arXiv:2401.07126v2 [eess.|V] 17 Jan 2024

IVIM-Morph: Motion-compensated quantitative Intra-voxel Incoherent Motion
(IVIM) analysis for functional fetal lung maturity assessment from
diffusion-weighted MRI data

Noga Kertes®!, Yael Zaffrani-Reznikov®!, Onur Afacan®, Sila Kurugolb, Simon K. Warfield®, Moti Freiman®*

“Faculty of Biomedical Engineering, Technion, Haifa, Israel
bBoston Children’s Hospital, Boston, MA, USA

Abstract

Quantitative analysis of pseudo-diffusion in diffusion-weighted magnetic resonance imaging (DWI) data shows poten-
tial for assessing fetal lung maturation and generating valuable imaging biomarkers. Yet, the clinical utility of DWI
data is hindered by unavoidable fetal motion during acquisition. We present IVIM-morph, a self-supervised deep
neural network model for motion-corrected quantitative analysis of DWI data using the Intra-voxel Incoherent Mo-
tion (IVIM) model. IVIM-morph combines two sub-networks, a registration sub-network, and an IVIM model fitting
sub-network, enabling simultaneous estimation of IVIM model parameters and motion. To promote physically plau-
sible image registration, we introduce a biophysically informed loss function that effectively balances registration and
model-fitting quality. We validated the efficacy of IVIM-morph by establishing a correlation between the predicted
IVIM model parameters of the lung and gestational age (GA) using fetal DWI data of 39 subjects. Our approach
was compared against six baseline methods: 1) no motion compensation, 2) affine registration of all DWI images
to the initial image, 3) deformable registration of all DWI images to the initial image, 4) deformable registration of
each DWI image to its preceding image in the sequence, 5) iterative deformable motion compensation combined with
IVIM model parameter estimation, and 6) self-supervised deep-learning-based deformable registration. [IVIM-morph
exhibited a notably improved correlation with gestational age (GA) when performing in-vivo quantitative analysis
of fetal lung DWI data during the canalicular phase. Specifically, over 2 test groups of cases, it achieved an Rﬁ. of
0.44 and 0.52, outperforming the values of 0.27 and 0.25, 0.25 and 0.00, 0.00 and 0.00, 0.38 and 0.00, and 0.07 and
0.14 obtained by other methods. IVIM-morph shows potential in developing valuable biomarkers for non-invasive
assessment of fetal lung maturity with DWI data. Moreover, its adaptability opens the door to potential applications in
other clinical contexts where motion compensation is essential for quantitative DWI analysis. The [VIM-morph code
is readily available at:https://github.com/TechnionComputationalMRILab/qDWI-Morph.

1. Introduction condition can result in significant and potentially fatal
physiological impairments, including respiratory distress

Congenital pulmonary hypoplasia (PH) is a congeni- gyndrome and transient tachypnea of the newborn Ahmed
tal abnormality marked by insufficient growth of the lung  and Konje (2021). Approximately 10-15% of newborn

parenchyma Lakshminrusimha and Keszler (2015). This  deaths are caused by PH Kumar and Burton (2007).
Currently, the methods employed for the antenatal di-
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agnosis of pulmonary hypoplasia include amniocentesis,
prenatal ultrasound (US), and MRI. Amniocentesis in-
volves extracting a small volume of amniotic fluid to as-



sess surfactant protein levels, which are considered an in-
dicator of fetal lung maturity Rome et al. (1975). Prenatal
ultrasound is a widely utilized technique for evaluating fe-
tal lung maturity. However, it is primarily used to assess
fluid parameters Beck et al. (2015) or to estimate fetal
lung volume Moeglin et al. (2005). Similarly, fetal lung
MRI can estimate fetal lung volume Ward et al. (2006).
Nonetheless, these modalities do not provide sufficient in-
sight into lung function and are, therefore, suboptimal for
assessing functional fetal lung maturity and PH Avena-
Zampieri et al. (2022).

Diffusion-weighted MRI (DWI]) is a non-invasive imag-
ing modality that is highly sensitive to the random mo-
tion of water molecules, which is primarily due to the
water’s thermal energy. In living tissues, the motion of
water molecules is influenced and restricted by interac-
tions with cell membranes and macromolecules. More-
over, the motion of water molecules is more confined in
tissues with higher cellular density, while the motion of
water molecules is less restricted in areas of low cellular-
ity. In DWI, the random displacement of individual wa-
ter molecules leads to signal attenuation when magnetic
field encoding gradient pulses are applied at varying mag-
nitudes and durations known as the “b-value” Koh and
Collins (2007).

Quantitative analysis of DWI (qgDWI) using multi-
compartment signal decay models such as the Intravoxel
Incoherent Motion (IVIM) Model lima and Le Bihan
(2016), can provide a separate assessment of diffusion and
pseudo-diffusion in tissue. This approach allows for more
precise imaging biomarkers that capture the key charac-
teristics of functional lung maturity and PH such as the
formation of a dense capillary network, an increase in pul-
monary blood flow, a reduction in extracellular space, and
an increase in tissue perfusion Ercolani et al. (2021); Ko-
rngut et al. (2022); Jakab et al. (2017).

However, the inevitable motion of the fetus during
lengthy DWI acquisitions generally leads to inaccu-
rate and unreliable quantitative analysis of diffusion and
pseudo-diffusion, which effectively renders these imag-
ing biomarkers of little utility in assessing functional lung
maturity and PH in the clinical setting. Fig. 1 illustrates
the deviations of the observed DWI signal acquired at dif-
ferent b-values from the signal decay model. For instance,
Afacan et al. (2016) reported that nearly 40% (26 out of
65 cases) in their study cohort had severe motion artifacts,

which essentially prevented the functional assessment of
lung maturity with DWI. Thus, there is a critical need to
develop methods for gDWI analysis that are robust to the
presence of inter-volume motion in fetal DWI data.

Image registration algorithms have been previously
used to address inter-volume motion before gDWI anal-
ysis. For instance, Guyader et al. Guyader et al. (2015)
demonstrated improved accuracy and reliability in appar-
ent diffusion coefficient (ADC) qDWTI analysis of abdom-
inal organs when employing initial motion correction, as
opposed to qgDWI analysis conducted without any motion
correction. However, the registration of DWI images ob-
tained using varying b-values may lead to suboptimal ac-
curacy owing to differences in image contrast caused by
varying sensitivities to diffusion and pseudo-diffusion ef-
fects. Registration of high b-value images, which have
a low signal-to-noise ratio (SNR) by nature, also poses a
significant challenge. Moreover, it is worth noting that
optimization processes typically optimize loss functions
tied to pairwise metrics, such as Dice similarity or inten-
sity dissimilarity. These metrics, inherently designed for
pairwise comparisons, possess limitations in their ability
to comprehensively address motion across the entire set of
DWI images concurrently. Furthermore, their primary fo-
cus tends to be on aligning image edges, rather than ensur-
ing precise alignment of the observed signal decay within
regions of interest with the signal decay model.

In the context of abdominal imaging, Kurugol et al.
(2017) introduced an iterative motion correction model
to address the differences in image contrast in the DWI
images by registering images and estimating parameters
with the IVIM model. Similarly, Sanz-Estébanez et al.
(2018) simultaneously compensates for motion and per-
forms qDWI analysis using a mono-exponential signal de-
cay model. However, these techniques involve an itera-
tive application of the image registration and model fit-
ting steps. Unfortunately, the iterative process may lead
to suboptimal results due to convergence to local min-
ima. Additionally, the computational demand and pro-
cessing time associated with such methods renders them
impractical for clinical use with large datasets. Recently,
Kornaropoulos et al. (2022) presented a novel approach
for joint motion correction and quantitative analysis of
prostate DWI data using the mono-exponential signal de-
cay model. Specifically, they used a Markov-Random-
Field (MRF) technique to simultaneously optimize a mo-
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Figure 1: Fetal DWI data acquired with varying b-values. Fetal motion causes the observed signal (red circles) to deviate from the expected signal
decay model (solid line). Fitting the model to the observed signal without accounting for motion may lead to an incorrect estimate of the model

parameters (dashed line).

tion correction and gDWI model fitting problem. How-
ever, this method necessitates the discretization of both
domains, and it is computationally intensive. Thus, clini-
cally viable methods for gDWI analysis that are resilient
to inter-volume motion artifacts are urgently needed.

Recently, within the field of anatomical fetal MRI re-
construction, several deep-learning models have emerged.
Cordero-Grande et al. Cordero-Grande et al. (2022) intro-
duced a deep generative prior model, while Xu et al. Xu
et al. (2023) adopted an implicit neural representation ap-
proach to achieve motion-robust volumetric reconstruc-
tion of anatomical fetal MRI data. In a related context,
Davidson et al. Davidson et al. (2022) utilized slice-to-
volume deformable image registration to extract reliable
3D measurements of fetal lung volume from fetal MRI
data. However, it’s worth noting that all these studies
primarily focus on slice-to-volume registration within the
scope of a single-volume anatomical MRI, without con-
sidering potential motion between the different volumes
required for quantitative DWI analysis in functional fetal

lung maturation assessment.

In this study, we tackle this challenge with the in-
troduction of a self-supervised Deep Neural Network
(DNN) framework named “IVIM-Morph.” This ap-
proach addresses simultaneous motion compensation and
bi-exponential IVIM model parameter estimation. Our
model comprises two key sub-networks: the first focuses
on estimating deformation fields for motion correction,
while the second predicts IVIM model parameters based
on the motion-corrected data. To ensure the consistency
of DWI signal decay with the IVIM model, we intro-
duce an innovative, physics-based loss function. This loss
function penalizes signal decays that deviate from the ex-
pected IVIM model behavior, thus maintaining physical
plausibility. Importantly, our DNN model significantly re-
duces computation time compared to conventional meth-
ods.

We assessed the anatomical registration accuracy of our
method by manually delineating one lung in each DW im-
age from 5 cases with severe motion artifacts and 5 cases



with moderate motion artifacts. We then evaluated the
alignment of the masks before and after registration using
IVIM-Morph in comparison to various registration tech-
niques. Additionally, we have showcased the clinical im-
portance of using IVIM-Morph for reliable IVIM param-
eter estimation in the presence of motion by illustrating
its capability to enhance the correlation between the pre-
dicted perfusion fraction parameter (f) in the fetal lung
and gestational age (GA) through an analysis of 39 clini-
cal fetal DWI datasets.
Our study delivers the following key contributions:

e We offer a self-supervised deep-learning-based
mathematical framework for concurrently estimating
motion correction and signal decay model parame-
ters.

e We introduce an innovative registration loss func-
tion, guaranteeing physically sound deformation
fields that align with the signal decay model.

e We present a comprehensive assessment of our ap-
proach, encompassing registration accuracy and its
clinical applications in evaluating fetal lung func-
tional maturity.

e We will make our code repository, facilitating
motion-compensated IVIM analysis of DWI data,
accessible to the public.

2. Background

The bi-exponential IVIM model describes the DWI sig-
nal attenuation at a particular voxel relative to the baseline
signal as a function of the b-value used during the acqui-
sition Iima and Le Bihan (2016):

fvin(bi, £,D°,D) = So (f - PP+ (1= f) - e7P)
ey
where S is the baseline signal obtained without apply-
ing any diffusion-synthesized gradients; D is the diffusion
coefficient; D* is the pseudo-diffusion coefficient; b; is the
b-value used during the acquisition; and f is for the per-
fusion fraction Federau (2017); Iima (2021).
The estimation of the IVIM model parameters from the
DWI data acquired with multiple b-values B = {b,-}fi 0

is commonly done by solving the following least-squares
problem:

D, D7, f = argmin »" IS (b) = frvim (i, £, D", D) (2)
DD ok

Supplementary regularization terms are frequently incor-
porated to enhance estimation robustness in the presence
of noise and improve clinical diagnostic accuracy Freiman
et al. (2013); Orton et al. (2014); Spinner et al. (2021);
Vidi¢ et al. (2019).

In the past few years, state-of-the-art, DNN-based
methods were introduced for IVIM parameter estimation.
Bertleff et al. Bertleff et al. (2017) demonstrated the abil-
ity of supervised DNN to predict the IVIM model parame-
ters from low SNR DWI data. Barbieri et al. Barbieri et al.
(2020) proposed an unsupervised, physics-informed DNN
(IVIM-NET) with results comparable to Bayesian meth-
ods with further optimizations by Kaandorp et al. Kaan-
dorp et al. (2021) (IVIM-NETpim). Zhang et al. Zhang
et al. (2019) used a multi-layer perceptron with an amor-
tized Gaussian posterior to estimate the IVIM model pa-
rameters from fetal lung DWI data. Recently, Vasylechko
et al. Vasylechko et al. (2022) used unsupervised convo-
lutional neural networks (CNN) to improve the reliability
of IVIM parameter estimates by leveraging spatial corre-
lations in the data.

Nevertheless, all these algorithms presuppose spatial
alignment among the different b-value images, rendering
them unsuitable for direct application in estimating [VIM
model parameters for fetal DWI data, given the inevitable
fetal motion during acquisition Afacan et al. (2016).

3. Method

We address the challenge of estimating the [IVIM model
parameters while compensating for motion artifacts by
presenting a self-supervised DNN-based framework for
simultaneous motion compensation and IVIM model pa-
rameters estimation. Specifically, we aim to find the opti-
mal values for the IVIM model parameters D, D*, and f,
as well as the set of transformations @ = {(Z)i}ﬁ o that align
the observed DWI signals to the model predictions. The



joint optimization problem is formulated as follows:

N
©,D, D", f = argmin > ll¢i 0 S (b) = frvm(bi, f, D", D)
®.D.D".f o5
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where ¢; represents the spatial transformation that aligns
the i-th DWI signal to the reference signal (i.e., the model
prediction at the i-th b-value).

However, direct optimization of this equation is chal-
lenging due to the huge number of unknowns associated
with the combination of the bi-exponential IVIM signal
decay model and the set of free-form deformations.

Instead, we frame this optimization problem as an esti-
mation of the weights of a DNN that predicts [IVIM model
parameters and spatial transformations from the observed
DWTI signals and b-values. Specifically, we will minimize
the following objective function:

N
© = argmin Z I1fol0); © S (b)) — frvim(bis folIDIF (4)
e 20

where ® are the parameters of the neural network; fo
is the forward pass of the DNN function; and fg[0] and
foll] represent the DNN outputs corresponding to the set
of spatial transformations @ and the IVIM parameters D",
f, and D, respectively.

3.1. Network architecture

Fig. 2 presents the architecture of our IVIM-Morph
network. It is comprised of two components: a quan-
titative IVIM (qIVIM-CNN) prediction network and an
image registration network. The qIVIM-CNN network is
responsible for predicting the IVIM parameters from the
DWI data, while the image registration network is respon-
sible for predicting the set of transformations that align
each DWI image with the corresponding image recon-
structed from the IVIM parameters with Eq. 1. We de-
scribe each component in the following sections.

3.1.1. Quantitative IVIM model fitting sub-network

The qIVIM-CNN is based on a Unet-like architecture
Ronneberger et al. (2015) with three parallel decoders,
one for each of the IVIM parameters (D, D*, and f) Va-
sylechko et al. (2022). To ensure physically plausible

Table 1: Prior bounds on the IVIM parameters

Parameter | D(™22) | (%) | D"(™%)
minimum | 0.0003 | 7 0.006
maximum | 0.0032 | 50 0.15

IVIM model parameter estimates, we used a Sigmoid ac-
tivation function at the output of each decoder Kaandorp
et al. (2021):

P =P, + SlngZd(XP) X (Ppax = Ppin) (5)

where P denotes any of the IVIM model parameters
(D, D*, f); Py, and Py, are the prior bounds on the pa-
rameter, and Xp is the output parameter map from the
corresponding Unet decoder. Table 1 provides a sum-
mary of the boundaries used to constrain the estimates
of IVIM model parameters. These boundaries were de-
termined through an IVIM analysis of cases from our
database without any significant motion observed using
a segmented-least-squares approach Gurney-Champion
et al. (2018) followed by non-linear trust-region-reflective
optimization (SLS-TRF) Branch et al. (1999).

3.1.2. Registration sub-network

We have utilized the Voxel-Morph DNN architecture,
renowned for deformable medical image registration Bal-
akrishnan et al. (2019); Dalca et al. (2019, 2018), as the
foundation for our image registration sub-network. It pre-
dicts the deformation fields (® = {¢,~}f\; 1) between the ac-
quired DWI data ({S (bi)}f\i ,) to the corresponding model-
reconstructed images ({R(b,-)}ﬁ ). The registration is per-
formed between corresponding acquired b-values images
and predicted model images such that the moving image
S (b;) is registered to the fixed image R(b;). Through the
registration of original images to those reconstructed by
a predicted model, the network can successfully mitigate
variations in the contrast between b-value images. Fur-
ther, this allows for the utilization of physical prior knowl-
edge via the IVIM model, which characterizes expected
signal decay behavior.

3.2. Bio-physically-informed loss function
We introduce an innovative loss function comprising a
weighted combination of the following three terms:

(6)

L= al—cfit + a2 Lnoorn + @3 Lgim
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Figure 2: The architecture of the IVIM-Morph network, comprises two sub-networks: a quantitative IVIM (qIVIM), a convolutional neural network
(CNN), and an image registration sub-network. The qIVIM-CNN sub-network extracts IVIM parameters from the DWI data, while the image
registration sub-network aligns each b-value image with the corresponding image reconstructed by the IVIM parameters.

The model fitting loss (L) drives the IVIM-Morph
to generate deformation fields that minimize the dispar-
ity between acquired images and model-generated images
(Eq. 1). This guarantees a physically plausible represen-
tation of signal decay across the b-value axis, leading to
enhanced precision in IVIM parameter maps. Specifi-
cally, Ly;; is a weighted version of the standard error of
the regression (WSER) between the models’ prediction of
the Diffusion-Weighted images ({R(b,»)}fil) and the corre-
sponding deformed images ({¢; o S (bi)}f\i 1) that accounts
for potential bias in high b-value images that have a low
signal as follows:

N i ,'OS bi—Rb,’ 2
Lﬂt:\/z,:lw GoSB-RG) 1

Zf\ilwi N—p—l

The parameter N is the number of observations, which
is equal to the number of b-values used during the scan.
The parameter p denotes the number of unknowns in the
model, which is three in our case (D, D*, and f), and the
weight (w;) is defined as log(b; + 1) + 1. We normalized

the WSER by the average intensity value of the motion-
compensated set.

The smoothness term (L,001,) €ncourages the creation
of deformations that are both realistic and invertible. This
loss penalizes for a large L; norm of the gradients of the
velocity field u Balakrishnan et al. (2019):

11 &
SOOI D)= —— Vi2 8
Lomoorn(®) N|Q|;” il ®)

where Q is the image spatial domain.

Lastly, the registration loss (Ly;,,) promotes the align-
ment of deformation fields, aligning the Diffusion-
Weighted images (S (b;),i € {1,..., N}) with the baseline
image Sy, by calculating their local normalized cross-
correlation (NCC) Balakrishnan et al. (2019)

-Ewm(S(bO) Do S) VTS

5 |Q| ZNCC (S (bo), ¢i 0 S (b))

€))



3.3. Implementation details

We implemented our models on Visual Studio Code
1.79.2, Python 3.8.12 with PyTorch 1.13.0, and CUDA
11.8. We applied our suggested methods with a batch size
of one, meaning that each batch consists of data from one
patient with size: nj, X n, X n,, where n;, is the number
of b-values used for scanning the patient, and n, X n, is
the image shape. We used an Adam optimizer with an
initial learning rate of 10~ with a “reduce on plateau”
learning rate decay scheduler. All the calculations in this
study were carried out on a Linux machine equipped with
a Tesla V100-PCIE-32GB GPU. The CPU in use was an
Intel(R) Xeon(R) Gold 6230 CPU, operating at 2.10GHz.

4. Experiments

4.1. Data

We used a legacy fetal DWI dataset in this study Afa-
can et al. (2016). DWI data were acquired on a Siemens
3T Skyra scanner using an 18-channel body matrix coil.
The imaging technique used was a multi-slice, single-
shot echo-planar imaging (EPI) sequence for obtaining
diffusion-weighted scans of the lungs. Each scan had an
in-plane resolution of 2.5mm X 2.5mm and a slice thick-
ness of 3mm. The echo time was set at 60ms and the
repetition time ranged from 2s to 4.4s, depending on the
number of slices required to cover the lungs. Each patient
underwent scanning with 6 different b-values (0, 50, 100,
200, 400, 600 sec/mm?) in both axial and coronal planes
with 6 gradient directions. Trace-weighted images were
exported from the scanner A ROI was manually drawn
for each case in the right lung at by Afacan et al. (2016).

The data set consists of 39 cases with different levels
of misalignment between the different b-value image vol-
umes. For each subject, we chose only one slice where
the ROI in the right lung was labeled. The images were
then cropped to a shape of 96 X 96 and normalized by the
0.99 quantiles of the DWI image acquired without diffu-
sion gradients (b-value=0 sec/mm?).

To ensure the reproducibility of our findings, we estab-
lished two distinct, non-overlapping groups of 16 cases
each for hyperparameter tuning. The composition of these
groups was planned to encapsulate a wide array of gesta-
tional ages, thereby encompassing nearly the full breadth

of ages present in our dataset. We conducted hyperpa-
rameter tuning for each group independently, as detailed
in Section 4.3. The remaining 23 cases, that were left
out in each group are designated as the test cases for each
group. Our primary findings and analysis will be con-
ducted on these specific cases.

In addition, we chose a sample of 10 cases for analysis.
This sample included 5 cases exhibiting severe motion ar-
tifacts and another 5 with only minor motion artifacts. For
each of these cases, we conducted a manual segmentation
of one lung in the different b-value images.

4.2. Baseline methods

We compared our method to six baseline methods as
follows:

1. Quantifying IVIM parameters using the non-linear
SLS-TRF approach Gurney-Champion et al. (2018);
Branch et al. (1999), without utilizing any motion
compensation.

2. Registering all b-value images to the b=0 sec/mm?
image using SyN registration Avants et al. (2008),
followed by quantifying IVIM parameters using the
SLS-TRF algorithm.

3. Registering all b-value images to the b=0 sec/mm?
image using affine registration Avants et al. (2008),
followed by quantifying IVIM parameters using the
SLS-TREF algorithm.

4. Registering each b-value image to the previous im-
age using SyN registration. For example, we register
the b=50 sec/mm? to b=0 sec/mm? image and then
register b=100 sec/mm? to the result.

5. Iteratively quantifying IVIM parameters and reg-
istering each b-value image to the corresponding
model image Kurugol et al. (2017).

6. Unsupervised VoxelMorph-based registration Bal-
akrishnan et al. (2019) of all b-value images to the
b=0 sec/mm?” image, followed by quantifying IVIM
parameters using the SLS-TRF algorithm.

4.3.

For hyperparameter optimization, we implemented a
grid search strategy, with a primary focus on determin-
ing the appropriate weights for the loss terms denoted as
a1, @y, and a3. We selected the values for these hyperpa-
rameters as follows: @ was varied within the range [0.5,

Hyper-parameters tuning



1, 5, 10], @ within [0.015, 0.03], and a3 within [0.1, 0.8,
51

The tuning process was conducted separately for two
distinct groups, each comprising 16 cases, and was per-
formed independently. The criterion used for selecting
the optimal hyperparameters was based on the correlation
between the IVIM parameter f and gestational age dur-
ing the canalicular stage of fetal development (GA < 26
weeks).

4.4. Lung Segmentation Evaluation

We evaluated the anatomical registration accuracy of
our IVIM-Morph in comparison to the different registra-
tion approaches outlined in Section 4.2 for cases with dif-
ferent levels of motion. These techniques were utilized to
assess the alignment of images S; (for i > 0) with the ref-
erence image So. Our experiment involved 10 selected
cases, each of which included manual segmentation of
one lung. The effectiveness of these alignment methods
was quantitatively assessed using the Dice score metric.
This evaluation was conducted both prior to and follow-
ing the application of registration.

4.5. NCC loss contribution to the registration

We carried out an in-depth ablation study to thoroughly
understand the impact and significance of the NCC loss on
the registration process. To achieve this, we maintained
constant values for certain parameters, setting @; = 1 and
ay = 0.015. This controlled setup allowed us to isolate
and examine the influence of the NCC loss more effec-
tively. We conducted this experiment by repeatedly exe-
cuting the experiment outlined in Section 4.4, but with
a key variation each time: we altered the value of a3
for each iteration. By systematically changing a3 while
keeping the other parameters fixed, we were able to ob-
serve how variations in the NCC loss component affected
the overall registration performance. The series of exper-
iments under varying a3 conditions were instrumental in
gauging the sensitivity and responsiveness of our registra-
tion process to changes in the NCC loss.

4.6. Clinical impact: Functional fetal lung maturity as-
sessment

We assessed the performance of our proposed method
by examining its correlation with the GA and the perfu-

sion fraction parameter (f) in the IVIM model. This pa-
rameter indirectly represents the proportion of the capil-
lary network within the tissue. As established in prior
research, the f parameter exhibits a substantial increase
with advancing gestational age in the fetal lung Ercolani
et al. (2021); Korngut et al. (2022). We conducted the
analysis on the two group test cases (23 cases each). For
each case, we used IVIM-Morph to compute the IVIM
parameter maps. Subsequently, we calculated the aver-
age parameter value in the lung for each case and evalu-
ated the correlation between each parameter and GA sep-
arately for the canalicular and saccular phases, as sug-
gested by Korngut et al. (2022).

5. Results

5.1. Hyper-parameters tuning

The optimal hyperparameters for group 1 are: a;
10, = 0.015,a3 = 0.1, and for group 2 are: a; =
0.5,a; =0.015,a3 = 0.8.

5.2. Lung Segmentation Evaluation

Lung segmentation evaluation results are presented in
Fig. 4. The mean dice coefficient for each compared
method is plotted as a boxplot, separately for the major
and minor motion cases. We calculated the dice twice,
one time using the optimal hyperparameters of group 1
and one time using the optimal hyperparameters of group
2. We also plotted the mean dice coefficient before ap-
plying registration. The mean dice before registration in
the minor motion cases is 0.878 + 0.036 and in the major
motion cases is 0.771 + 0.040, which is expected based
on the cases’ motion level. For cases involving major mo-
tion, IVIM-Morph succeeded in enhancing the dice coeffi-
cient achieving superior results for group 2 (dice = 0.854+
0.038) than group 1 (dice = 0.812 + 0.046). Conversely,
in scenarios with minor motion, IVIM-Morph, employing
both sets of hyperparameters, consistently maintained a
high dice coefficient.

5.3. NCC loss contribution to the registration

Figure 3 displays the outcomes of the experiment in-
vestigating the impact of NCC loss. In scenarios with mi-
nor motion, the choice of a3 value seems to have a negligi-
ble effect on the dice coefficient achieved post-application
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Figure 3: Average dice coefficient computed for lung segmentation be-
tween S and the deformed lung segmentation in S; (for i > 0), utiliz-
ing IVIM-Morph in 10 specifically chosen cases with varying a3 values.
The blue line indicates the cases characterized by major motion, whereas
the orange line corresponds to the cases with minor motion.

Table 2: Methods running times

Method Time (s) Machine
SLS-TRF 57.93 £1.26 CPU
Affine - Reg to b0 53.32 £3.09 CPU
SyN - Reg to b0 54.04 £2.14 CPU
RSyN - Reg to next b 53.11+2.29 CPU
Iterative SyN-TRF 261.16 = 67.61 CPU

VoxelMorph + SLS - TRF | 84.738 +7.23 | CPU+GPU

IVIM-Morph 52.69 £ 1.90 GPU

of IVIM-Morph. Conversely, in cases of major motion, a
lower weighting on NCC loss is observed to yield subop-
timal dice scores. This finding highlights the increased
importance of NCC loss in the optimization process, par-
ticularly in instances where major motion artifacts are
present.

5.4. Clinical impact: Functional fetal lung maturity as-
sessment

Fig. 5 shows representative IVIM parameter maps gen-
erated by each method for a case with motion and for a
case without motion. The IVIM-Morph method produced
smoother parameter maps compared to the other meth-
ods. This can be attributed to the use of a CNN in the
gDWI sub-network which leverages spatial correlations
to estimate IVIM parameters more accurately and results
in smoother parameter maps. In contrast, the other meth-
ods rely on traditional optimization and registration tech-
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Figure 4: Results from the Lung Segmentation Evaluation Experiment.
The bar plot at the top illustrates the dice coefficients for cases with sig-
nificant motion, while the bottom bar plot shows the dice coefficients for
cases with minimal motion. In both plots, the dashed line and the shaded
area indicate the average and standard deviation of the dice scores prior
to the application of registration.

niques, which may result in less accurate and noisier pa-
rameter maps.

Fig 6 presents the correlation analysis between the
IVIM parameters as computed by each method and the
GA. Our IVIM-Morph approach outperformed the other
methods, achieving the highest correlation coefficient
(0.44 for group 1 and 0.52 for group 2) for the f param-
eter in the canalicular phase. Figure 6 displays correla-
tions derived from two test groups, where each group’s
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Figure 6: The correlations between f and the GA in the canalicular stage
are calculated in two datasets: group 1 test cases and group 2 test cases.

test cases include those from the opposing original group
(the 16 cases for the hyperparameter tune). Average
IVIM parameters were computed in the ROI for each case
across all evaluated methods, utilizing the best hyperpa-
rameters for each group as detailed in 5.1 for the IVIM-
Morph calculations. Notably, IVIM-Morph demonstrates
greater consistency in terms of correlation between the
two groups, unlike other methods (except TRF-SLS and
Syn - Reg to by), which showed varying correlations
across the groups.

Supplementary material includes supplementary results

and tables that summarize the correlations between differ-
ent IVIM model parameters and GA.

6. Discussion and Conclusions

Accurately assessing [VIM parameters while address-
ing fetal movement is crucial for obtaining precise quan-
titative imaging biomarkers related to fetal lung devel-
opment. In this study, we introduced IVIM-Morph, a
self-supervised deep neural network approach designed
for simultaneous motion compensation and quantitative
DWI analysis using the IVIM model. Our method sur-
passed baseline approaches that consider motion and esti-
mate IVIM model parameters, notably enhancing the cor-
relation between the perfusion fraction parameter of the
IVIM model (f) and gestational age (GA). While, our
segmentation experiment results, as shown in Figure 4,
indicate improved alignment through iterative model esti-
mation and registration (SyN-TRF), as evidenced by the
Dice coefficient. It is important to note that this align-
ment alone does not guarantee a physically plausible sig-
nal decay behavior across the entire b-value axis. Conse-
quently, it may lead to inaccurate estimates of the IVIM
parameters, as indicated by the poor correlation achieved
between the pseudo-diffusion fraction parameter f and
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gestational age (GA) using the SyN-TRF approach. In
contrast, our IVIM-Morph approach strikes a better bal-
ance between precise boundary registration and maintain-
ing a realistic signal decay behavior along the entire b-
value axis. This equilibrium results in an improved corre-
lation between the pseudo-diffusion fraction parameter f
and GA and achieves comparable segmentation accuracy.

It’s crucial to emphasize that, in contrast to previously
proposed methods primarily addressing motion between
slices within a single volume in anatomical fetal imaging,
our IVIM-Morph focuses on addressing motion between
volumes in quantitative DWI acquisitions that encompass
multiple volumes. Additionally, in its current configu-
ration, IVIM-Morph operates under the assumption of a
single trace-weighted image per b-value, which is auto-
matically generated by aggregating the various b-vector
images into a single scalar map. Future enhancements
may involve accommodating motion between the distinct
b-vector images employed in the computation of the trace-
weighted b-value image.

While our primary emphasis has been on the quanti-
tative analysis of fetal lung DWI data, it’s worth noting
that the proposed approach holds potential applicability
in various other quantitative DWI analysis domains that
grapple with motion-related challenges. For instance, ap-
plications such as the detection and staging of liver fi-
brosis through IVIM analysis of abdominal DWI data Ye
et al. (2020), the assessment of non-alcoholic fatty liver
disease Guiu et al. (2012), and the identification of dif-
fuse renal pathologies Caroli et al. (2018) can all derive
benefits from our approach by effectively accounting for
motion induced by processes like respiration between dif-
ferent b-value volumes.

In conclusion, our study has showcased the clinical
promise of evaluating functional fetal lung maturation
non-invasively from fetal DWI data. our IVIM-Morph
stands out as a means to markedly enhance the preci-
sion of non-invasive, quantitative fetal lung maturity as-
sessment. Moreover, our proposed method can be read-
ily extended to other clinical scenarios necessitating mo-
tion correction in the computation of quantitative MRI
biomarkers. Collectively, our findings point to IVIM-
Morph as a valuable asset in advancing fetal MRI, en-
hancing fetal health monitoring, and informing clinical
decision-making.
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Supplementary Materials of the paper:
IVIM-Morph: Motion-compensated quantitative
Intra-voxel Incoherent Motion (IVIM) analysis for

functional fetal lung maturity assessment from
diffusion-weighted MRI data
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Table 1: Group 1 tests cases IVIM parameters correlation with GA in the canicular and saccular stages

Dt_can | Dt_sac | Dp_can | Dp_sac | Fp_can | Fp_sac
SLS-TRF 0.111 0.118 | 0.279 0.008 | 0.267 | 0.107
Affine-TRF reg to b0 0.022 | 0.089 | 0.052 0.004 | 0.253 0.202
SyN-TRF reg to b0 0.145 | 0.000 | 0.021 0.002 | 0.002 0.000
SyN-TRF reg to next b | 0.297 | 0.018 | 0.023 0.001 0.385 0.009
Iterative SyN-TRF 0.203 | 0.124 | 0.004 0.001 0.190 0.048
IVIM-Morph 0.075 | 0.417 | 0.286 0.040 | 0.439 | 0.125
VoxelMorph 0.074 | 0.101 | 0.254 0.026 | 0.070 0.121

Table 2: Group 2 tests cases IVIM parameters correlation with GA in the canicular and saccular stages
Dt_can | Dt_sac | Dp_can | Dp_sac | Fp_can | Fp_sac
SLS-TRF 0.007 | 0.000 | 0.299 0.058 | 0.249 0.027
Affine-TRF reg to b0 0.007 | 0.042 | 0.360 0.216 | 0.004 0.007
SyN-TRF reg to b0 0.095 | 0.007 |0.478 0.129 | 0.003 0.017
SyN-TRF reg to next b | 0.023 | 0.000 | 0.445 0.056 | 0.002 0.021
Iterative SyN-TRF 0.000 | 0.002 | 0.420 0.063 | 0.016 0.001
IVIM-Morph 0.400 | 0.008 | 0.425 0.013 | 0.517 | 0.042
VoxelMorph 0.027 | 0.132 | 0.069 0.068 | 0.139 0.121
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Figure 2: Group 1: Scatter plots depict the average f parameter values in the fetal lung across all methods
evaluated. Separate linear fitting with GA was performed for both the canalicular and saccular stages.
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Figure 3: Group 2: scatter plots depict the average f parameter values in the fetal lung across all methods
evaluated. Separate linear fitting with GA was performed for both the canalicular and saccular stages.



