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Oxytocin Protects against Stress-
Induced Cell Death in Murine 
Pancreatic β-Cells
Sayaka Watanabe, Fan-Yan Wei, Tomomi Matsunaga, Nanami Matsunaga, Taku Kaitsuka & 
Kazuhito Tomizawa

Oxytocin (Oxt) is a key neuropeptide that regulates maternal behaviors as well as social behaviors in 
mammals. Interestingly, recent studies have shown that the impairment of Oxt signaling is associated 
with the disturbance of metabolic homeostasis, resulting in obesity and diabetes. However, the 
molecular mechanism by which Oxt signaling controls metabolic responses is largely unknown. Here, 
we report that Oxt signaling attenuates the death of pancreatic beta cells in islets exposed to cytotoxic 
stresses. The protective effect of Oxt was diminished in islets isolated from oxytocin receptor knockout 
(Oxtr−/−) mice. Oxtr−/− mice developed normally, but exhibited impaired insulin secretion and  
showed glucose intolerance under a high-fat diet. Mechanistically, the deficiency of Oxtr impaired  
MAPK/ERK-CREB signaling, which exaggerated the endoplasmic reticulum stress response and 
ultimately increased the death of beta cells in pancreatic islets under stressed conditions. These results 
reveal that Oxt protects pancreatic beta cells against death caused by metabolic stress, and Oxt 
signaling may be a potential therapeutic target.

Oxytocin (Oxt) is a multifunctional hormone consisting of a mature polypeptide of nine amino acids1. In 
mammals, Oxt is produced in subpopulations of neurons in the supraoptic nuclei (SON) and paraventricular 
nuclei (PVN) of the hypothalamus1. The hormone is transported to the nerve terminals by axonal transport 
and released from the posterior pituitary gland1. The central physiological functions of oxytocin are to regulate 
maternal2, emotional3, affiliative4, and sexual5 behaviors, as well as spatial and social cognition6,7. Oxt binds to 
Gq/11α  proteins coupled to the oxytocin receptor (Oxtr) predominantly expressed in uterine smooth muscle and 
myoepithelial cells8. The activation of Oxtr induces an increase in calcium from both intracellular calcium stores 
and extracellular calcium influx9. The increase in calcium triggers the activation of calcium-dependent protein 
kinases, which finally induces smooth muscle contraction and leads to parturition and lactation8.

Besides the above physiological functions in mammals, Oxt has recently been emerging as a key component 
of metabolic homeostasis. Treatment with Oxt was reported to stimulate glucose oxidation and lipogenesis in 
adipocytes10. In the pancreas, a physiological level of Oxt is detected in both humans and rodents11. The treatment 
of isolated pancreatic islets with Oxt stimulates the release of glucagon as well as insulin12. The involvement of Oxt 
signaling in metabolism has been confirmed in a mouse model with the genetic deletion of either Oxy or Oxtr. 
Both Oxt-null and Oxtr-null mice had normal food intake patterns but developed late-onset obesity13,14. The 
involvement of Oxt signaling in metabolic homeostasis has also been supported by human studies. CD38, a mem-
brane ADP-ribosyl cyclase, regulates Oxt secretion. Interestingly, single nucleotide polymorphisms of the CD38 
gene have been implicated in the development of diabetes15. This observation has been validated in CD38-null 
mice with an ICR genetic background16,17. CD38-null mice exhibited impaired insulin secretion and an elevated 
plasma glucose level. Furthermore, recent epidemic studies showed that breast-feeding is likely to be associated 
with a lower incidence of type 2 diabetes18,19. Taken together, these results suggest that Oxt signaling has a bene-
ficial effect in metabolic homeostasis.

Given the important role of Oxt signaling in metabolism, a large number of studies have aimed to understand 
the potential functions of Oxt in adipocytes as well as in acute insulin secretion10,11. However, the molecular 
mechanism by which Oxt signaling regulates the cellular homeostasis of pancreatic islets has been insufficiently 
explored. In the present study, we investigated the anti-cell death effect of Oxt signaling in vitro and in vivo by cell 
biological and genetic approaches.
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Results
Inhibitory effect of Oxt on stress-induced cell death of pancreatic islets. To investigate the role 
of Oxt signaling in pancreatic islets, we first examined the expression levels of Oxt and Oxtr. There was a large 
amount of Oxtr mRNA in the pancreatic islets isolated from both male and female mice as well as in the murine 
pancreatic beta cell-derived cell line MIN6 (Fig. 1A). The expression level in the pancreatic islets and MIN6 cells 
was higher than that in mouse SON. In contrast, only a trace of Oxt mRNA was detected in the islets and MIN6 
cells compared with mouse SON (Fig. 1B), suggesting that Oxt does not act through a paracrine pathway in pan-
creatic islets.

Given the impaired metabolic homeostasis in mice and humans with deficiency of Oxt signaling13–15, we 
hypothesized that Oxt signaling is involved in anti-cell death signaling in pancreatic islets. To investigate this 
hypothesis, pancreatic islets were isolated from male mice and then treated with Oxt in the presence of various 
metabolic stressors including tunicamycin (Fig. 1C), cytokines (Fig. 1D), and palmitate (Fig. 1E). These cyto-
toxic reagents significantly induced cell death in isolated pancreatic islets (Fig. 1C–E). Treatment with 100 pM 
Oxt, a physiological concentration in plasma, effectively attenuated the stressor-induced cell death (Fig. 1C–E). 
To further elucidate the inhibitory effect of Oxt, we isolated pancreatic islets from mice with deficiency of Oxtr 
(Oxtr−/−) and treated them with cytokines. As expected, the protective effect of Oxt against cytokine-induced 
cell death was no longer observed in the islets isolated from Oxtr−/− mice (Fig. 1F). Oxtr is selective for Oxt in 
general, but is also capable of binding to vasopressin (Avp) with a low affinity20. To verify the specificity of Oxt 

Figure 1. Oxt attenuates cell death in pancreatic islets. (A,B) Relative expressions of Oxt (A) and Oxtr (B) 
mRNAs in the pancreatic islets of male and female wild-type mice; MIN6 cells and SON of male wild-type 
mice are shown. *P <  0.05 and ****P <  0.0001 versus SON by one-way ANOVA. n =  5–8. (C,D). Cell death 
was measured in islets isolated from male mice treated with 2 ng/mL tunicamycin (C) or a cytokine mixture 
(D) in the presence of 100 pM Oxt for 24 hours. *P <  0.05, n =  8 for (C), *P <  0.05, n =  12 replicates for (D) 
by Student’s t-test adjusted for multiple comparison. (E) Cell death was measured in islets isolated from wild-
type (WT) and Oxtr−/− mice treated with 100 pM oxytocin and a cytokine mixture for 24 hours. *P <  0.05 by 
Student’s t-test. n =  8. (F) Cell death was measured in islets isolated from wild-type mice treated with 1 nM 
vasopressin and a cytokine mixture for 24 hours. n =  12.
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signaling, pancreatic islets were treated with 1 nM Avp and cytokines. However, treatment with Avp failed to 
prevent cytokine-induced cell death (Fig. 1G).

Oxtr−/− mice exhibit normal metabolic homeostasis. Given the protective role of Oxt signaling, defi-
ciency of Oxtr might impair cellular homeostasis as well as insulin-mediated glucose metabolism in pancreatic 
islets, which will collectively lead to late-onset obesity. However, there was no morphological change in pancre-
atic islets of Oxtr−/− mice when compared with the wild-type control littermates (Fig. 2A,B). There was no clear 
decrease of insulin-positive or glucagon-positive cells in Oxtr−/− islets (Fig. 2A). Accordingly, the glucose levels of 
Oxtr−/− mice were comparable with those of WT mice during the glucose tolerance test (Fig. 2C). Furthermore, 
the food intake and body weight of Oxtr−/− mice were also the same as those of WT mice (data not shown). In 
agreement with these observations, the expression levels of endoplasmic reticulum stress-related genes, which 
are involved in cell death signaling, were comparable between WT and Oxtr−/− mice (Fig. 2D). Consistent with a 
previous study13, these results suggest that a deficiency of Oxt signaling does not immediately lead to pathological 
phenotypes.

Oxtr−/− mice develop glucose intolerance under high-fat diet. Oxt has been implicated in met-
abolic regulation in peripheral tissues such as adipocytes and the pancreas10–12. Interestingly, when wild-type 
mice were fed a high-fed diet, there was a significant increase in both Oxt and Oxtr levels in the brain, and the 
Oxtr level in the islets (Fig. 3A–C). However, the circulating blood Oxt level did not differ between WT and 
Oxtr−/− mice (data not shown). The increase of Oxt and Oxtr in both central and peripheral tissues suggests that 
Oxt signaling is actively involved in the adaptive response to metabolic stress. This perspective prompted us to 
challenge Oxtr−/− mice with metabolic stress such as a high-fat diet. The body weight of Oxtr−/− mice was slightly 
heavier than that of WT mice after high-fat diet feeding for 16 weeks (Fig. 3D). To investigate glucose metabo-
lism, Oxtr−/− mice fed the high-fat diet were subjected to the glucose tolerance test. Insulin secretion after glucose 
challenge was significantly impaired in Oxtr−/− mice (Fig. 3E). Accordingly, the reduction of the plasma glucose 
level was significantly attenuated in Oxtr−/− mice when compared with that in WT mice (Fig. 3F–G). To examine 
the potential impact of metabolic stress on insulin sensitivity, the insulin tolerance test was performed in WT 
and Oxtr−/− mice. However, insulin sensitivity in Oxtr−/− mice fed the high-fat diet was comparable with that in 
WT mice (Fig. 3H). These results suggest that insulin secretion from pancreatic islets was selectively impaired in 
Oxtr−/− mice with chronic metabolic stress.

Stress-induced apoptosis in Oxtr−/− pancreatic islets. Metabolic stress is one of the major triggers of 
chronic inflammation that causes cell death21. Considering the anti-cell death role of Oxt signaling in pancreatic 
islets, we suspected that the high-fat diet-induced glucose intolerance in Oxtr−/− mice might be due to the aug-
mentation of cell death in Oxtr−/− islets. Morphological examination of pancreatic islets revealed no difference 
between WT and Oxtr−/− mice (Fig. 4A). Neither the size of islets nor the number of glucagon cells significantly 
differed between WT and Oxtr−/− mice (Fig. 4B,C). To examine cell death in stressed mice, we isolated pancreatic 
islets from the stressed mice and examined cell death. As expected, there was a significant increase of cell death in 
Oxtr−/− islets (Fig. 4D). Accordingly, TUNEL-positive cells were observed in Oxtr−/− islets (Fig. 4E).

Next, we investigated the molecular mechanism underlying stress-induced cell death in Oxtr−/− islets. 
Metabolic stress is a strong inducer of endoplasmic reticulum stress (ER stress), which leads to cell death by the 
upregulation of proapoptotic genes such as Chop and Xbp121. We thus investigated the expression levels of ER 
stress-related genes such as Bip, Chop, Xbp1, and Glut2. Indeed, there was a significant increase of Chop and Xbp1 
levels in stressed Oxtr−/− islets (Fig. 4F). Furthermore, there was a significant decrease of Glut2 levels, reflecting 
the impaired glucose response in Oxtr−/− islets (Fig. 4F). On the other hand, the expression levels of genes related 
to pancreatic islet functions, such as Ins1/2, Pdx1, and Glucagon, remained unchanged between WT and Oxtr−/− 
mice (Fig. 4G).

Finally, we investigated the molecular pathway that contributes to the stressed-induced cell death in Oxtr−/− 
pancreatic islets. The binding of Oxt to Oxtr initiates a variety of downstream signaling pathways, including the 
mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK)-cAMP response element 
binding protein (CREB) pathway, which has recently been implicated in the ER stress response22. To investigate 
the potential involvement of ERK-CREB signaling in pancreatic islets, the active phosphorylated forms of ERK1/2 
and CREB were immunostained in pancreatic islets of WT and Oxtr−/− mice fed with normal chow or a high-fat 
diet (Fig. 5A–D). There was a marked reduction of phosphor-ERK1/2 and phosphor-CREB in Oxtr−/ mice fed a 
high-fat diet (Fig. 5B,D). These results thus suggest that the ERK-CREB signaling was impaired in Oxtr−/− mice 
under chronic metabolic stress.

Discussion
The present study revealed a beneficial role of Oxt signaling in response to cytotoxic stimulation in pancreatic 
islets. The activation of Oxt signaling attenuated cell death induced by cytotoxic cytokines in pancreatic islets. 
The anti-cell death effect of Oxt was further demonstrated in mice with a deficiency of Oxtr. The Oxtr−/− mice 
fed the high-fat diet exhibited increased apoptosis in pancreatic islets, which results in impaired insulin secretion 
as well as glucose intolerance. Consistent with our study, the protective role of Oxt signaling in peripheral tissue 
has emerged from recent studies23–25. The application of Oxt protected cardiomyocytes from apoptosis in the rat 
heart subjected to temporary ischemia as well as in obese diabetic db/db mice23–25. These results thus suggest that 
Oxt signaling is actively involved in protection of the cellular homeostasis of pancreatic islets, which ultimately 
contributes to the metabolic balance.

Despite the accumulating evidence showing the beneficial role of Oxt signaling, the molecular mechanism 
of the anti-cell death effect of Oxt has been largely unexplored. Oxy binds to Oxtr coupled with Gq, which leads 
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to calcium mobilization1. In neurons, the Oxt-evoked calcium signaling transduces to the MAPK/ERK cascade, 
which further leads to the activation of CREB and consequently contributes to learning and memory7. The 
ERK-CREB cascade promotes cell survival by both the ERK-dependent phosphorylation of prosurvival proteins 
and CREB-dependent transcription of prosurvival genes22. Given the marked decrease of phosphorylation of ERK  
and CREB in the Oxtr−/− islets, it is conceivable that the loss of the Oxt-ERK-CREB cascade contributes to the 
stress-induced apoptosis.

Figure 2. Normal glucose metabolism in Oxt−/− mice. (A) Morphological examination of pancreatic islets of 
WT and Oxtr−/− mice. Pancreatic islets were stained with anti-glucagon and anti-C-peptide antibodies. Nuclei 
were stained with DAPI. Scale bars =  50 μ m. (B) The islet area of Oxtr−/− mice did not differ from that of WT 
mice. n =  22. (C) Glucose tolerance tests were performed in WT and Oxtr−/− mice. n =  3–5. (D) The expression 
levels of ER stress-related genes were examined by quantitative PCR. Note that no significant difference was 
observed between WT and Oxtr−/− mice. n =  5.
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Figure 3. High-fat diet impairs glucose metabolism in Oxtr−/− mice. (A,B) WT mice were fed with a high-
fat diet for 19 weeks. The expression levels of Oxt (A) and Oxtr (B) in the brain were examined by quantitative 
PCR. n =  5~6. *P <  0.05, **P <  0.01 by Student’s t-test. (C) The expression level of Oxtr in pancreatic islets of 
WT mice fed a high-fat diet was examined. n =  5~8. *P <  0.05 by Student’s t-test. (D) WT and Oxtr−/− mice at 
12 weeks old were fed a high-fat diet. The change in body weight is shown. n =  13. (E) Mice fed a high-fat diet 
for 18 weeks were challenged with glucose, and the plasma insulin levels at indicted time-points were measured. 
*P <  0.05 by repeated measures two-way ANOVA. n =  4–5. (F) Glucose tolerance tests were performed in mice 
fed a high-fat diet for 18 weeks. *P <  0.05 by repeated measures two-way ANOVA. n =  4–5. (G) The area under 
the curve (AUC) corresponding to the glucose tolerance test (F) was calculated. *P <  0.05 by Student’s t-test. 
n =  4–5. (H) The insulin tolerance test was performed in mice fed a high-fat diet for 18 weeks. n =  10.
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A unique finding in this study was the involvement of Oxt signaling in the ER stress response in pancre-
atic islets. The levels of canonical ER stress genes, such as Xbp1 and Chop, were significantly upregulated in the 
stressed Oxtr−/− islets, suggesting that Oxt signaling suppresses the ER stress response. However, the molecular 
mechanism by which Oxt signaling is associated with the ER stress response remains unknown. Recently, some 
pieces of evidence have shown that CREB is involved in the ER stress response through competitive association 
with activating transcription factor 6 alpha (ATF6α ), which is an integrator of ER stress26. Both CREB and ATF6a 
bind to a common transcription factor named CREB-regulated transcription coactivator 2 (CRTC2) in a mutually 
exclusive manner. A decrease of CREB would result in a reciprocal increase of the ATF6-CRTC2 complex, which 

Figure 4. Oxtr−/− mice exhibit enhanced ER stress response under metabolic stress. (A) Morphological 
examination of pancreatic islets in WT and Oxtr−/− mice fed a high-fat diet for 16 weeks. Pancreatic islets were 
stained with anti-glucagon (red) and anti-C-peptide (green) antibodies. Nuclei were stained with DAPI (blue). 
Scale bars =  50 μ m. (B) The islet area of WT and Oxtr−/− mice fed a high-fat diet for 16 weeks was examined. 
n =  21. (C) The relative glucagon cell area was calculated by dividing the glucagon cell area by the total islet area. 
n =  21. (D) Cell death in the islets of WT and Oxtr−/− mice fed normal chow (NC) or a high-fat diet (HF) for 16 
weeks. *P <  0.05 by Student’s t-test. n =  5. (E,F) Expression levels of genes related to the ER stress response (F) 
and islet functions (G) were examined. *P <  0.05 by Student’s t-test. n =  5 each.
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Figure 5. Impaired ERK-CREB signaling in Oxtr−/− mice. (A–D) Pancreatic sections of mice fed normal 
chow (NC) (A) or a high-fat diet (HF) (B) were stained with anti-insulin antibody in combination with  
anti-ERK anti-phospho-ERK (P-ERK). Note that the p-ERK signal was decreased in Oxtr−/− mice fed HF.  
(C,D) Pancreatic sections of mice fed NC (C) or HF (D) were stained with anti-CREB or anti-phospho-CREB 
(P-CREB) antibodies. Note that the p-CREB signal was decreased in Oxtr−/− mice fed HF. Nuclei were stained 
with DAPI. Scale bars =  20 μ m. (E) The p-CREB levels in islets of WT and Oxtr−/− mice fed a high-fat diet (D) 
were quantified by measuring the intensity of p-CREB in individual nuclei. n =  283 cells for WT, n =  147 cells 
for KO. ****P <  0.0001 by Student’s t-test.
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promotes the expression of ER stress response genes including Xbp1 and Chop26. It is likely that the reduction of 
phospho-CREB in Oxtr−/− islets reciprocally enhances the ATF6-CRTC2-mediated ER stress response, which 
consequently promotes apoptosis.

Given the anti-cell death effect of Oxt signaling, it is worthwhile to mention the potential role of Oxt signa-
ling in Alzheimer’s disease (AD). AD is a neurodegenerative disease characterized by unique histopathological 
and biological abnormalities, including cell death, amyloid-β  deposits, and memory loss27. A growing body of 
evidence links type 2 diabetes to the development of AD28. Interestingly, the nucleus basalis of Meynert in the 
forebrain, which contains a number of cholinergic neurons that are degenerated in AD patients, exhibits a high 
expression level of OXTR in humans29. It is likely that the dysregulation of Oxt signaling is involved in the devel-
opment of AD30.

Given the beneficial effect of Oxt in metabolism, it has been applied to animal models of diabetes31. Oxt 
administration effectively reduced obesity and obesity-related glucose metabolism in diabetic rodents32,33. 
Moreover, a clinical trial using Oxt as an anti-obesity drug was recently conducted34. The Oxt therapy showed 
some positive effects on weight control34. In the present study, we observed impaired glucose tolerance, but the 
insulin sensitivity was not significantly affected in Oxtr−/− mice. These results suggest that Oxt signaling mainly 
acts on the pancreatic islets to maintain the hormonal balance. Furthermore, the protective effect of Oxt signaling 
on islets might explain the positive metabolic outcomes in the previous Oxt therapies. Further study using human 
pancreatic islets will be needed to elucidate the potential role of Oxt signaling in humans.

Taken together, our results reveal that Oxt signaling is critical for the cell survival of pancreatic islets under 
inflammatory metabolic stress conditions. These findings thus reveal the mechanistic basis for the potential of 
Oxt therapy to treat diabetes.

Methods
Animals. The Oxtr-deficient mice (T583) described previously35 were used in all experiments. All mouse 
strains were backcrossed to achieve a C57BL/6 genetic background for more than 6 generations. Unless specified 
otherwise, all mice used in this study were male. Oxtr knockout (Oxtr−/−) mice were generated by obtaining het-
erozygous mice crossed with each other, and the littermates of the wild-type were used as a control. Animals were 
housed at 25˚C with 12-hour light/12-hour dark cycles. High-fat chow (D12451, 45% kcal% fat) was purchased 
from Research Diets (New Brunswick, NJ, USA). Normal chow (CE-2, 4.6% kcal% fat) was purchased from CLEA 
Japan (Tokyo, Japan). All animal procedures were approved by the Animal Ethics Committee of Kumamoto 
University (approval ID: A27-037). All procedures were carried out in accordance with the approved guidelines.

Gene expression analysis. Islets were isolated from Oxtr−/− and wild-type mice by intraductal collagenase 
(Liberase TL grade; Roche) digestion followed by hand-picking, as described previously36. The whole brains were 
rapidly excised from mice and sliced at a thickness of 500 μ m using VT1200S (Leica). The region corresponding 
to the supraoptic nuclei was then punched out and subjected to RNA purification. Total RNA of islets and brain 
tissues were purified using an RNeasy Mini Kit (Qiagen) according to the manufacturer’s protocol. A PrimerScript 
RT Reagent Kit (TAKARA) was used to generate cDNA. Quantitative real-time PCRs were performed using 
either a TaqMan Gene Expression Kit (Oxt; Mm00726655-s1, Oxtr; Mm01182684-m1 from Applied Biosystems) 
or SYBR Pre-mix Ex Taq kit (Applied Biosystems). Primers for detection of the ER stress response and islet func-
tion were described previously36. 18 S rRNA was used as a reference gene for normalization.

Cell death assay. Islets isolated from wild-type and Oxtr−/− mice were isolated and cultured in RPMI 
medium supplemented with 5% FBS overnight. Subsequently, only size-matched and well-shaped islets were 
transferred to a 12-well plate (20 islets/well), with each well represents one replicate. The islets were treated with 
100 pM OXT (Sigma), 1 nM AVP (Sigma), 2 ng/mL Tunicamycin (Sigmga-Aldrich), or a cytokine mixture [IL1-β  
(50 U/mL) • TNF-α  (1 ×  103 U/mL) • INF-α  (1 ×  103 U/mL), Wako] for 24 hours. Cell death was measured by the 
Cell Death Detection ELISA Assay Kit (Roche) according to the manufacturer’s protocol. The cell death level was 
measured as the absorbance at 405 nm with respect to a substrate solution blank. The experiment was repeated 
for three times. The n number represents the total number of replicates from these independent experiments.

Measurement of blood glucose and insulin levels. For the glucose tolerance test, mice at 15~16 weeks 
of age were fasted for 14 hours (8:00 pm to 10:00 am) or 7 hours (9:00 am to 4:00 pm), followed by the intra-
peritoneal injection of glucose at a dose of 1 g/kg body weight. For the insulin tolerance test, mice were fasted 
for 14 hours and injected with human insulin (Humulin R, Eli Lilly) at a dose of 1 unit/kg body weight. Blood 
glucose was determined at the indicated time-points by a glucometer (ACCU-CHEK, Aviva; Roche). Plasma 
insulin levels were determined using the Mouse Insulin ELISA kit (Shibayagi) according to the manufacturer’s 
instructions.

Immunohistochemical analysis. For immunohistochemical examination, mice at 15~16 weeks of age 
were perfused with 4% paraformaldehyde and subjected to sectioning using Cyrostat (Leica). Pancreatic sec-
tions were stained using anti-Insulin (HyTest), anti-C peptide (Cell Signaling), anti-ERK, anti-Phospho-ERK 
(Cell Signaling), anti-CREB anti-Phospho-CREB (Cell Signaling), and anti-glucagon (Sigma-Aldrich) anti-
bodies. All antibodies were used at 1:500 dilutions. DAPI solution (Dojindo) was used to stain nuclei. Images 
were obtained using a FV1000 confocal microscope (Olympus). For measurement of the islet area, randomized 
pancreatic sections were obtained from 3 mice, and stained with anti-insulin and anti-glucagon antibodies. 
The insulin-positive and glucagon-positive areas were measured as islet areas using Image J software (NIH), as 
described previously37.
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Statistical analysis. All data are presented as the mean ±  SEM. Statistical analyses were performed using 
Prism 6 Software (GraphPad Software). The unpaired Student’s t-test was used to test the differences between two 
groups. Analysis of variance (one-way ANOVA, two-way ANOVA, and repeated measures two-way ANOVA) was 
used to test the difference among multiple groups followed by a post-hoc examination of the P-value between two 
groups. A 2-tailed P-value of 0.05 was considered significant.
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