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Training a machine learning 
classifier to identify ADHD 
based on real‑world clinical data 
from medical records
Pavol Mikolas1,2*, Amirali Vahid1, Fabio Bernardoni3, Mathilde Süß1, Julia Martini2, 
Christian Beste1 & Annet Bluschke1

The diagnostic process of attention deficit hyperactivity disorder (ADHD) is complex and relies on 
criteria sensitive to subjective biases. This may cause significant delays in appropriate treatment 
initiation. An automated analysis relying on subjective and objective measures might not only simplify 
the diagnostic process and reduce the time to diagnosis, but also improve reproducibility. While 
recent machine learning studies have succeeded at distinguishing ADHD from healthy controls, the 
clinical process requires differentiating among other or multiple psychiatric conditions. We trained 
a linear support vector machine (SVM) classifier to detect participants with ADHD in a population 
showing a broad spectrum of psychiatric conditions using anonymized data from clinical records 
(N = 299 participants). We differentiated children and adolescents with ADHD from those not having 
the condition with an accuracy of 66.1%. SVM using single features showed slight differences between 
features and overlapping standard deviations of the achieved accuracies. An automated feature 
selection achieved the best performance using a combination 19 features. Real-world clinical data 
from medical records can be used to automatically identify individuals with ADHD among help-seeking 
individuals using machine learning. The relevant diagnostic information can be reduced using an 
automated feature selection without loss of performance. A broad combination of symptoms across 
different domains, rather than specific domains, seems to indicate an ADHD diagnosis.

The diagnostic process in the case of suspected attention deficit hyperactivity disorder (ADHD) commonly entails 
collecting a substantial amount of data and is thus complex, time-consuming and costly. A substantial amount of 
data, however, is necessary to distinguish whether ADHD underlies the particular pattern of observed symptoms 
as opposed to norm variants of behavior, possible differential diagnoses, or comorbidities occurring in addition 
to ADHD1,2. Overall, this extensive diagnostic process relies on criteria highly sensitive to subjective biases (for 
discussion see Faraone et al.3) and may result in delays in treatment initiation. This is particularly unfortunate 
given that effective treatments for ADHD are readily available. Thus, it should be paramount to streamline, 
shorten and specify the diagnostic process. To achieve this, it is necessary to identify the most relevant aspects of 
data that predict the diagnostic outcome. This may be possible via the application of machine learning techniques.

In recent years, machine learning has made remarkable progress, from its application in detecting between-
group differences to making predictions on the individual level4. Concerning ADHD, previous studies based 
on clinical and/or neuroimaging data have performed automated classifications to distinguish between ADHD 
and typically developing individuals with classification accuracies ranging from 62 to 89.5%5–9. Unfortunately, 
this dichotomous distinction between the labels of "typically developing" and "ADHD" does not reflect the ques-
tion typically asked in the clinical setting. Even though this question is clinically much more relevant, to our 
knowledge no study so far has attempted to apply machine learning in order to predict whether the diagnostic 
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outcome will be "ADHD" or "something else" (i.e., a norm variant of behaviour or another psychiatric diagnosis) 
in a broad spectrum of clinical conditions within a help-seeking population.

Since neuroimaging or genetic data are not (yet) part of the routine diagnostic process for ADHD due 
to limitations in cross-sample reliability/validity as well as in sensitivity and specificity10 and may result in 
lower classification accuracy than clinical measures5,6, it is currently still necessary to focus on readily avail-
able behavioural/clinical data including demographic information, subjective symptom ratings, and objective 
neuropsychological data.

Demographic data like male gender, severe early onset and familial predispositions11 are associated with a 
higher risk for ADHD. Self-report symptom rating scales, are less reliable than informant ratings12 with studies 
further reporting low to medium correlations between parent and teacher ratings13. To account for these differ-
ences, it has been suggested to use the degree of consistency between them as an indicator of ADHD symptom 
severity14.

Neuropsychological tests are a further important component of the data collected during the diagnostic pro-
cess. Lower overall IQ15, as well as difficulties in working memory1 and processing speed16,17, have been proposed 
to distinguish between individuals with ADHD and typically developing controls. Verbal comprehension and 
logical reasoning, in turn, are not systematically reduced in children with ADHD18. Overall, reductions in general 
or subscale-specific IQ are not specific to ADHD. Instead, the label "ADHD" explicitly points to difficulties in 
attentional processes (e.g. Günther et al.19). Evidence for impairments in terms of accuracy and reaction time 
variability20 in tests pertaining to inhibition21 seems to be particularly strong. Similarly, this is the case regarding 
the intensity domain of attention22. Specifically, this concerns omission errors occurring in tests of sustained 
attention/tonic alertness23. Evidence is rather mixed concerning the selectivity domain of attention21,22.

In this proof-of-concept study, we attempted to train a machine learning model to predict the diagnostic 
outcome of "ADHD" in a help-seeking clinical sample. To our knowledge, this is the first study that attempted to 
train a machine learning classifier on anonymized real-world clinical data and to distinguish children/adolescents 
with an ADHD diagnosis from those with none or other diagnoses. In addition to well-established neuropsy-
chological measures and individual symptom ratings, we included features capturing the degree of consistency 
between parents’ and teachers’ ratings. In order to test possible implications for shortening the diagnostic process, 
we assessed the predictive information of every single feature. Moreover, we attempted to reduce the necessary 
diagnostic information using a data driven, automated feature selection.

Methods
Participants.  The standardized diagnostic process included several consultations with the child and car-
egivers together and individually. Parents and (nursery) school teachers completed general and ADHD-specific 
rating scales. Further, general intelligence and attention were assessed via standardized testing batteries. In addi-
tion, somatic conditions which may contribute to any existing attention problems were excluded (e.g., laboratory 
measures, ophthalmological and ENT evaluations, EEG). The final diagnostic decision was given strictly based 
on ICD-10 clinical criteria assessed by a senior specialist in child and adolescent psychiatry or psychology.

This was a study based exclusively on data from a clinical records. We extracted the data of help-seeking 
individuals who were referred to our secondary care outpatients unit with a suspected ADHD diagnosis, or in 
whom an ADHD diagnosis was the suspected diagnosis after the initial consultation. The group labeled "ADHD" 
included patients who had received one of the following diagnoses: attention deficit hyperactivity disorder 
(F90.0), hyperkinetic conduct disorder (F90.1), or attention deficit disorder without hyperactivity (F98.80). 
Importantly, not all psychiatric comorbidities constituted an exclusion criterion for the ADHD group (see below). 
The "non-ADHD" group contained patients who did not fulfill diagnostic criteria for ADHD. Socio-demographic 
and clinical characteristics of the sample (N = 299) are presented in Table 1. Individuals who were classified in the 
group ADHD were significant more often male (chi2 = 6.871, p = .009) and younger (t = 2.038, df = 290, p = .043).

Data sets were included in the study if ADHD had been suspected at the beginning of the diagnostic process, 
patients were younger than 18 years at the beginning of the diagnostic procedure, and if at least 2 out of 3 atten-
tion tests scores from the TAP diagnostic battery (for details, see below) were available24. Data sets were excluded 
if neurological or genetic disorders, endocrine disorders (incl. not corrected hypo- or hyperthyroidism), or other 
severe documented medical comorbidities on Axis IV had been identified.

Data collection.  We extracted data from medical records of the Department of Child and Adolescent Psy-
chiatry and Psychotherapy at the Medical Faculty of the Technical University Dresden from 2015 to 2020. As 
we used anonymized data from a clinical register, in alignment with the Saxony Hospital Act §34 Section 1, the 
informed consent was waived by the Ethics Committee of the Medical Faculty of the Technische Universität 
Dresden, Germany (No: EK31012016), who also approved the study. The study was performed in accordance 
with the Declaration of Helsinki. Briefly, we extracted the following 92 features from the clinical records (for a 
detailed summary, see Supplementary table 1):

	 I.	 Demographic variables (age and gender);
	 II.	 Symptom ratings (Conners-3 parent/teacher ratings25; parent version of the Child Behavior Checklist 

(CBCL) and its school equivalent, the Teacher’s report form (TRF)26; Strengths and Difficulties Ques-
tionnaire parents (SDQ-P) and teacher (SDQ-T) versions27). To account for age and gender differences 
amongst patients, we used normed T-values as features in all cases. Additionally, we computed a set of 
’consistency indices’ describing the consistency between parent and teacher ADHD specific Conners-3 
ratings (for details see Supplementary note 1).
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	 III.	 Neuropsychological measures (three subtests from the TAP, a commonly used German computer-based 
assessment of attention in children and adolescents24 was used to assess inhibition (GoNogo subtest), 
divided attention (Divided Attention subtest) and Alertness (Alertness subtest). The Wechsler Intelli-
gence Scale for Children IV or V28,29 was used to measure general intelligence. To generate compatibility 
between versions IV and V, we used the average of the visual-spatial index and the fluid reasoning index 
as ’perceptual reasoning’ in participants who completed the WISC V. For the attention measures, we used 
the T-values as features. For the intelligence measures, we used the standardized IQ scores as features.

Machine learning classification.  Prior to classification, we discarded all features with > 20% of missing 
values (N = 62 features), as well as all participants with > 20% of missing features (N = 150 participants, 49%, 
(i.e. n = 70 participants) from the ADHD group). We determined the 20% cutoff as a compromise solution to 
preserve a diverse set of features without too strongly negatively impacting the accuracy due to too many miss-
ing values30. The final dataset was comprised of 292 participants and 30 features (Table 1). As the support vector 
machine (SVM) classifier cannot handle missing values, some imputations were necessary in order to retain the 
most participants and features. We imputed the sample mean (continuous variables) or mode (discrete vari-
ables). As an alternative approach to data imputation, we performed a supplementary analysis after discarding 
all subjects containing missing data on a dataset of N = 248 (53.2% ADHD). Finally, to eliminate the effect of a 
different range of features on classification performance, all features were normalized into a z-score.

We used a linear SVM classifier to classify the participants into ADHD and non-ADHD groups in three 
ways. First, to assess the SVM classifier’s performance on the whole dataset, we used the complete set of 30 
features for training and testing. Second, we assessed the importance of single features for the classification 
by performing the classification using each one single feature at a time (i.e., we repeated the above-mentioned 
training and testing phase, including the k-fold crossvalidation described below using a single feature at a time, 
obtaining 30 single-feature classifiers). We chose this procedure rather than reporting the SVM weights, as those 
cannot be interpreted regarding the importance of single features31. Finally, to try and optimize the algorithm’s 
performance, we aimed to eliminate irrelevant features in a data-driven way. Similar to our previous work32, we 
used the sequential floating forward selection (SFFS)33,34 implemented in MATLAB 2017a (Mathworks Inc.) 
for this purpose. In an SFFS feature selection, two separate algorithms are combined. The sequential forward 
selection (SFS) starts from an empty set of features and sequentially adds features that result in the highest clas-
sifier accuracy when combined with the already selected features. Sequential backward selection (SBS) works in 
the opposite direction by removing the feature, leading to higher accuracy. In SFFS, each feature selection step 
comprises SFS and SBS32. After adding each feature, we performed an SVM classification using the selected set of 
features. We performed the train and test procedures using a standard k-fold crossvalidation method (k = 10)4,35,36 

Table 1.   Socio-demographic characteristics of the sample.

Variables ADHD Non-ADHD Test

N (Ntotal = 299) 153 (52.4) 139 (47.6)

Sex male (%) 132 (86.3) 103 (74.1) χ2(1) = 6.871, p = .009

Age 10.0 (2.4) 10.5 (2.5) t = 2.038, df = 290, p = .043

Total IQ (SD) 96.8 (13.0) 96.3 (11.9) t = − .353, df = 290, p = .724

Diagnoses N (%)

ADHD

1. Predominantly hyperactive-impulsive type 98 (64.0) n/a

2. Predominantly inattentive type 42 (27.5) n/a

3. Comorbidwith conduct disorder 13 (8.5) n/a

Adjustment disorders 12 (7.8) 48 (34.5)

Affective disorders 1 (0.6) 3 (2.2)

Autism spectrum disorders 0 (0) 0 (0)

Conduct disorders n/a 14 (1)

Disorders of social functioning with onset specific to childhood and adolescence 4 (2.6) 6 (4.3)

Eating disorders 1 (0.6) 1 (0.7)

Emotional disorders with onset specific to childhood 14 (9.2) 16 (11.5)

Intellectual disabilities 3 (1.9) 0 (0)

Mental and behavioral disorders due to substance use 0 (0) 7 (5.0)

Mixed disorders of conduct and emotions 0 (0) 5 (3.6)

Specific developmental disorder of motor function 10 (6.5) 3 (2.2)

Specific developmental disorders of scholastic skills 16 (10.5) 6 (4.3)

Tic disorders 12 (7.8) 18 (12.9)

Other 6 (3.9) 6 (4.3)

No diagnosis n/a 50 (36.0)
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(for details see Supplementary note 2 and Supplementary figure 1). We calculated the classification accuracy (i.e. 
the number of correct predictions divided by the number of all predictions made) as the average accuracy on all 
folds and reported the standard deviation of the achieved accuracies.

Since this was a population-based study, the ADHD and non-ADHD participants were not matched by 
age and gender. To check that the classification was based on ADHD-specific traits rather than predominantly 
demographic variables (age, sex), we compared correctly vs. incorrectly predicted participants using a t test and 
a chi-square test, where applicable. A significant difference in some demographic variables (e.g., age) would 
indicate that the classifier would have a limited validity/range of applicability. To further assess the contribution 
of demographic variables to the classification, we also performed a secondary analysis repeating the primary 
SVM classification using all the features listed in Table 2 except for age and sex.

Results
SVM classification.  The classification using the complete set of 30 features yielded an average accuracy of 
66.1% (obtained from the true label) (SD = 8%, sensitivity = 66.9%, specificity = 65.4%, AUC = 0.66). The classifier 
falsely identified 18.2% of ADHD patients as not having ADHD (type 2 error). Conversely, 15.8% of patients 
without ADHD were falsely identified as having the condition (type 1 error). The permutation test showed that 
the accuracy is higher than randomly assigned labels (p value = .001). The correctly and incorrectly classified 
participants did not significantly differ in age (t = − .733, df = 290, p = .464), gender (χ2(1) = .171, p = .679) and 
total IQ (t = 1.173, df = 290, p = .242).

Table 2.   Ranking of features according to the classification accuracy when used as single feature in an SVM 
model.

Ranking Accuracy Feature Note

1 0.576 Gender Male/ female

2 0.575 Go/NoGo_standard deviation Go/Nogo: standard deviation (T value)

3 0.572 TAP_Alertness_Tonic_reaction time_standard devia-
tion

Tonic alertness reaction time (without warning signal): 
standard deviation (T value)

4 0.551 Go/NoGo_commission errors Go/Nogo: false alarms

5 0.545 Conners_peer relations_m Item from Conners-3 parent ratings

6 0.545 Processing speed Processing speed based on WISC IV or V (in children 
aged < 6 WPPSI)

7 0.538 Age Age (years)

8 0.531 Go/NoGo_ommission errors Go/Nogo: omission errors

9 0.530 TAP_Alertness_Phasic_reaction time_standard devia-
tion

Phasic alertness reaction time (without warning signal): 
standard deviation (T value)

10 0.527 Conners_inattention_m Item from Conners-3 parent ratings

11 0.524 Conners_hyperactivity/impulsivity_t Item from Conners-3 teacher ratings

12 0.524 TAP_Alertness_tonic_reaction time_reaction time Tonic alertness reaction time (without warning signal): 
mean reaction time (T value)

13 0.524 Conners_aggression_t Item from Conners-3 teacher ratings

14 0.524 Go/NoGo_reaction time Go/Nogo: mean reaction time (T value)

15 0.524 Conners_negative impression_t Item from Conners-3 teacher ratings

16 0.524 Conners_executive functions_m Item from Conners-3 parent ratings

17 0.524 Conners_learning problems_m Item from Conners-3 parent ratings

18 0.524 TAP_Alertness_Phasic_reaction time Phasic alertness reaction time (with warning signal): 
mean reaction time (T value)

19 0.524 Conners_cognitive problems_t Item from Conners-3 teacher ratings

20 0.524 Conners_negative impression_m Item from Conners-3 parent ratings

21 0.524 Conners_inattention_r Consistency index – parent vs. teacher ratings

22 0.523 WISC_General IQ Total IQ based on based on WISC IV or V (in children 
aged < 6 WPPSI)

23 0.523 Conners_positive impression_m Item from Conners-3 parent ratings

24 0.520 Conners_aggression_m Item from Conners-3 parent ratings

25 0.518 Conners_inattention_t Item from Conners-3 teacher ratings

26 0.517 Verbal comprehension Verbal comprehension based on WISC IV or V (in 
children aged < 6 WPPSI)

27 0.514 Conners_hyperactivity/impulsivity_m Item from Conners-3 parent ratings

28 0.500 Perceptual reasoning Perceptual reasoning based on WISC IV or V (in chil-
dren aged < 6 WPPSI)

29 0.500 Working memory Working Memory based on WISC IV or V (in children 
aged < 6 WPPSI)

30 0.469 Conners_peer relations_t Item from Conners-3 teacher ratings
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We ranked the features according to the achieved classification accuracy when exclusively one feature was 
used for testing and training (Table 2). For a graphical interpretation including standard deviations, see Fig. 1.

The automated feature-selection procedure achieved a maximum classification accuracy of 68.1% using a set 
of 19 features (Supplementary table 2).

Secondary classification without demographic features.  In order to determine the predictive value 
of non-demographic features, we excluded the demographic features (age and sex) from training and classifica-
tion in a secondary analysis. The model achieved an accuracy of 65.1% (sensitivity = 64.7%, specificity = 65.4%, 
AUC = 66.3%). A permutation test revealed this performance was significantly above chance (p = .001).

Secondary classification without missing data.  In order to relatively estimate the influence of missing 
data on the classification performance, we retrained the classifier using the automatically selected set of the 19 
best predictive features (Supplementary table 2) only on subjects without any missing data. The SVM achieved 
an accuracy of 68.8% (SD = 8.5%, sensitivity = 63.3%, specificity = 73.9%, AUC = 69.6%).

Discussion
In this machine learning study, we differentiated help-seeking children and adolescents with ADHD from those 
not having the condition with an accuracy of 66.1% using real-world clinical data from hospital records. Exclud-
ing demographic features (age and gender) resulted in a comparable accuracy. An automated feature selection 
achieved the best performance using a combination of 19 most predictive features across attention and intel-
ligence domains and symptom ratings. The accuracy might be further increased using datasets without missing 
data. The consistency index of parent and teacher ratings did not outperform conventional features. Our study 
suggests that ADHD can be identified using data from clinical records even in a mixed, help-seeking population 
of children and adolescents.

Machine learning studies require large amounts of data31 which may be challenging to collect by recruit-
ing participants for a specific study but are readily available in clinical databases. Moreover, the results from 
experimental studies might not generalize to a clinical setting, where clinicians are commonly confronted with 

Figure 1.   A box-plot diagram of the prediction accuracies achieved using only a single feature at a time. We 
chose this approach to evaluate, if some features might be more predictive than others. The bars indicate the 
standard deviation of the classification accuracies achieved in single runs of the tenfold crossvalidation method. 
The differences were not significant, as the standard deviations were high, and they overlapped, therefore we did 
not perform any further significance test. The * sign indicates those features, which, when combined, achieve the 
highest accuracy in a separate analysis (see Supplementary table 2).
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multiple/concurrent disorders and/or various potential differential diagnoses. Thus, we showed that SVM in 
combination with real-world, comprehensive clinical data could yield an above-chance classification accuracy 
and detect individuals with ADHD among those having none or different condition(s).

To our knowledge, the highest achieved accuracy in studies of ADHD patients and healthy individuals were 
89.5%8. Although we used more features than this study, the resulting accuracy was lower. This might be because 
many help-seeking individuals in our sample received other diagnoses associated with symptoms that may mimic 
ADHD (such as attention deficits in depression, increased activity in tic disorders, etc.). Thus, the two groups 
(ADHD vs. "something else") are not as clearly differentiated from each other as it would be the case when dis-
tinguishing between individuals with confirmed ADHD diagnoses and those not showing any symptoms at all. 
Previous studies aiming at distinguishing more than one disorder from typically developing controls reported 
lower classification accuracies than studies aiming at classifying typically developing individuals and patients 
with one condition37.

Age and gender were shown to be useful for diagnostic and prognostic tools based on machine learning in 
previous studies38,39. This was also the case in the current study. In this study, instead of identifying physiological 
patterns typical of ADHD, we aimed to train a classifier to identify ADHD based on data available from medi-
cal records. As typical age and gender distributions of ADHD may naturally be reflected in this data structure, 
which may constitute a sampling bias, conducting a second analysis without these features was essential. This 
analysis without age and gender still revealed a significant classification accuracy, demonstrating that the neu-
ropsychological features and ADHD-specific ratings on their own are sufficient to identify ADHD in a mixed 
patient sample.

Previous studies have opted not to include clinical ratings in the analysis to avoid possible subjective biases8. 
We addressed this issue by using the consistency index above, which did not outperform conventional ADHD-
specific features like parent/teacher-rated symptoms. The automatic feature selection also only emphasized a 
rather unspecific symptoms like peer relations, aggression, and teacher negative impression bias. These results 
suggest that clinical ratings capturing broader ADHD-related behavioral irregularities (i.e., not simply pertaining 
to ADHD core symptoms) as reported by different sources using the Conners-3 questionnaire are informative 
when aiming to identify ADHD amongst a help-seeking clinical population. This may reflect the notion that the 
rather qualitative "clinical impression" of ADHD plays a significant role in the diagnostic process40. Similarly, 
this may also be interpreted as showing that a rather broad functional impairment associated with ADHD 
symptoms (in regards to social interactions, for example) is indicative of diagnostic classification in the clinical 
setting. This issue could be examined further by including clinician rating scales or those capturing the degree 
of functional impairment41.

Among the neuropsychological measures, the total IQ score did not rank among the most predictive features. 
Previous machine learning studies suggesting IQ to be a predictive feature5,6 included IQ scores as part of an 
overall "phenotypic" feature that also contained aspects like age and gender, making a specific interpretation 
impossible. In addition, these studies only focused on the distinction between individuals with ADHD and typi-
cally developing controls, thus reducing the validity of the results for clinical practice. It is the goal to distinguish 
ADHD from disorders or norm variants of behavior mimicking ADHD symptoms. Interestingly, the processing 
speed subscale ranked highest of all IQ-related features in the single feature classification. This may reflect the 
previously reported relevance of this aspect of neuropsychological processing16 when comparing individuals 
with ADHD and healthy controls. Within the automatic feature selection, reaction time variability and accuracy 
in tests capturing tonic/phasic alertness and inhibition ranked numerically higher than mean reaction times. 
While a previous study suggested that objective neuropsychological measures considerably underscored rating 
scales in distinguishing ADHD from healthy participants8, our results show that these scores in general indeed 
contribute to classification when identifying individuals with ADHD in a mixed help-seeking population. This 
supports the notion that objective measures like those employed in the current context are indeed important 
elements of the diagnostic process of ADHD as has been suggested previously42.

This study has the following limitations. First, we could not include broader clinical measures such as the 
CBCL as possible features due to too many missing values. These measures might have provided more specific 
information on differences between diagnostic entities. Similarly, father ratings also needed to be excluded due 
to missing data (although father ratings were included in the consistency index where possible). Retraining the 
classifier without missing data achieved a further increase in the classification accuracy (imputation 66.1% vs 
no missing data 68.8%). This suggests, that an effort to simplify the diagnostic process in order to reduce the 
probability of missing data might increase the performance of automated classifiers. Second, although we tested 
generalizability indirectly using the permutation test, an independent validation sample would provide more 
precise information on the generalizability of our classifier. Third, the relative importance of single features needs 
to be interpreted carefully while considering the low classification accuracy differences between the features and 
the relatively high standard deviations of the achieved accuracies. As the Fig. 1 shows, the standard deviations 
of the classification accuracies for single features overlapped. Although our results suggest that some features 
might be superior to others, we cannot conclude that there are single outstanding features in our sample that 
distinguish individuals with a definite ADHD diagnosis from those with another or no psychiatric diagnosis. 
Overall, a further increase in classification performance might be achieved by using larger samples with more 
complete data on all clinically relevant features rather than adding new ones. Our results do not provide full 
implications for exclusion and/or prioritization of specific clinical ratings in future studies.
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Conclusion
In conclusion, we provide a proof-of-concept that real-world clinical data from medical records might contribute 
to identification of ADHD among help-seeking individuals. In this context, age, gender, and accuracy/reaction 
time variability seem to play a marginally more critical role than other features. Further, ADHD core symptoms 
reported by parents and/or teachers do not seem to carry the degree of importance as it may be assumed. Instead, 
results suggest a relatively broad combination of symptoms across different domains to indicate an eventual 
ADHD diagnosis. Overall, this implies that research endeavors aiming to identify biological and less subjec-
tive markers of ADHD need to be continued (see Faraone et al.3). Although the classification performed above 
chance (i.e. accuracy of 66.1%), the performance did not reach a level suggestive of possible clinical utility (i.e. 
80% accuracy43). Multimodal data (particularly neuroimaging and genetic data) might improve the recognition 
of psychiatric disorders using machine learning44. In order to validate such recognition tools, multicentric data 
are necessary. In order to arrive at firm conclusions in this matter, there is a need for standardized recommen-
dations for ADHD diagnostic procedures, such as specification of the obligatory attention domains, cognitive 
assessments and assessment scales used. These recommendations should also take into account the risk of missing 
data finding compromises between a broad assessment and feasibility.
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