) Scores of 
the 16 immune cells and (B) Scores of the 13 immune-related functions. (C–F) The comparison of the expression levels of PDCD1 (PD-1), 
CD274 (PD-L1), CTLA-4, and LAG-3 between high-risk and low-risk groups. (G–J) Significant negative association between the risk score 
and ICB receptors PDCD-1 (R = −0.59, p < 0.001, H), CD247 (R = −0.67, p < 0.001), CTLA4 (R = −0.49, p < 0.001), and LAG3 (R = −0.61, 
p < 0.001). *p < 0.05, **p < 0.01, ***p < 0.001, ns, no significance
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of HAMP, SLC7A5, CYBB, and IFNG were highly ex-
pressed in melanoma cell lines, while JDP2, TUBE1, 
PROM2, GPX2, FBXW7, and ARNTL were lowly ex-
pressed in melanoma cell lines. PROM2, GPX2, PROM2, 
GPX2, and SLC7A5 were risk factors for OS, while other 
genes were protective factors. The CYBB and NADPH 
oxidase genes exhibited sex differential expression in 
multiple sclerosis.38 CYBB was associated with poorer 
disease-free survival and OS in melanoma.39 IFNG pre-
dicted survival and the response to ICIs in melanoma.40 
FBXW7 is a commonly mutated and inactivated tumor 
suppressor and was shown to increase resistance to 
anti-PD-1 and improve the clinical response to ICIs 
in cancer patients.41–43 The clock gene ARNTL inhib-
ited melanoma cell growth and enhanced immuno-
therapeutic efficacy by improving effector functions, 
macrophage mitochondrial metabolism, and redox ho-
meostasis.44,45 PROM2 promoted ferroptosis resistance 
in tumor cells through stimulating the production of 
ferritin-containing exosomes and multivesicular bod-
ies and increasing ferritin export.46 GPX2 suppressed 

ferroptosis by silencing lipoxygenases and reducing 
lipid hydroperoxides.47 Although the prognostic value 
of JDP2, SLC7A5, TUBE1, and HAMP in SKCM is cur-
rently unknown, the importance of these four genes 
should not be underestimated. Our study found that 
these four genes affected the prognosis of SKCM, which 
might not be directly administered but was determined 
by the upstream or downstream of these genes. There is 
no research on the impact of these four genes on SKCM 
prognosis, which makes our findings exciting and cer-
tainly worthy of further research.

Although ferroptosis has recently been a hot topic of 
study in tumor, the association between ferroptosis and 
tumor immunity is incompletely understood. KEGG and 
GO analyses of DEGs showed that many immune-related 
pathways and biological processes were enriched, indi-
cating that ferroptosis associated with tumor immunity. 
Significant differences in immune response-activating 
signal transduction and immune response-activating cell 
surface receptor signaling pathway were observed between 
the low- and high-risk groups. This implied that ferroptotic 

F I G U R E  9   The differential 
expression of ferroptosis-related genes 
was detected by qPCR. (A–F) Compared 
with the HaCaT cell line, the mRNA of 
JDP2, TUBE1, PROM2, GPX2, FBXW7, 
and ARNTL were significantly lower in 
the A2058 and A375 cell lines, (G–J) while 
the mRNA of HAMP, SLC7A5, CYBB, 
and IFNG were significantly higher in 
the A2058 and A375 cell lines. *p < 0.05, 
**p < 0.01, ***p < 0.001, ****p < 0.0001
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cells release certain signaling molecules such as lipid me-
diators to attract T and B cells. GSEA in the HALLMARK 
collection showed that gene sets for antigen processing 
and presentation, chemokine signaling pathway, natural 
killer cell-mediated cytotoxic city, and Toll-like receptor 
signaling pathway were enriched, demonstrating that fer-
roptosis is involved in cell death, host defense, and innate 
and adaptive immunity.48 Cancers are currently being 
treated using immunotherapy and iron nanoparticles.49,50 
Nanoparticles induce ferroptosis by regulating iron and 
ROS levels and are a novel strategy for cancer therapy.50 
Immunotherapy has dramatically improved the out-
comes of advanced-stage melanoma patients.51 A recent 
research found that ferroptosis enhanced the antitumor 
effect of ICIs, even in ICIs-resistant tumors.48 Therefore, a 
novel FRGs signature were constructed to investigate the 
potential relationship between ferroptosis and ICIs, and 
to predict immune-checkpoint blockade immunotherapy 
responses. In this study, the FRGs were revealed to be as-
sociated with ICIs (PD-1, PD-L1, CTLA-4, and LAG-3), 
which indicated that the FRGs signature might be used 
to predict the response to ICB therapy. In the meantime, 
the expression levels of these ICIs in low-risk group were 
higher compared with high-risk group. This suggested 
that FRGs signature could be applied to guide immuno-
therapy based on predicted expression level of ICIs.

Our study has several limitations. First, this prognos-
tic signature was constructed using public databases. 
Therefore, multicenter clinical trials are needed to vali-
date the clinical utility of this model. Second, other genes 
may be good predictors of SKCM prognosis. Third, the as-
sociation between risk scores and immune responses has 
not been experimentally demonstrated.

5   |   CONCLUSIONS

Our study identified a signature with 10 ferroptosis-
related genes. The signature was independently cor-
related with OS in both the training and validation 
cohorts, improving the accuracy of predicting the prog-
nosis of SKCM. Nonetheless, additional studies are 
warranted to determine the mechanism underlying the 
correlation between ferroptosis-related genes and im-
munity in SKCM.
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