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Chlamydia trachomatis infects macrophages and epithelial cells evoking acute and chronic inflammatory conditions, which, if
not controlled, may put patients at risk for major health issues such as pelvic inflammatory disease, chronic abdominal pain,
and infertility. Here we hypothesized that IL-10, with anti-inflammatory properties, will inhibit inflammatory mediators that are
produced by innate immune cells exposed to C. trachomatis. We used human epithelial (HeLa) cells and mouse J774 macrophages
as target cells along with live and UV-inactivated C. trachomatis mouse pneumonitis (MoPn) as stimulants. Confocal microscopy
employing an anti-Chlamydia antibody confirmed cells infectivity by day 1, which persisted up to day 3. Kinetics studies revealed
that live C. trachomatis induced TNF, IL-6, and IL-8, as a function of time, with day-2 infection inducing the highest cytokine
levels. Exogenous IL-10 inhibited TNF, IL-6, and IL-8 as secreted by day-2 infected cells. Similarly, IL-10 diminished cytokine
levels as produced by macrophages exposed to UV-inactivated Chlamydia, suggesting the IL-10-mediated inhibition of cytokines
is not restricted to live organisms. Our data imply that IL-10 is an important regulator of the initial inflammatory response to C.
trachomatis infection and that further investigations be made into IL-10 use to combat inflammation induced by this bacterium.

1. Introduction

Chlamydia trachomatis is an obligate intracellular bacterial
pathogen responsible for sexually transmitted infections
worldwide [1]. For clinical purposes, C. trachomatis is clas-
sified into different serovars, and disease manifestations
depend on the type of serovar used during infection [2].
Serovars D-K are associated with pelvic inflammatory dis-
ease, salpingitis, ectopic pregnancy, and infertility in women,
and with epididymitis and proctitis in men. Strains of
Lymphogranuloma venereum (LGV, serovars L1–L3) cause
more systemic infections that result in genital ulcers, inguinal
lymphadenopathy, and acute proctitis in men. Furthermore,
serovars L1–L3 are known in manifesting chronic inflamma-
tory diseases [1–3].

Chlamydiae have a unique developmental cycle that be-
gins with attachment of infectious but metabolically inactive
elementary bodies (EB) to host cells surfaces. The infectious
particles of C. trachomatis invade the mucosal surface of
the female genital tract and persist in them for a long time
[4]. Like other infectious organisms, Chlamydia infection
of epithelial cells mucosal surface evokes proinflammatory
cytokines such as interleukin (IL)-6, IL-8, and tumor necro-
sis factor (TNF) [5]. IL-8 recruits neutrophils to phagocytose
the antigen that triggers pattern recognition receptors such
as Toll-Like Receptors (TLR) to stimulate repair responses
[6]. Excessive production of IL-6, TNF, and IL-8 contributes
to disease manifestation by damaging neighboring cells as
demonstrated by various investigators [7, 8]. For instance,
continuous IL-8 production promotes the infiltration of

mailto:vdennis@alasu.edu


2 Mediators of Inflammation

neutrophils that are not only inefficient in resolving the
infections but can also release protease that damages cells
[9, 10]. These findings imply the importance of controlling
inflammation during disease manifestation.

IL-10, an anti-inflammatory cytokine, is secreted under
different conditions of immune activation by a variety of cell
types, including T cells, B cells, and monocytes/macrophages
[11–13]. Although IL-10 is classified as a Th2-type cytokine,
it has been shown to suppress a broad range of inflammatory
responses and is known to be an important factor in main-
taining homeostasis of overall immune responses [14, 15].
Thus, novel therapies using IL-10 have been developed for
several human diseases such as allergic responses and auto-
immune diseases [16, 17]. Little is known about the anti-
inflammatory effect of IL-10 during a C. trachomatis infec-
tion.

In this study, we explored the hypothesis that IL-10, with
anti-inflammatory properties, will inhibit inflammatory
mediators that are produced by innate immune cells after
their exposure to C. trachomatis. To address this hypothesis,
we used human epithelial (HeLa) cells and mouse J774
macrophages as target cells, along with live and UV-inactivat-
ed C. trachomatis mouse pneumonitis (MoPn) as stimulants.
We first verified that J774 macrophages and HeLa cells could
be infected by C. trachomatis mouse pneumonitis (MoPn)
in our in vitro model system. Then we performed dose and
kinetic experiments on both cell lines to establish the opti-
mum conditions for the production of IL-8, IL-6, and TNF
inflammatory cytokines, in response to live C. trachomatis
infection. After optimization conditions were established, we
investigated the ability of human or mouse recombinant IL-
10 to regulate the expression of these cytokines as induced
by live C. trachomatis. Lastly, we determined the effectiveness
of IL-10 regulation of IL-6 and TNF as induced in mouse
J774 macrophages exposed to UV-inactivated C. trachomatis
as compared to that of live C. trachomatis. Herein, we
present our results and discuss the potential role of IL-10 in
regulating cytokine production levels during the early stage
of a C. trachomatis infection.

2. Materials and Methods

2.1. Cell Lines and Culture. HeLa cells (CCL-2) and mouse
J774 macrophages were obtained from the American Type
Culture Collection (ATCC, Manassas, VA). HeLa cells were
cultured in minimal essential medium (MEM/H) (Sigma, St
Louis, MO, USA) supplemented with 10% heat-inactivated
fetal bovine serum (FBS) (Gibco, Invitrogen, Carlsbad, CA),
2 mM L-glutamine (Invitrogen) and 1 μg/mL antibiotic and
antimycotic (Invitrogen). Mouse J774 macrophages were
cultured in Dulbecco Modified Eagle Medium (DMEM)
(ATCC) supplemented with 10% heat-inactivated FBS,
1 μg/mL antibiotic and antimycotic (Invitrogen). All cells
were maintained at 37◦C in a humidified incubator con-
taining 5% CO2 for various periods of time, depending
on the experimental procedure. Live C. trachomatis was
incubated with cells in antibiotic-free medium. All cultures
were subsequently centrifuged at 450×g at 4◦C for 10 min

to collect cell-free supernatants. Supernatants were stored at
−80◦C until they were used.

2.2. Infectivity. C. trachomatis MoPn Nigg II was purchased
from ATCC (ATCC #VR-123) and propagated in HeLa cell
monolayers in MEM/H supplemented with 10% FBS. The
resulting infectious particle (EBs) was purified by ultra-
centrifugation on sodium diatrizoate (Sigma). Purified C.
trachomatis EBs were suspended in Sucrose-Phosphate Glu-
tamic acid (SPG) buffer, aliquoted, and stored at −80◦C
until used. UV-inactivated C. trachomatis was obtained by
exposing EBs to Handle UV lamp, LW/SW, 6 W (Model:
UVGL-58, Cat no. G-1605 Science Company, Denver, CO)
for 3 hr at a distance of 5 cm. The desired IFU for both live
and UV-inactivated EBs used in this study were calculated
from the original C. trachomatis EB-purified stock.

To establish infection, cells (HeLa or J774) were plated
at 105/mL/well in 24-well plates for 24 hr after which they
were infected with various concentrations of C. trachomatis
infectious particles in 500 μL of growth media/well. To assure
successful penetration, target cells were infected with live
organisms in the presence of 1 μg/mL of cycloheximide. The
cells were then incubated at 37◦C under 5% CO2 for three
different infection time-points (days 1 to 3). At each infection
time point, when the infection was completed, the growth
media were discarded and replaced with fresh medium in
the absence of cyclohexamide. From infected HeLa and J774
cells, cumulative culture supernatants were collected every
24 hr without replacing with fresh media. On the other hand,
from infected HeLa cells, noncumulative supernatants were
collected every 24 hr by replacing with fresh media every time
the supernatants were removed. In separate experiments,
J774 cells were stimulated with various concentrations (103,
104, 105, and 106 IFU) of UV-inactivated C. trachomatis
for 24 hr. As positive controls, HeLa (106 cells/well) and
J774 (106 cell/well) cells were stimulated with E. coli LPS
(1 μg/mL), and culture supernatants were collected at 24,
48, and 72 h after stimulation. Collected supernatants were
centrifuged at 450×g for 10 min at 4◦C and stored at
−80◦C until used. Infectivity of cells with C. trachomatis was
confirmed by immunofluorescence as described below under
confocal microscopy.

The effect of recombinant IL-10 (rIL-10) on the pro-
duction of TNF, IL-6, and IL-8 was evaluated using 2-day
infected cells since this infection time-point induced the
highest levels of cytokines. HeLa or J774 cells were infected
with C. trachomatis (104 IFU/well) for two days after which
the media were replaced with media containing various
concentrations (0.1, 1, 10, 100 ng/mL) of human or mouse
rIL-10 (BD Biosciences, San Jose, CA, USA). Human rIL-
10 was used for HeLa cells and mouse rIL-10 for J774
macrophages studies. Cell-free supernatants were collected
after an additional 24 hr following centrifugation at 450×g
for 10 min at 4◦C and stored at−80◦C until used. In separate
experiments, J774 cells were stimulated for 24 hr with UV-
inactivated C. trachomatis (106 IFU) in the presence or
absence of 10 ng/mL of rIL-10. The concentrations of UV-
inactivated C. trachomatis and rIL-10 used for these studies
were determined from dose-response curve experiments.
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Figure 1: Photomicrographs showing infectivity of cells with C. trachomatis . Mouse J774 macrophages (a and b) and HeLa (c and d) (2.5 ×
104 cells/well) were infected with C. trachomatis EBs (2.5× 103 IFU/well) and incubated for 2 days at 37◦C and 5% CO2. Harvested cells were
stained with a monoclonal antibody to C. trachomatis and an FITC-labeled secondary antibody (green) and the nuclei counterstained with
DAPI (blue). Chlamydia was visualized by confocal fluorescence microscopy.

The effect of IL-10 on cytokines as induced by LPS in HeLa
and J774 cells was also evaluated to serve as a positive control.

2.3. Cytokines. All reagents and antibodies for cytokine
ELISAs were purchased from BD Biosciences, and ELISAs
were performed according to the manufacturer suggested
protocol. Absorbance was read at 450 nm using a microplate
reader (Chameleon, IN/USA Systems).

2.4. Confocal. To determine C. trachomatis infectivity of
cells, HeLa or J774 cells (2.5 × 104 cells/well) were cultured
on sterilized 8-well chamber slides for 24 hr prior to addition
of C. trachomatis (2.5 × 103 IFU/well). After 1, 2, and 3
days after infection, the supernatants were removed and the
cells were washed, fixed with isotonic 2% paraformaldehyde
(PFA), and subsequently subjected to immunostaining using
an antichlamydial antibody (Meridian Life Science, Cincin-
nati, OH) and FITC-labeled secondary antibody (Invitrogen)
diluted in 10% normal goat serum. After 1 hr incubation at

room temperature, the slides were counterstained with DAPI
combined with antifade mounting solution (Invitrogen).
Chlamydia was visualized by using a Nikon Eclipse Ti
Confocal Microscope (Nikon Instrument, Melville, NY).

2.5. Statistics Analysis. All the data are expressed as mean ±
SD of samples run in triplicate from two to three different
experiments. Data were analyzed by using the two-tailed
unpaired Student’s t-test. P < 0.005 was considered signif-
icant.

3. Results

3.1. Infection of HeLa and J774 Cells with C. trachomatis. We
first examined the infectivity of C. trachomatis in HeLa and
J774 cells using an antichlamydial antibody and confocal
microscopy. As compared to uninfected HeLa and J774
cells (Figures 1(a) and 1(c)), 2-day infected cells revealed
aggregation of green fluorescence around the nucleus, which
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indicates infectivity of C. trachomatis in the cell cytoplasm
(Figures 1(b) and 1(d)). Thus, the 2-day infection time-
point was chosen to test the anti-inflammatory effect of
IL-10 on the production levels of cytokines as induced by
C. trachomatis-infected HeLa and J774 cells. When isotype
control antibodies were used, no green fluorescence was
observed (data not shown).

3.2. Quantification and Kinetics of IL-6 and IL-8 in C.
trachomatis-Infected HeLa Cells. Because accumulation of
cytokines induced by C. trachomatis target cells are known
to play key roles in inflammation, we compared their levels
in cumulative culture supernatants collected from day-1 to-3
infected cells, as a function of time 1 to 4 days after infection.
The kinetics of IL-8 and IL-6 production in cumulative cul-
tured supernatants are depicted in Figures 2(a)–2(f), where
their concentrations increased in a statistically significant
(P < 0.005) manner as compared to that of uninfected
cumulative supernatants. Detection of IL-8 and IL-6 in day-1
and-3 infected cell culture supernatants begin at 2 days after
infection (Figures 2(a) and 2(b), 2(e) and 2(f)). In contrast,
IL-8 and IL-6 cytokines were detected as early as 1 day after
infection in day-2 infected cell-culture supernatants (Figures
2(c) and 2(d)), suggesting the induction of cellular signaling
pathways that lead to a rapid increase in the expression of
these mediators.

Both IL-6 and IL-8 levels gradually increased up to 4 days
after infection in day-1 and-2 infected cell culture super-
natants, suggesting additive secretion of these cytokines over
time (Figures 2(a)–2(d)). This was not observed in day 3
infection cultures where their levels declined by 4 days
after infection. LPS-stimulated cells which served as positive
control similarly produced significant (P < 0.005) IL-6 and
IL-8 cytokines when compared with that of unstimulated
cells (Figure 2(g)).

Since cytokine production pattern is highly influenced
by the presence of growth factors that are secreted by cells,
we additionally measured IL-6 and IL-8 in noncumulative
culture supernatants collected from day-1 to-3 infected cells
as a function of time 1 to 4 days after infection. In day-
1 infected cell cultures the levels of IL-6 and IL-8 steadily
increased with time (Figure 3(a) and 3(b)) as compared to
day-2 and-3 infected cell cultures, where their concentrations
drastically decreased by 4 days after infection (Figures 3(c)–
3(f)). The production patterns of IL-6 and IL-8 in day-
1 noncumulative infected cell cultures (Figures 3(a) and
3(b)) resembled that observed for cumulative day-1 infected
cultures (Figures 2(a) and 2(b)). However, their production
patterns were different for day-2 and-3 infected cell cultures
as their levels declined remarkably by 4 days after infection
(Figures 3(c) and 3(f)). The differences in the secretion
patterns of IL-8 and IL-6 in cumulative and noncumulative
infected cell-culture supernatants may be attributed to the
fact that cytokines levels are dependent on the presence
of growth factors, which are highly needed for signaling
processes to regulate their production. We also measured
the production of TNF in both scenarios but the values
were below the detection limit. Overall our results show the
induction of IL-6 and IL-8 in HeLa cells exposed to live

C. trachomatis and that the levels of these cytokines were
elevated for a prolonged period of time.

3.3. Dose-Dependent Requirement for IL-6 and TNF Pro-
duction in C. trachomatis-Infected Mouse J774 Macrophages.
Because there is a complex interaction between macrophage
and C. trachomatis as it is known to infect these cells
[18], here we tested their interactions by measuring the
accumulation of IL-6 and TNF in day-2 infected cell culture
supernatants, as a function of time at 3 hr and at 1–3 days
after infection. Our results show significant (P < 0.005)
accumulation of IL-6 (Figure 4(a)) and TNF (Figure 4(b))
in C. trachomatis-infected J774 cells as compared to that
of uninfected cells. The accumulation of IL-6 and TNF
commenced as early as 1 day after infection with their
concentrations increasing with increasing concentrations of
C. trachomatis. Maximum IL-6 and TNF levels were observed
at 2 days after infection and remained steady thereafter up
to 4 days after infection (Figures 4(a) and 4(b)), suggesting
a complex interaction exists between C. trachomatis and
macrophages. We also measured the production of IL-6
and TNF in LPS-stimulated J774 cells as a positive control
and observed similar trends as those seen in infected cells
where a steady increase in IL-6 and TNF was observed
(Figure 3(c)). Our results show the ability of C. trachomatis
to elicit the production of IL-6 and TNF in J774 cells and
overall revealed that the levels of both cytokines remained
significantly elevated with the persistence of C. trachomatis
in cells.

3.4. The Effect of IL-10 on the Levels of IL-6, IL-8, and
TNF Induced by C. trachomatis-Infected HeLa and J774 Cells.
IL-10 is known to downregulate the production of several
inflammatory mediators as induced by a variety of innate
immune cells including epithelial cells and macrophages
[12]. Therefore, we examined whether IL-10 would affect the
concentration levels of IL-6, IL-8, and TNF as secreted from
C. trachomatis-infected HeLa or J774 cells. Since there is a
possibility that infected HeLa and J774 cells may secrete IL-
10, we first sought to measure endogenously produced IL-
10. Surprisingly, IL-10 was below the detection limit of the
ELISA, suggesting either the inability of C. trachomatis to
elicit the production of this cytokine or that it may be tightly
regulated by the bacteria or other mediators in the milieu.

We next investigated whether or not various concen-
trations of exogenous IL-10 (0.1 to 100 ng/mL) added to
day-2 infected HeLa or J774 cells was able to affect the
production levels of IL-6, IL-8, and TNF measured at 2 days
after exposure of IL-10 to infected cells. This time-point
was chosen because maximum cytokines were produced at
2 days after infection in both HeLa-and J774-infected cells.
The production levels of IL-6 and IL-8 were significantly
reduced (P < 0.005) (Figure 5(a)) in supernatants of infected
HeLa cells with as little as 0.1 ng of added IL-10 per mL.
Similarly, the levels of IL-6 and TNF were significantly
reduced (P < 0.005) (Figure 5(b)) in supernatants of
C. trachomatis-infected J774 cells. In parallel with our C.
trachomatis experiments, we measured the effect of IL-10 on
LPS-stimulated production of cytokines in J774 and HeLa
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Figure 2: Expression profiles of IL-8 and IL-6 produced in C. trachomatis-(CT-) infected HeLa cells cumulative supernatants. HeLa cells
(105 cells/mL/well) were seeded in 24-well plates. Twenty-four later cells were infected with C. trachomatis EBs (104 IFU/well) and after
day 1 (a and b), day 2 (c and d), and day 3 (e and f) infection of cells, supernatants were collected daily without replacing with fresh
media (cumulative). Human IL-8 and IL-6 cytokines were measured using cytokine-specific ELISAs. As a positive control HeLa cells (106

cell/mL/well) were stimulated with LPS (1 μg/mL) for various time-points (g). Asterisk indicates significant difference (P < 0.005), and P
values were calculated by use of Student’s t-test. Each bar represents the mean ± SD of samples run in triplicates. The data are representative
of two separate experiments.
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Figure 3: Expression profiles of IL-8 and IL-6 produced in C. trachomatis-(CT-) infected HeLa cells noncumulative supernatants. HeLa cells
(105 cells/mL/well) were seeded in 24-well plates. Twenty-four hours later cells were infected with C. trachomatis EBs (104 IFU/well) and
after day 1 (a and b), day 2 (c and d), and day 3 (e and f) infection, cell-free culture supernatants were collected daily and replaced with
fresh media (noncumulative). Human IL-8 and IL-6 cytokines were measured using cytokine-specific ELISA. Asterisk indicates significant
difference (P < 0.005), and P values were calculated by use of Student’s t-test. Each bar represents the mean± SD of samples run in triplicates.
The data are representative of two separate experiments.

cells. The presence of IL-10 diminished the production levels
of IL-6 and IL-8 in LPS-stimulated HeLa cells (Figure 5(b)).
Similarly, the production levels of IL-6 and TNF diminished
in the presence of IL-10 in LPS-stimulated J774 cells
(Figure 5(d)). Overall, our results indicate that exogenously
added IL-10 reduced the levels of IL-6, IL-8, and TNF in
C. trachomatis-infected epithelial cells and macrophages and
provides evidence for an anti-inflammatory role of IL-10
during an early C. trachomatis infection.

3.5. IL-10 Inhibits the Production of TNF and IL-6 Induced
by J774 Cells Exposed to UV-Inactivated C. trachomatis.

Recently, Yu and colleagues [19] showed differences in cy-
tokine secretion patterns in cell stimulated with live and
dead C. muridarum. Given that cytokines induced by dead
organisms may contribute to the inflammatory process,
we next compared TNF and IL-6 production levels by
macrophages exposed to UV-inactivated C. trachomatis to
that exposed to live C. trachomatis. J774 cells stimulated
with UV-inactivated C. trachomatis produced significantly
(P < 0.005) more TNF and IL-6 in a dose-dependent
manner as compared with unstimulated cells (Figure 6(a)).
However, the levels of these cytokines (even at 106 IFU)
were less than those induced by live C. trachomatis
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Figure 4: The production of IL-6 and TNF were induced in a time-dependent fashion in C. trachomatis-(CT-) infected mouse J774
macrophages. J774 cells (105 cells/mL/well) were seeded in 24-well plates. Twenty-four hours later, cells were infected with C. trachomatis EBs
(104 IFU/well) and cell-free cultured supernatants were collected at different time-points. The levels of IL-6 (a) and TNF (b) were measured
in supernatants by cytokine-specific ELISA. For positive control, J774 cells (106 cell/mL) were stimulated with LPS (1 μg/mL) (c) for various
time-points. Asterisk indicates significant difference (P < 0.005), and P values were calculated by use of Student’s t-test. Each bar represents
the mean ± SD of samples run in duplicates. The data are representative of two separate experiments.

(Figures 4 and 5), suggesting differences in the ability of live
and UV-inactivated C. trachomatis to elicit the production of
these cytokines in J774 cells. We next investigated whether
or not IL-10 also dampens the levels of UV-inactivated C.
trachomatis-induced cytokines. As shown in Figure 6(b), the
production levels of IL-6 and TNF elicited by UV-inactivated
C. trachomatis were significantly inhibited (P < 0.005) in
the presence of added IL-10 at 10 ng/mL. This result clearly
demonstrates that the IL-10 anti-inflammatory effect is not
limited only to cytokines induced by live C. trachomatis but
also to that induced by UV-inactivated C. trachomatis.

4. Discussion

Anti-inflammatory mediators, especially IL-10 has been
shown to play greater roles in counterbalancing the proin-
flammatory response in various infectious diseases [16, 17,
20]. To date, there is no information that demonstrates the
downregulatory role of IL-10 in C. trachomatis infection.
Therefore, here for the first time we demonstrated the ability
of IL-10 to downregulate the release of proinflammatory

mediators evoked by C. trachomatis in human epithelial cells
and mouse macrophages. The significance of these findings
is discussed in the context of IL-10 potential role in reducing
inflammation during an early C. trachomatis infection. We
viewed this scenario as a model of the initial phase of
infection, when acquired immunity has not yet developed
and when the contributions of lymphocytes are almost none.

In the present study, analysis from cumulative super-
natants revealed increases of IL-6 and IL-8 production after 2
and 3 days infection of HeLa cells with C. trachomatis, which
were decreased over time in noncumulative supernatants.
The higher increase of cytokines in cumulative supernatants
is most likely indicative of the additive secretion of C.
trachomatis-inducible cytokines. Alternatively, this also may
be due to the fact that Chlamydia takes between 48 to
72 hr to complete its life cycle [21], where at the end it
ruptures from cells and invades other cells subsequently
inducing heightened inflammatory responses. On the other
hand, interruption of this cycle may have resulted in lower
production of cytokines in noncumulative supernatants.
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Figure 5: Recombinant IL-10 downregulates the production of IL-6, IL-8, and TNF in C. trachomatis-(CT-) infected J774 and HeLa cells.
HeLa or J774 cells (105 cells/mL/well) were seeded in 24-well plates and 24 hr later, cells were infected with C. trachomatis EBs (104 IFU/well).
After 2 days infection, various concentrations of recombinant IL-10 were added to cell cultures and supernatants were collected 1 day later
to quantify the levels of human IL-6 and IL-8 (a) and mouse IL-6 and TNF (b) by ELISA. For positive control, HeLa and J774 cells were
stimulated for 24 hr with LPS in the presence of various concentrations of IL-10, and human IL-8 and IL-6 (b) and mouse IL-6 and TNF
(d) were determined from collected supernatants by ELISA. Asterisk indicates significant difference (P < 0.005) and P values were calculated
by use of Student’s t-test. Each bar represents the mean ± SD of samples run in duplicates. The data are representative of two separate
experiments.

Another plausible explanation for lower levels of cytokines in
noncumulative supernatants could be stress-induced stimuli
resulting from removal of growth factors that are needed to
sustain and maintain cell proliferation and thus enhanced
secretion of cytokines. Indeed stress conditions provide
different environments for cells to exhibit various cytokine
expression profiles. For instance, Mittal et al., 2009 [22],
demonstrated the role of iron in the production of IL-8 in C.
trachomatis-infected HeLa cells, where the presence of iron
greatly enhanced IL-8 production.

Despite the above differences between cumulative and
noncumulative supernatants, after 24 hr postinfection, IL-6

and IL-8 levels were increased, suggesting that the interaction
of C. trachomatis with HeLa cells allowed a signal that
sustained intensive IL-6 and IL-8 expression. As the infection
progressed, C. trachomatis multiplied to form inclusion
bodies, subsequently stimulating excessive production of IL-
6 and IL-8 as clearly shown in infected J774 cells. Several
investigators have reported the production of inflammatory
mediators by HeLa cells after Chlamydial infection using
different serovars [2, 22], but the present study, to the best
of our knowledge, is the first to show the ability of C.
trachomatis MoPn Nigg II to induce cytokines in mouse J774
macrophages and human epithelial cells.
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Figure 6: UV-inactivated C. trachomatis induction of TNF and IL-6
levels in mouse J774 macrophages are downregulated by exogenous
IL-10. J774 cells (105 cells/well) were stimulated for 24 hr with
various concentrations of UV-inactivated C. trachomatis. The
production of TNF and IL-6 was quantified in cell-free culture
supernatants using cytokine-especific ELISAs. Shown are the dose-
dependent TNF and IL-6 responses (a) and the downregulatory
effect of IL-10 on these cytokines (b). Asterisk indicates significant
difference (P < 0.005), and P values were calculated by use of Stu-
dent’s t-test. Each bar represents the mean ± SD of samples run in
triplicates. The data are representative of two separate experiments.

It is well known that proinflammatory cytokines play an
important role in Chlamydial immunopathology. Multiple
studies have shown the need of IL-6 and IL-8 for an early
optimal host response against Chlamydia infection [5, 6].
However, overproduction of IL-6 and IL-8 may be toxic and
damage neighboring cells. Continuous production of IL-8
promotes, for instance, infiltration of neutrophils that are
not only inefficient in resolving Chlamydial infections but
can also release protease that damage cells [7]. Therefore,
our approach to reduce the production of IL-6, IL-8,
and TNF during C. trachomatis infection can serve as an
alternative way to control excess inflammation exerted from
C. trachomatis.

It has been reported that endogenously produced IL-10
differentially regulates chlamydial infections among inbred
mouse strains [23]. For example, using the murine model
of C. trachomatis MoPn lung infection, IL-10 inhibits host
clearance of chlamydial infection in the susceptible BALB/C
mouse strain (which produces more IL-10) and negatively
regulates inflammatory responses in the resistant C57BL/6
mouse (which produces less IL-10) [23]. Using primed
spleen cells, Yang et al. [20] have shown further that the
levels of IFN-γ, TNF, and IL-12 were decreased when
exogenous IL-10 was added to Chlamydia-infected C57BL/6
IL-10 knockout mice, indicating that IL-10 reduces the levels
of cytokines produced during the infection process in the
lung model. These data suggest that IL-10 plays a crucial
role in host clearance of a Chlamydia infection as well as
regulating its induced inflammation. Although we did not
observe detectable levels of IL-10 from our C. trachomatis-
infected cells in this paper, our results clearly demonstrated
that exogenous IL-10 decreased the levels of TNF, IL-6,
and IL-8 in a dose-dependent manner in C. trachomatis-
infected HeLa and J774 cells (Figure 5). This interesting
finding strongly provides a plausible significance of IL-10
specifically in curtailing an excessive inflammatory response
induced by C. trachomatis during the early phase of infection
before the development of adaptive immunity.

We show in the present study that IL-10 inhibits UV-
inactivated C. trachomatis-induced cytokine responses in
innate immune cells. These cytokine responses, however,
were lower as compared to that induced by live organisms.
As a survival mechanism, live C. trachomatis exists in two
morphological states (EB and RB) [4]. At the RB state, C.
trachomatis will divide and increase its pathogen load and
under this event high levels of proinflammatory cytokines
are expected to be produced. However, when EBs are
inactivated the conversion from EB to RB does not occur
and the pathogen load remains in a steady state; therefore,
reducing proinflammatory cytokines secretion levels. Here
both scenarios were observed (Figures 4 and 6) where
responses to live EBs were significantly higher than those
to UV-inactivated EBs. Alternatively, differences in the type
of antigens presented to macrophages by live and UV-
inactivated C. trachomatis potentially may activate different
pathways or receptors for inducing TNF and IL-6. Current
studies are ongoing to investigate the mechanism(s) by which
IL-10 regulates cytokine production evoked by live and
UV-inactivated C. trachomatis in innate immune cells. Our
result now add C. trachomatis to the list of other bacteria
pathogens, whose cytokines production levels are altered by
IL-10 such as Borrelia burgdorferi and murine Leishmania
[14, 24].

In summary, we have demonstrated the ability of C.
trachomatis MoPn Nigg II to induce the in vitro production
of IL-6, IL-8, and TNF in macrophages and epithelial cells.
We also show that IL-10 inhibits the production levels of
these cytokines as elicited by live C. trachomatis in HeLa
and macrophages, and by UV-inactivated C. trachomatis in
macrophages. Our results clearly support our hypothesis that
IL-10 may be an important regulator of inflammation during
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the initial stage of a C. trachomatis infection, when acquired
immunity has not yet developed.
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