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The new technology of single-cell RNA sequencing (scRNA-seq) can yield valuable insights
into gene expression and give critical information about the cellular compositions of
complex tissues. In recent years, vast numbers of scRNA-seq datasets have been
generated and made publicly available, and this has enabled researchers to train
supervised machine learning models for predicting or classifying various cell-level
phenotypes. This has led to the development of many new methods for analyzing
scRNA-seq data. Despite the popularity of such applications, there has as yet been no
systematic investigation of the performance of these supervised algorithms using
predictors from various sizes of scRNA-seq datasets. In this study, 13 popular
supervised machine learning algorithms for cell phenotype classification were evaluated
using published real and simulated datasets with diverse cell sizes. This benchmark
comprises two parts. In the first, real datasets were used to assess the computing speed
and cell phenotype classification performance of popular supervised algorithms. The
classification performances were evaluated using the area under the receiver operating
characteristic curve, F1-score, Precision, Recall, and false-positive rate. In the second
part, we evaluated gene-selection performance using published simulated datasets with a
known list of real genes. The results showed that ElasticNet with interactions performed
the best for small and medium-sized datasets. The NaiveBayes classifier was found to be
another appropriate method for medium-sized datasets. With large datasets, the
performance of the XGBoost algorithm was found to be excellent. Ensemble
algorithms were not found to be significantly superior to individual machine learning
methods. Including interactions in the ElasticNet algorithm caused a significant
performance improvement for small datasets. The linear discriminant analysis algorithm
was found to be the best choice when speed is critical; it is the fastest method, it can scale
to handle large sample sizes, and its performance is not much worse than the top
performers.
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1 INTRODUCTION

Single-cell RNA-sequencing (scRNA-seq) technology enables
researchers to investigate a genome at the single-cell level with
high resolution, and it was named Method of the Year 2013
(Editorial, 2014). The analysis of scRNA-seq data has played a
vital role in understanding intrinsic and extrinsic cellular
processes in biological and biomedical research (Wang et al.,
2019). The scRNA-seq technique has provided us with an
opportunity to identify the cellular compositions of complex
tissues (Svensson et al., 2018; Cheng et al., 2020), which is
valuable for detecting new populations of cells, defining
different cell types, and discovering rare cells that represent
minor cell types. Hence, one of the most popular tasks in the
analysis of scRNA-seq data is the classification of various cell-
level phenotypes, such as cell-type annotation. Pasquini et al.
(2021) discussed 24 recently developed cell-type annotation
methods based on unsupervised and supervised machine
learning algorithms. The majority of these methods are based
on supervised machine learning algorithms, especially the newer
ones. The standard annotation approach is clustering followed by
manual annotation of each cluster. However, this not only is
tedious and inefficient (Qi et al., 2020) but also produces
inconsistent results due to the subjective human decisions
made in the process of annotation. A large quantity of
scRNA-seq data has been generated and made publicly
available recently, and this means that training supervised
machine learning models is now a preferred approach.

Since many supervised machine learning algorithms can be
(and have been) applied to the popular task of cell phenotype
classification, we are interested in evaluating their performance
under various conditions. Abdelaal et al. (2019) conducted a
benchmark study to compare currently available software for cell
identification, and this serves as a great resource to help users to
select a software package for their analyses. Each software
package has an underlying machine learning algorithm and
specific add-on components or data-analysis steps, and most
add-ons can be applied to other methods. Developers are mostly
interested in which underlying machine learning algorithm is
most suitable for scRNA-seq data analysis and should hence be
used to develop their next software release. This motivated us to
conduct a benchmark study to conduct a fair comparison of the
currently used supervised machine learning algorithms without
any add-ons.

The characteristics of a dataset can have a critical effect on the
performance of a machine learning method. A standard scRNA-
seq training dataset for cell phenotype classification consists of a
genomic data matrix and class label for each cell. In the genomic
data matrix, each record (row) represents a cell and each column
represents a single gene’s expression level; there are tens of
thousands of genes with a very complex correlation structure.
The correlation structure varies between datasets, making it
necessary to evaluate the performance of methods using
several datasets. Each cell in the data matrix is the gene
expression level, or the count of RNA fragments mapped to a
given gene. Due to the limitations of the technology (dropout),
there is a large proportion of zeros in these counts. However, their

corresponding actual expression levels are not zero. The zero-
inflated negative binomial distribution is the most popular
distribution used to model expression levels in scRNA-seq
data. However, a recent benchmark study showed that such a
distribution does not have a clear advantage in differential
expression analysis (Soneson and Robinson, 2018).

In short, most genomic data matrices share the same
characteristics, as discussed above. The only key factor that
could affect classification performance is the sample size of the
dataset. Therefore, in our benchmark study, we investigated data
of various sample sizes. First, following the protocol described for
a previous benchmark study (Soneson and Robinson, 2018), we
selected 27 datasets from the real datasets of Conquer. We
considered these datasets as small-sample-size data, since more
recent scRNA-seq datasets have become much larger than that
used in 2018. Hence, we used datasets with larger sample sizes:
four medium-sized datasets and 12 large ones (Packer et al.,
2019). Details of the benchmark data can be found in
Supplementary Tables S1–S3.

In this study, we considered eight individual algorithms used
in software for cell phenotype classification: 1) the
ElasticNet algorithm (Zou and Hastie, 2005), which is used in
the Garnett software package (Pliner et al., 2019); 2) ElasticNet
with interactions, to learn whether adding interaction terms
improves classification performance; 3) the linear discriminant
analysis (LDA) algorithm (Xanthopoulos et al., 2013), which is
used in the R library scID (Boufea et al., 2020); 4) NaiveBayes
(NB) (John and Langley, 2013), which is used in CellO (Bernstein
and Dewey, 2021); 5) the support vector machine (SVM)
algorithm (Steinwart and Christmann, 2008), which is used in
scPred (Alquicira-Hernandez et al., 2019); 6) the K-nearest
neighbors (KNN) algorithm (Kramer, 2013), which is used in
scANVI package (Xu et al., 2021) and the scClassify package (Lin
et al., 2020); 7) the Tree algorithm (Gupta et al., 2012), which is
used in the CHETAH package (de Kanter et al., 2019); and 8) the
XGBoost (XGB) algorithm (Friedman and Meulman, 2003),
which is used in the CaSTLe package (Lieberman et al., 2018).
Ensemble learning algorithms usually work better than a specific
individual algorithm (Dietterich, 2002). Therefore, we also
constructed five ensemble algorithms based on the weighted
votes of the eight individual algorithms discussed above; we
then evaluated their performance against the individual
algorithms.

Using all of the datasets, we compared the classification
performance and running times of these methods. We found
that ElasticNet with interaction terms had the best
classification performance when the sample size was not
large, and XGB worked best with large datasets. The LDA
algorithm had reasonable classification performance and ran
the fastest in most cases. When the sample size is large,
ElasticNet takes a very long time to run. The NB algorithm
also had great performance in the medium-sized datasets we
investigated. We also evaluated the performance of these
algorithms for gene selection. Such evaluation requires a list
of “true” genes, so only simulated datasets were used in this
part. We found that ElasticNet had the best performance in
gene selection.
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2 MATERIALS AND METHODS

This section describes the datasets, algorithm design, evaluation
criteria, classification methods, and gene selection.

2.1 Datasets
The datasets from Conquer (Soneson and Robinson, 2018) and
GSE126954 (Packer et al., 2019) were used to evaluate all
classification methods for scRNA-seq data. A total of 27
datasets from Conquer were applied as small datasets, four
datasets from GSE126954 were used as medium-sized datasets,
and 12 datasets from GSE126954 were considered as large ones
(Supplementary Tables S1–S3). Finally, as an additional type of
dataset, the simulated datasets provided by Soneson and
Robinson (2018) were used to evaluate gene-selection
performance. For the details of these simulated datasets, see
Supplementary Table S4.

2.1.1 The 27 Datasets From Conquer
The Conquer repository (Soneson and Robinson, 2018) was
developed at the University of Zurich, Switzerland. The datasets
used in this research were downloaded from http://imlspenticton.
uzh.ch:3838/conquer. Although Conquer contains 40 scRNA-seq
datasets, we selected 27 of these with two types of cells in a specific
phenotype, and there were at least 15 cells of each type (please refer
to Supplementary Table S1). The predictors were carefully chosen
from the top 1,000 genes with the strongest correlations. We named
these datasets “small datasets.”

2.1.2 GSE126954 Datasets
The GSE126954 datasets were presented by Packer et al. (2019),
and they can be downloaded from https://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc=GSE126954. These datasets involve
86,024 single-cell scRNA-seq sets from Caenorhabditis elegans
embryos (Packer et al., 2019). We divided these into two parts.
The first part contained four datasets that were larger than the
small datasets from Conquer; we selected four pairs of different
cells to form four “medium-sized datasets.” The number of cells in
our selected datasets ranged from 112 to 911 (please refer to
Supplementary Table S2 for more details). The second part
contained 12 datasets named “large datasets.” Additionally, this
paper used two datasets based on different cell types and ten
datasets according to a pairwise comparison of scRNA-seq profiles
of cells from C. elegans embryos at varying developmental stages.
The numbers of each type of cell ranged from 1,732 to 25,875, as
described in Supplementary Table S3. These two parts of the
datasets were used to choose 1,000 genes with the strongest
correlations as predictors. The algorithm parameter settings
were the same as those used for the small datasets.

2.1.3 Simulated Conquer Datasets
To evaluate feature selection, it is necessary to know the identity
of the “real” gene. In this study, we used three simulated datasets
provided by Soneson and Robinson (2018) and Soneson and
Robinson (2016). The simulations were conducted using the
powsimR package (Vieth et al., 2017). The simulation input
parameters were learned from the three real datasets:

GSE45719, GSE74596, and GSE60749-GPL13112. We used
information about the real class members of each cell received
from the real datasets. The simulated and real datasets can be
freely downloaded (Soneson and Robinson, 2016). Table 1
presents more information about these simulated datasets.

2.2 Classification Methods
We compared the results of ElasticNet, ElasticNet with
interactions, LDA, NB, SVM, KNN, Tree, XGB, and five
ensemble algorithms. The first eight methods repeated 100
rounds of tenfold cross-validation. The grouping of each
round of cross-validation was random. The results of the
classifications by the five ensemble algorithms were obtained
from seven traditional algorithms: ElasticNet, LDA, NB, SVM,
KNN, Tree, and XGB. We calculated the area under the receiver
operating characteristic curve (AUC), F1-score, false-positive rate
(FPR), Precision, and Recall of each algorithm.We also compared
the computation time of each algorithm.

2.2.1 ElasticNet
As a combination of ridge regression and lasso regression,
ElasticNet can not only reduce the prediction variance but also
achieve coefficient shrinkage and variable selection (Soomro
et al., 2016; Lu et al., 2021). This algorithm involves two
parameters, α and λ:

λ∑p
j�1

αβ2j + 1 − α( ) βj
∣∣∣∣∣ ∣∣∣∣∣( ) (1)

To evaluate α, we selected six values distributed evenly
between 0 and 1 0, 0.2, 0.4, 0.6, 0.8, 1{ }, and for evaluation of λ,
we chose 100 values from log 10–8 to log 105. Note that in the 12
large datasets, the parameters α and λ were changed and set using
the full data to avoid the computation taking an excessively long
time. The ElasticNet model was also applied to the complete
dataset to select the best α and λ values from the 12 datasets, and
these were then directly used in the tenfold cross-validation
experiments. In the small and medium-sized datasets, we also
considered ElasticNet with 200 interactions. We combined 1,000
genes in pairs to form interactions and then applied logistic
regression to find the 200 interactions with the strongest
correlations with the response variable.

2.2.2 Linear Discriminant Analysis
The LDA technique identifies a linear combination of predictors
that maximize the between-class scatter and minimize the within-
class scatter (Park and Park, 2008). It uses the label information to
learn a discriminant projection that can enlarge the between-class
distance and reduce the within-class distance to improve the
classification performance. Various extensions of LDA have been
developed to enhance its performance and efficiency (Tharwat
et al., 2017). In this benchmark study, we used the LDA function
in the R packageMASS with parameters set to their default values.

2.2.3 NaiveBayes
The NB classifier defines the probability of an item belonging to a
particular class. It is based on Bayes’ theorem with the
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assumption that the features are independent. However, this
assumption may cause a problem because real-world features
are generally interdependent (Malik and Kumar, 2018). We used
the naiveBayes function in the e1071R package with the value of
Laplace set to 1.

2.2.4 Support Vector Machine
SVMs are formulated for two-class single-label problems (Hasan
et al., 2013). The appropriate kernel and its parameters selected

for a specific classification problem can influence the
performance of an SVM (Hasan et al., 2017). We adopted
tenfold cross-validation to select an optimal value for γ, which
is a parameter that needs to be defined when the radial basis
function is chosen as the kernel. This implicitly determines the
distribution of the data mapped to the new feature space. The
larger the value of γ, the smaller the number of support vectors;
the smaller the value of γ, the larger the number of support
vectors. The number of support vectors affects the speed of

TABLE 1 | Computation times of each algorithm with each dataset. Each column represents a different algorithm, and the rows indicate different datasets. The smallest
computation times are illustrated by underlining.

Label ElasticNet ElasticNet
with

interactions

LDA NB SVM KNN Tree XGB Sample
size

The computation time in 27 small datasets (seconds)

1 37.057 60.918 1.969 7.136 639.367 9.681 15.915 29.133 192
2 14.362 24.385 0.980 5.307 247.713 3.990 8.028 12.114 95
3 198.204 30.126 5.943 14.138 5,208.412 68.672 35.271 107.450 564
4 24.998 38.792 0.996 5.723 290.221 4.500 9.270 13.388 110
5 40.536 65.178 1.682 7.300 632.190 9.118 11.990 22.355 192
6 38.661 64.686 1.626 7.203 615.368 8.911 10.710 19.079 186
7 20.004 29.290 0.877 5.219 240.178 3.889 9.563 13.565 99
8 40.087 61.180 1.661 6.916 650.740 9.053 14.454 26.990 192
9 37.518 35.188 1.494 6.675 411.244 7.798 10.358 18.767 91
10 80.411 121.676 2.319 8.260 835.417 15.678 12.739 25.214 268
11 37.893 58.476 1.283 6.141 339.512 6.335 10.064 16.080 147
12 430.164 170.021 9.560 18.190 10 ,328.148 161.913 18.037 121.704 192
13 104.301 111.083 1.631 7.095 673.008 8.861 10.582 34.456 192
14 100.775 111.154 2.659 9.619 1,545.478 22.382 14.804 37.964 328
15 116.645 125.838 3.809 11.827 3,184.677 46.696 26.341 58.991 460
16 56.745 65.334 1.440 7.215 553.960 9.138 11.650 21.656 183
17 353.498 33.495 7.221 16.828 1,288.900 126.284 34.363 90.167 106
18 96.279 101.553 2.455 9.689 1,539.189 21.260 19.310 37.981 313
19 35.485 25.004 0.897 6.041 277.117 4.730 9.726 15.810 91
20 25.816 27.386 0.760 5.652 238.028 4.020 7.990 12.259 96
21 178.537 164.780 1.456 7.561 440.966 9.325 8.794 19.780 188
22 43.940 50.828 1.403 7.359 566.504 9.146 10.180 18.819 181
23 72.664 83.030 1.502 7.613 657.644 9.504 9.713 27.458 192
24 66.112 96.200 1.487 7.616 639.454 9.488 10.289 27.005 192
25 59.439 86.527 1.528 7.638 664.293 9.681 13.983 29.074 192
26 126.590 85.750 5.288 14.354 3,649.444 74.889 33.485 78.146 269
27 30.640 53.641 1.339 7.032 481.385 7.598 12.044 20.131 164

The computation time in 4 medium datasets (seconds)

1 163.504 236.97 11.765 23.030 4,194.281 176.300 32.935 90.274 843
2 233.984 670.67 16.954 29.639 9,350.588 325.453 55.913 139.470 1,126
3 640.719 46.010 14.902 22.276 12 ,406.980 263.876 48.200 121.668 992
4 41.442 164.89 2.660 10.531 518.837 22.619 14.459 27.354 234

The computation time in 12 large datasets (seconds)

1 485.537 NA 247.775 391.010 NA NA 724.572 2,566.135 19 ,252
2 258.447 NA 249.383 400.039 NA NA 676.196 1,792.239 5,328
3 2,276.346 NA 282.598 380.155 NA NA 920.946 1,910.279 21 ,492
4 1,932.343 NA 235.466 405.532 NA NA 626.151 2,986.626 22 ,661
5 9,093.946 NA 165.728 267.974 NA NA 357.760 1,150.460 23,718
6 9,026.280 NA 510.495 741.520 NA NA 1,469.216 7,039.001 20 ,213
7 31,978.390 NA 370.260 492.451 NA NA 913.547 3,274.896 13 ,577
8 7,256.621 NA 346.646 520.316 NA NA 923.122 2,940.168 33 ,043
9 10 ,807.530 NA 466.657 667.569 NA NA 1,163.817 3,267.698 27 ,700
10 1,961.241 NA 384.110 551.439 NA NA 1,242.170 3,313.920 28 ,757
11 11 ,386.465 NA 233.273 434.554 NA NA 829.204 2,607.679 36 ,407
12 2,691.988 NA 65.735 116.332 NA NA 231.935 792.720 37 ,464
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training and prediction. Another parameter is the cost; this is a
penalty coefficient that defines the tolerance for errors. The
higher the cost, the smaller the error tolerance; it is easy to
overfit with higher cost values and easy to underfit with lower cost
values. As such, the generalization ability of the model will
become poor if the cost is either too high or too low. The
range of γ was {(1n)10 , (1n), (1n) × 10}, where n represents the
number of genes. The range of the cost is 0.01, 0.1, 1, 10, 100{ }.
Predictions were then made with the help of the optimal model.

2.2.5 K-Nearest Neighbors
The principle of the KNN algorithm is that if most of the k
most-similar samples to a query point qi in the feature space
belong to a particular category, then an inference can be made
that the query point qi also falls into this category. The
distance in the feature space can measure similarity, so
this algorithm is called the KNN algorithm. A training
dataset with accurate classification labels should be known
at the beginning of the algorithm. Then, for a query data
point qi whose label is not known and which is represented by
a vector in feature space, the distances between it and every
point in the training dataset are calculated. After sorting the
results of this distance calculation, a class label for the test
point qi can be applied according to the labels of the k nearest
points in the training dataset (Kuang and Lei, 2009). When
the sizes of the training and test datasets are both very large,
the execution time of these distance calculations may be the
bottleneck of the application of the KNN algorithm (Kuang
and Lei, 2009).

2.2.6 Tree
The Tree algorithm is a hierarchical structure in which internal
tree nodes represent splits applied to decompose the domain into
regions, and terminal nodes assign class labels or class
probabilities to regions believed to be sufficiently small or
sufficiently uniform (Kozdrowski et al., 2021). In this work,
pruning was carried out using tenfold cross-validation. To
avoid the situation in which only one branch was left after
pruning—which would lead to unpredictable classification
results—pruning was not allowed if the leaf size after pruning
would have been less than two.

2.2.7 XGBoost
XGBoost is a regression tree that has the same decision rules as a
standard decision tree; it supports both regression and
classification. This algorithm is an efficient and scalable
variant of the gradient boosting machine (Ma et al., 2020).
The XGB method can handle sparse data and can thus be
implemented flexibly using distributed or parallel computing
(Wang et al., 2017; Chang et al., 2018).

2.2.8 Five Ensemble Algorithms
Ensembles are achieved by generating different algorithms and
combining their results into a single consensus solution (Chiu
and Talhouk, 2018). This study used five ensemble algorithms
constructed from the basic results of algorithm predictions
applied to classification. In this work, two of the ensemble

algorithms used soft decision rules and the other three used
hard decision rules.

We define pn,i as the predicted probability of the nth sample
from the ith algorithm, where i is the index of the algorithm from
\(ElasticNet, LDA, NB, SVM, KNN, Tree, XGB\). The soft
ensemble rules made decisions based on the weighted average
of the predicted probabilities from all methods:

~pn �
∑ipn,i × wi

∑iwi
, (2)

where wi represents the classification performance of each
method. This study used two criteria for wi—F1-Median and
AUC-Median—to construct two ensemble approaches. The
ensemble methods classified the nth sample by the weighted
probability ~pn. We named the two ensemble algorithms
“ensemble-weighted.AUC” and “ensemble-weighted.F1.”

We denoteOn,i as the predicted class (0 or 1) of the nth sample
from the ith algorithm. In the hard ensemble rules, a decision was
made based on the weighted votes from all methods:

~On �
0; if ∑

i: On,i�0{ }
wi ≥ ∑

i: On,i�1{ }
wi,

1; if ∑
i: On,i�0{ }

wi < ∑
i: On,i�1{ }

wi,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(3)

where wi is constant 1 or AUC-Median or F1-Median; indeed, wi

was used to construct three hard ensemble rules. We named these
three ensemble algorithms “ensemble-vote,” “ensemble-
addition.AUC,” and “ensemble-addition.F1.”

2.3 Design of Evaluation Experiments
2.3.1 Cross-Validation
To evaluate the classification performance of the supervised
algorithms, we carried out tenfold cross-validation in 100
rounds after filtering the genes, phenotypes, and cells. The
complete set of samples, which were labeled as either 0 or 1,
were divided into ten groups in each round. In each of the 100
rounds of cross-validation, we applied a confusion matrix for
either cell phenotype classification or gene selection. From these
confusion matrices, we calculated the following parameters to
compare the performance of the methods: AUC, F1-score, FPR,
Precision, and Recall.

2.3.2 Evaluation of Classification
For each dataset, each sample result in 100 rounds of experiments
was predicted to be either 0 or 1 (with a threshold of 0.5 dividing
the predicted results into 0 and 1). The confusion matrix was
constructed according to the prediction results and actual values
from each algorithm. The numbers of samples were achieved with
both real and predicted values of 0 (a), actual values of 0 and
predicted values of 1 (b), actual values of 1 and predicted values of
0 (c), and both actual and predicted values of 1 (d). “Recall”
measures the correct ratio in samples with an actual value of
category 1; the calculation formula for this is d/(c + d) (Hand,
2009). “Precision” measures the ratio of samples with an actual
value of 1 where it should be 1; the formula for this is d/(b + d).
The calculation formula for the F1-score is (2 ×Recall
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×Precision)/(Recall + Precision). The FPR measures the
proportion of samples with an actual value of 0 but a
predicted value of 1; the calculation formula for this is b/(a +
b). As noted earlier, AUC measures the area under the receiver
operating characteristic curve.

2.3.3 Evaluation for Computation Time
To benchmark each algorithm according to the computation time
taken for each dataset, we recorded the computation time of each
algorithm for 100 rounds and calculated the average values.

2.3.4 Evaluation of Gene Selection
The algorithms considered were NB, Tree, XGB, and ElasticNet.
We selected the 5,000 genes from the three simulated datasets
provided by Soneson and Robinson (2018) and Soneson and
Robinson (2016) that had the strongest correlations with the
response variable. The system randomly selected 70% of the data
from three simulated datasets as a training set and repeated this
random selection 100 times. Then, gene selection was conducted
on 100 subsets with 5,000 genes. A comparison was carried out
between the selected genes and the real genes in the real datasets.
We used a two-column matrix to help the calculation of each
indicator; the first column contained the selected genes, and the
second column contained the real genes. Finally, five
criteria—AUC, F1-score, FPR, Precision, and Recall—were
considered to evaluate the performance of the algorithms for
gene selection.

For the Tree algorithm, we carried out cross-validation to
prune the tree with minimum deviance. With the NB algorithm,
we applied recursive feature elimination (Chen et al., 2020) to
implement gene selection. The parameter settings of the other
algorithms were the same as those used for classification.

3 RESULTS

In this section, we describe the method comparison results in
detail using each of the benchmark criteria. We summarize the
classification performance and computation time for all datasets
with various sample sizes. We then summarize the gene-selection
performance using simulated datasets.

3.1 Classification Performance
As described, in this study, the performance of different
classification algorithms on three types of datasets of different
of sizes was examined. In this section, the results of each
classification criterion are shown to compare the performance
of the methods in the subsequent subsections.

Figures 1–3 show the results from the small, medium, and
large datasets, respectively. In each of these figures: as three
criteria for investigating the performance of the algorithms,
panel A displays, from left to right, the AUC, F1-score, and
FPR values of the classification outcomes; panel B shows the
differences between the best single algorithm and the other
algorithms. From left to right, the results in these panels
display the p-values of the AUC, F1-score, and FPR. The red
lines indicate the zero value of differences among the

performances of algorithms. To closely examine these
differences, the discrepancies between the performance of the
best single algorithm and the other algorithms were investigated
using an adjusted p-value cutoff of 0.05. The p-value was
considered to three decimal places. Values below 0.05 are
indicated in bold to highlight the significant differences.

The interquartile range (IQR) and median values (calculated
from the results of 100 experiments for each dataset) for the five
criteria are also given in Supplementary Figures S1–S3. In these
figures, the first column shows the performance of the algorithms
according to five criteria, AUC, F1-score, FPR, Recall, and
Precision. The second column shows the AUC-Median, F1-
Median, FPR-Median, Recall-Median, and Precision-Median.
The third column shows the AUC-IQR, F1-IQR, FPR-IQR,
Recall-IQR, and Precision-IQR, from top to bottom. The IQR
values were used to represent the stability of the corresponding
algorithm. Supplementary Figure S1 illustrates the performance
of the 27 small datasets, Supplementary Figure S2 shows the
result of the four medium-sized datasets, and Supplementary
Figure S3 shows the results from the 12 large datasets.

3.1.1 Benchmarks for EachClassifier in Small Datasets
The performance of 13 supervised algorithms was analyzed using
27 real datasets with relatively small sample sizes from the
Conquer study (Soneson and Robinson, 2018), which has been
used for intra-dataset evaluation. The studied datasets are
relatively typically sized scRNA-seq datasets with 24 balanced
datasets and three unbalanced datasets (Supplementary Table
S1). The performance of the 13 algorithms (ElasticNet with and
without interactions, LDA, NB, SVM, KNN, Tree, XGB, and five
ensemble algorithms) considering AUC, F1-score, and FPR are
shown in Figure 1. In Figure 1A, each box contains 2,700 scores,
and each of these scores represents a single value from each
experiment with each dataset. Overall, Figure 1 indicates that
ElasticNet with interactions has better performance as a linear
algorithm when compared to the others in terms of AUC, F1-
score, and FPR. Considering Supplementary Figure S1, the
Recall of ElasticNet was also considerably better than other
non-ensemble algorithms. However, the five ensemble
algorithms had higher precision than the non-ensemble
algorithms (Supplementary Figure S1).

As shown in Figure 1A, from the linear algorithms, the
median AUC values for ElasticNet with and without
interactions, LDA, NB, and SVM, were greater than 0.987. For
the 27 small datasets, the median AUC value of the non-linear
Tree algorithm was 0.967, and it was 0.979 for the XGB; this was
higher than the value for the KNN algorithm, 0.966. Thus, in
small datasets, when AUC is considered as the main criterion, the
linear algorithms performed better than the non-linear ones.

We also used each criterion’s IQR value to indicate the stability
of the algorithms. Details of these results are shown in
Supplementary Figure S1. The XGB algorithm was better
than Tree in terms of both performance and stability. Among
the five ensemble algorithms, it seemed that weighting by AUC
and F1-score played an important role in improving the results.
The median AUC values for the ensemble algorithms were
approximately the same, each being over 0.990. According to
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the outcomes, in the small datasets, ElasticNet with interactions
was selected as the best single method because it had the highest
AUC and lower AUC-IQR values. It also had the best
performance considering F1-score and FPR.

Figure 1B shows a pairwise comparison between the
classification algorithms and the best selected single method
(ElasticNet with interactions) under each criterion. There were
significant differences among the performances of the algorithms,
and these further reinforced the selection of ElasticNet as the best
algorithm. Moreover, considering the AUC and F1-score criteria,
the inclusion of interactions significantly improved the
performance of ElasticNet. Among the single methods, the
LDA, NB, SVM, Tree, and XGB algorithms performed
significantly worse than ElasticNet with interactions.

To sum up, the investigation of the performance of the 13
algorithms revealed that ElasticNet with interactions appears to
be the most practical method for small datasets. Moreover,
ensemble-weighted.AUC and ensemble-weighted.F1 can be
considered as the next-most-useful methods, but they are not
as good as ElasticNet with interactions. In comparing linear and

non-linear algorithms, the linear algorithms, including ElasticNet
with and without interactions, LDA, NB, and SVM, performed
better than the non-linear algorithms. Among the ensemble
algorithms, those weighted by F1-score and AUC had slightly
better performance.

3.1.2 Benchmarks for Each Classifier in Medium-sized
Datasets
We next studied the four medium-sized datasets from Packer
et al. (2019); these contained fewer than 1,000 samples per label
(Supplementary Table S2). The results helped us to assess how
well the supervised algorithms perform with medium-sized
datasets. Overall, Figure 2 confirms that the linear algorithms,
in particular ElasticNet with interactions and NB, had better
performance in comparison to the non-linear and ensemble
algorithms.

As shown in Figure 2A, the performance of ElasticNet with
interactions was still better than ElasticNet without interactions
when considering AUC. In Supplementary Figure S2, it can also
be seen that the stability of ElasticNet with interactions was better

FIGURE 1 | Performance of 13 algorithms with the 27 small datasets. The values of three criteria (AUC, F1-score, and FPR from left to right) are shown in (A). There
are 2,700 points in each box. The values of three criteria are used to represent the performance of the corresponding algorithm. (B) Differences between the best single
algorithm and the other algorithms. From left to right, the results show the differences in AUC, F1, and FPR including the p-values from theWilcoxon test; p-values < 0.05
are indicated in bold, and the red lines indicate the zero value. The best single method is shown at the bottom of each box.
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than the stability of the other algorithms. However, considering
the F1-score and FPR criteria, the NB algorithm was the best
single method, with median values of 0.994 and 0.010,
respectively. The Recall of ElasticNet and NB were also
considerably better than the Recall of the other algorithms.
Therefore, in Figure 2B, we have marked these algorithm
names under the F1-score and FPR standards.

Among the ensemble algorithms, ensemble-weighted.AUC
and ensemble-addition.F1 had better performance than the
other three in terms of the AUC, F1-score, Precision, and
Recall criteria. These results further confirmed that the
performances of ensemble-weighted.AUC and ensemble-
addition.F1 were not significantly better than the best non-
ensemble methods in terms of AUC and F1-score. Thus,
Figure 2A reveals that ElasticNet with interactions performed
the best under the AUC criterion, and NB had the best
performance under the FPR and F1-score criteria. The next-
most-useful methods were ensemble-weighted.AUC and
ensemble-addition.F1.

As shown in Figure 2B, in terms of AUC, the p-value of
ensemble-weighted.F1 was 0.278, that of ensemble-
weighted.AUC was 0.283, and that of ElasticNet without
interactions was 0.095. Thus, there were no significant
differences between the AUC values of these algorithms and
the AUC of ElasticNet. When the values of the F1-score and the
FPR were considered, NB performed slightly better. The
performance of NB was significantly better than that of all
other methods, with a p-value of almost zero. The same
results were achieved under the F1-score criterion for
ensemble-weighted.F1 and ensemble-weighted.AUC, which
indicates that these ensemble methods had approximately the
same performance with the medium-sized datasets.

To sum up, in the medium-sized datasets, ElasticNet with
interactions seems to be more practical than the other algorithms
when considering the AUC criterion. The NB algorithm was the
best algorithm in terms of F1-score and FPR. The ensemble-
weighted.F1 and ensemble-weighted.AUC methods can also be
applied as the next-most-suitable methods.

FIGURE 2 | Performance of 13 algorithms with the four medium-sized datasets. The values of three criteria (AUC, F1-score, and FPR from left to right) are shown in
(A). There are 400 points in each box. The values of these three criteria were used to represent the performance of the corresponding algorithm. (B)Differences between
the best single algorithm and the other algorithms. From left to right, the results show the differences in AUC, F1, and FPR including the p-values from the Wilcoxon test;
p-values <0.05 are indicated in bold, and the red lines indicate the zero value. The best single methods, of which there were two, are shown at the bottom of
the boxes.
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3.1.3 Benchmarks for Each Classifier in Large
Datasets
Next, 12 filtered datasets were applied using the datasets of Packer
et al. (2019). In contrast to the medium-sized datasets, in these
sets, there were over 1,000 samples of each type of cell per label,
with specific values ranging from 1732 to 25,875, as described in
Supplementary Table S3.

Figure 3 shows the outcomes of the performance metrics for
ten algorithms (ElasticNet, LDA, NB, Tree, XGB, and five
ensemble algorithms) using the large datasets; three algorithms
(KNN, SVM, and ElasticNet with interactions) were set aside
because of the long computation time they would require. The
results revealed that XGB had the best performance when
compared to the other single methods. Ensemble-weighted.F1
performed the best among the five ensemble algorithms in terms
of AUC, F1-score, FPR, and Recall. In terms of stability
(Supplementary Figure S3), the XGB algorithm, based on the
AUC and FPR criteria, was most stable; however, ensemble-
weighted.F1 had the best stability in terms of F1-score.

Considering Supplementary Figure S3, the Recall of XGB was
also better than that of the other algorithms. However, XGB and
ensemble-weighted.F1 had the same median value of Precision.

In more detail, the results in Figure 3A show that the median
value of AUC for XGB was 0.999, which was higher than that of
LDA. If the parameters of ElasticNet were set the same as those
used for the medium-sized and small datasets, this would cause
the computation to take too long. We thus adjusted the
parameters of ElasticNet in the large datasets. Overall, in
Figure 3A, if the AUC, F1-score, and FPR criteria are
considered, the XGB algorithm had the best performance; in
contrast, XGB was not a practical method for small datasets.
Furthermore, comparing the small and medium-sized datasets,
the results for ElasticNet dropped from 1.000 to 0.997 to 0.993
using the AUC criterion, and the AUC for ElasticNet with the
large datasets was at least 0.425. This situation caught our
attention, and this will be considered further in the Discussion
section. This outcome led to the selection of XGB as the best
single method for use with large datasets; a comparison between

FIGURE 3 | Performance of ten algorithms with the 12 large datasets. The values of three criteria (AUC, F1-score, and FPR from left to right) are shown in (A). There
are 1,200 points in each box. The values of three criteria were used to represent the performance of the corresponding algorithm. (B)Differences between the best single
algorithm and the other algorithms. From left to right, the results show the differences in AUC, F1, and FPR including the p values from theWilcoxon test; p values < 0.05
are indicated in bold, and the red lines indicate the zero value. The best single method is shown at the bottom of each box.
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this and the ensemble and other non-ensemble methods is thus
displayed in Figure 3B.

As shown in Figure 3B, when considering the AUC and F1-
score criteria, there were significant differences between the five
ensemble algorithms and the best single method (XGB); their p-
values were all approximately zero. However, under the FPR
criterion, there were no significant differences. Thus, the other
algorithms were significantly worse than XGB in terms of AUC
and F1, with p-values less than 0.05. The single methods
ElasticNet, LDA, NB, and Tree performed worse than XGB on
all three measures, with p-values of less than 0.05 in each case.

In summary, the investigation of the performance of ten
algorithms revealed that XGB is the most practical method for
large datasets. Additionally, ensemble-weighted.F1 can also be
used as an appropriate method for large datasets.

3.1.4 Computation Time
We obtained the computation time of each algorithm for three
different datasets (Table 1). For the 27 small datasets, SVM
required longer to run. For the medium-sized datasets, the
performance of ElasticNet, KNN, and SVM slowed notably;
the computation times for these three algorithms were
approximately 3.5, 24, and 10.6 times longer than the
computation times for the small datasets.

By adding cross-validation to the medium-sized datasets, the
SVM took a longer computation time: an average of 6,617.672 s.
This result was similar to that for the small datasets. The LDA and
NB algorithms required short computation times, with averages
of 11.570 and 21.369 s, respectively. With the large datasets, the
computation time of Tree grew little when compared to KNN.

In the measurement of each algorithm’s computation time,
KNN was found to occupy too much memory with the large
datasets; therefore, we could not compare the time-consuming
and labor-intensive algorithms ElasticNet, KNN, and SVM.
Hence, we adjusted the parameters of ElasticNet for the large
datasets. For the large datasets, we calculated the computation
times of five algorithms: adjusted ElasticNet, LDA, NB, Tree, and
XGB (Table 1). The average computation time of XGB, as the best
single method for large datasets, was 2,803.485 s.

3.2 Gene Selection
The dimensions of the gene variables in the scRNA-seq datasets
were large. When we implemented the classification prediction,
some algorithms automatically made gene selections for the
datasets. Hence, we studied whether there was a particular
relationship between gene-selection performance and
classification-prediction performance. We examined four
algorithms suitable for gene selection—NB, Tree, XGB, and
ElasticNet—using the three simulated datasets provided by
Soneson and Robinson (2018) (please see the Materials and
Methods section for more details).

To obtain the final evaluation results, we set different
randomizing seeds in each round for each dataset and
performed gene selections 100 times on 100 subsets with 70%
of the cells. Then, the results were compared with the genes in the
real datasets GSE45719, GSE74596, and GSE60749–GPL13112
(Supplementary Table S4).

Figure 4 displays the AUC values of the four algorithms—NB,
Tree, XGB, and ElasticNet—for gene selection in all experiments
with the three datasets. Each panel of this figure shows 100 points
corresponding to the results of 100 subsets. As shown, the median
value of AUC for the four algorithms on the GSE60749-
GPL13112 simulated dataset was approximately 0.500. For the
other two datasets, the median values for ElasticNet were about
0.711 and 0.637. This revealed that ElasticNet had better gene-
selection performance than the other three algorithms.

4 DISCUSSION

In this study, the classification performance and computation
times of different algorithms for datasets of different sizes were
evaluated and compared. A total of 27 real Conquer datasets
provided by Soneson and Robinson (2018) were used for
classification as small datasets, as shown in Supplementary
Table S1. Four medium-sized datasets provided by Packer
et al. (2019) were also used, as shown in Supplementary
Table S2. The 12 large datasets provided by Packer et al.
(2019) were also used for classification, as shown in
Supplementary Table S3. Three simulated datasets presented
by Soneson and Robinson (2018) were used to examine gene
selection, as shown in Supplementary Table S4.

In this study, we conducted cross-validation experiments and
gene selection, comparing the performance of various algorithms
in terms of their performance, stability, computation time, and
gene selection. Finally, each algorithm’s performance with
different sizes of dataset was considered. According to the
results, ElasticNet with interactions was the most suitable for
processing small and medium-sized scRNA-seq datasets.
Considering the AUC criterion, the inclusion of interactions
improved the performance of ElasticNet with small and
medium-sized datasets; in particular, there were significant
differences between ElasticNet with and without interactions
in small datasets. When ElasticNet was used with large
datasets with and without interactions, there were difficulties
with convergence. Hence, we adjusted the parameters, but there
were problems with long computation times. Therefore, with the
large datasets, we only studied ElasticNet and not ElasticNet with
interactions. If the F1-score and FPR are considered, the NB
algorithm can also be used as a practical approach with medium-
sized datasets. The results with large datasets confirmed that if the
computation time is ignored, then XGB can be regarded as the
best algorithm. Additionally, this study illustrated that the
ensemble algorithms were not always better than the classic
linear algorithms. We also found that the integrated methods
did not significantly improve the performance of the single
algorithms.

4.1 Classification With Small Datasets
With the small datasets, the performance of the 13 algorithms was
evaluated and compared using five criteria: AUC, F1-score, FPR,
Precision, and Recall. Considering AUC as the standard
(Figure 1), we observed that ElasticNet, ElasticNet with
interactions, SVM, and LDA performed well, but LDA was
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unstable. The computation time of the SVMmethod was found to
be too long to be practical. ElasticNet with interactions was a little
more suitable for classification than ElasticNet without
interactions in terms of performance and stability; the results
showed a higher median AUC value and a lower AUC-IQR value
for ElasticNet with interactions. Thus, ElasticNet with
interactions can be considered as the best linear algorithm for
small datasets. The performance of the XGB algorithm was better
than Tree in terms of AUC and AUC-IQR. Ensemble algorithms
can improve the overall generalization ability when each base
learner’s performance is more significant than 0.5. Therefore, it is
understandable that some kinds of ensemble strategies will
perform better than others. However, we found no
significantly better performance for ensemble methods
compared to single methods.

The SVM algorithm performed poorly in terms of F1-score
and FPR. It seems that this was because these criteria consider
both performance and stability. Notably, SVM performed very
slowly; this is perhaps unsurprising because the algorithm
involves the selection of several optimal parameters. Both LDA
and NB are simple linear classifiers with fast computation times,
and their classification performances were good. ElasticNet and
ElasticNet with interactions took longer than LDA; the median
value of its computation time was seven times greater than that of
NB but eleven times less than that of SVM. Like SVM, ElasticNet
and ElasticNet with interactions also require the selection of
optimal parameters to decrease the computation time. However,
their computation times are practical for small datasets.
Therefore, for small datasets, we suggest applying ElasticNet
with interactions due to its high prediction performance and
stability.

4.2 Classification With Medium-Sized
Datasets
We compared the performance of the 13 algorithms with the
medium-sized datasets. Using AUC as the standard, ElasticNet

with interactions performed best, having higher performance and
greater stability, as with the small datasets. The LDA and SVM
algorithms did not perform well on these four datasets. The
reason can be to focus on only four datasets, which may happen
by chance. The XGB algorithm was also better than Tree in terms
of both performance and stability. The two ensemble algorithms
ensemble-weighted.AUC and ensemble-weighted.F1 also
performed better; however, their performances were not
significantly different from that of the single algorithm
ElasticNet with interactions in terms of AUC. Considering the
median value of AUC, KNN still performed more poorly than the
other algorithms. We found that KNN is not suitable for
processing scRNA-seq data because it requires a very large
amount of memory. As the number of samples is increased,
the number of calculations required by KNN also increases.
Hence, in this study, there were problems with insufficient
memory during these calculations.

For the F1-score and FPR standards, the NB algorithm
performed better than the other algorithms. Using the AUC
criterion, the performances of the other algorithms were
similar. Overall, the linear algorithms continued to outperform
the non-linear algorithms with medium-sized datasets.
Therefore, we suggest that ElasticNet with interactions and NB
are best for application with medium-sized datasets because they
have better performance and stability along with moderate
computation times.

4.3 Classification With Large Datasets
The performances of ten algorithms were compared using large
datasets (Figure 3). Using AUC as the standard, the performance
and computation time of ElasticNet, KNN, and SVM took longer
than others. Thus, SVM and KNN were removed, and the
parameters of ElasticNet were modified. We found that XGB
was the best single algorithm with large datasets. ElasticNet with
interactions was not considered in the final results because of its
long computation time; we also found that its performance was
not suitable due to some non-convergence issues. It is worth

FIGURE 4 | Gene-selection results from the four algorithms on 100 subsets of each simulated dataset. There are three datasets from left to right, and we have
marked the dataset names at the top. Each box shows the AUC values of the four algorithms after 100 runs of gene selection on each simulated dataset. The horizontal
axes are arranged by algorithm name.
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noting that ElasticNet still performed well in the convergence
experiments. Therefore, ElasticNet may also be an appropriate
choice after solving the convergence issues. Two of the ensemble
algorithms performed as well as they did with small datasets. The
core idea of the KNN algorithm is that if most of the k nearest
samples in the feature space of a sample belong to a particular
category, then the sample will also belong to that category and will
have its characteristics. Hence, when the size of the datasets
increases, more computation is needed (Salvador-Meneses et al.,
2019). In this paper, KNN was not considered for the large
datasets due to out-of-memory issues.

Overall, according to three criteria—AUC, F1-score, and
FPR—the performance of the XGB algorithm was the best in
most cases. We thus suggest XGB for large datasets because of its
better performance and stability.

The KNN and SVM algorithms had long computation times.
Therefore, they were not considered for the large datasets. The
computation-time problem for ElasticNet was improved by
parameter adjustment, but it was not eliminated (Table 1).
The results thus illustrate that the non-convergence issue leads
to more extended computation times. Moreover, the computation
time of XGB is higher than other linear classifiers (LDA and NB)
because it involves complicated calculations.

This study also investigated whether there was a correlation
between “perfect separation” and “model non-convergence.” We
collected statistics of the convergence and perfect separation in each
round of 1,000 experiments for 12 large datasets. The results revealed
that over 69% of the experiments showed “non-convergence and
perfect separation” or “convergence without perfect separation.”
Therefore, we propose that there is a relationship between perfect
separation and model non-convergence. Moreover, considering
their required computation time and performance, we suggest
that LDA and XGB are more suitable for large datasets.

Finally, we discovered that the linear algorithms were better
than the non-linear algorithms for classifying the different-sized
datasets. Among the algorithms, ElasticNet with interactions
performed well on small and medium-sized datasets. However,
NB was also practical for medium-sized datasets, and XGB worked
better for large datasets. There were no clear differences in the
performance of the ensemble and single methods.

4.4 Gene Selection on Simulated Datasets
In this study, 100 subsets of three simulated datasets provided by
Soneson and Robinson (2018) were used to avoid a certain level of
randomness. These 100 random subsets were used with 100
experiments. The selected genes were compared with the real
genes in real datasets. The results revealed that ElasticNet
performed the best (Figure 4). ElasticNet achieves feature
selection by regulating non-relevant predictors’ coefficients to
zero (Xing et al., 2020), and this enhances the gene selection in
scRNA-seq data; it is thus reasonable that it performed the best.

5 CONCLUSION

This paper presents the results of a comprehensive evaluation of
supervised algorithms for the classification of scRNA-seq data to

assess their performance with datasets of different sizes. The
algorithms considered were as follows: 1) ElasticNet; 2) ElasticNet
with interactions; 3) LDA; 4) NB; 5) SVM; 6) KNN; 7) Tree; 8)
XGB; and 9) five ensemble algorithms based on the weights and
votes given to the seven algorithms ElasticNet, LDA, NB, SVM,
KNN, Tree, and XGB. Enormous differences were found in the
performances of these algorithms in response to changing the
input features. The computation times of the algorithms varied
considerably with the numbers of cells and features and the type
of algorithm.

According to the outcomes, ElasticNet with interactions had
better performance for small andmedium-sized datasets, while XGB
was suitable for large datasets. The gene-selection performance of
ElasticNet was perfect when comparing the genes selected by the
four algorithms on the three simulated datasets with the genes in the
actual datasets. It was revealed that the ensemble algorithmswere not
always superior to classical machine learning methods in terms of
performance or computation time. The results also indicated that
there were significant differences between ElasticNet with and
without interactions.

We recommend ElasticNet with interactions for small and
medium-sized datasets because it performs better than the other
classifiers. The inclusion of interactions improved the
performance of ElasticNet significantly for small datasets. The
NB algorithm can also be considered as an appropriate classifier
for medium-sized datasets. However, when the sample size of the
datasets was large, the XGB algorithm was found to be more
suitable. Although the computation time of XGB was slightly
longer, its performance was relatively higher than the other
methods. It seems that there is no reason to encourage the use
of ensemble algorithms, as their performance was not found to be
better than the performance of single methods.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be
directed to the corresponding author.

AUTHOR CONTRIBUTIONS

LX and XZ conceptualized this study and designed the
experiment. XC contributed to data processing, data analysis,
and preparation of the first draft. All authors have developed
drafts of the manuscript and approved the final draft of the
manuscript. XZ supervised this project.

FUNDING

This work was supported by the Natural Sciences and
Engineering Research Council Discovery Grants (RGPIN-
2017-04 722 PI:XZ and RGPIN-2021-03 530 PI:LX), the
Canada Research Chair (950-231 363, PI:XZ) and the National
Natural Science Foundation of China Grant (61802282).

Frontiers in Genetics | www.frontiersin.org February 2022 | Volume 13 | Article 83679812

Cao et al. Benchmark Study of Cell Phenotype Classification

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


ACKNOWLEDGMENTS

This research was enabled in part by support provided by
WestGrid (www.westgrid.ca) and Compute Canada (www.
computecanada.ca).

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fgene.2022.836798/
full#supplementary-material

REFERENCES

Abdelaal, T., Michielsen, L., Cats, D., Hoogduin, D., Mei, H., Reinders, M. J. T.,
et al. (2019). A Comparison of Automatic Cell Identification Methods for
Single-Cell Rna-Sequencing Data. Genome Biol. 20, 194. doi:10.1186/s13059-
019-1795-z

Alquicira-Hernandez, J., Sathe, A., Ji, H. P., Nguyen, Q., and Powell, J. E. (2019).
ScPred: Accurate Supervised Method for Cell-Type Classification from Single-
Cell RNA-Seq Data. Genome Biol. 20, 264. doi:10.1186/s13059-019-1862-5

Editorial (2014). Method of the Year 2013. Nat. Methods 11, 1. doi:10.1038/nmeth.
2801

Bernstein, M. N., and Dewey, C. N. (2021). Annotating Cell Types in Human
Single-Cell RNA-Seq Data with CellO. STAR Protoc. 2, 100705. doi:10.1016/j.
xpro.2021.100705

Boufea, K., Seth, S., and Batada, N. N. (2020). scID Uses Discriminant Analysis
to Identify Transcriptionally Equivalent Cell Types across Single-Cell RNA-
Seq Data with Batch Effect. iScience 23, 100914. doi:10.1016/j.isci.2020.
100914

Chang, Y.-C., Chang, K.-H., and Wu, G.-J. (2018). Application of Extreme
Gradient Boosting Trees in the Construction of Credit Risk Assessment
Models for Financial Institutions. Appl. Soft Comput. 73, 914–920. doi:10.
1016/j.asoc.2018.09.029

Chen, Q., Meng, Z., and Su, R. (2020).Werfe: A Gene Selection Algorithm Based on
Recursive Feature Elimination and Ensemble Strategy. Front. Bioeng.
Biotechnol. 8, 496–499. doi:10.3389/fbioe.2020.00496

Cheng, Q., Li, J., Fan, F., Cao, H., Dai, Z. Y., Wang, Z. Y., et al. (2020).
Identification and Analysis of Glioblastoma Biomarkers Based on Single
Cell Sequencing. Front. Bioeng. Biotechnol. 8, 1–7. doi:10.3389/fbioe.2020.
00167

Chiu, D. S., and Talhouk, A. (2018). Dicer: An R Package for Class Discovery Using
an Ensemble Driven Approach. BMC bioinformatics 19, 11–14. doi:10.1186/
s12859-017-1996-y

de Kanter, J. K., Lijnzaad, P., Candelli, T., Margaritis, T., and Holstege, F. C. P.
(2019). CHETAH: A Selective, Hierarchical Cell Type IdentificationMethod for
Single-Cell RNA Sequencing. Nucleic Acids Res. 47, e95. doi:10.1093/nar/
gkz543

Dietterich, T. G. (2002). “Ensemble Learning,” in The Handbook of Brain Theory
and Neural Networks. Editor M. Arbib (Cambridge, MA, United States: MIT
Press), 2, 110–125.

Friedman, J. H., and Meulman, J. J. (2003). Multiple Additive Regression Trees
with Application in Epidemiology. Statist. Med. 22, 1365–1381. doi:10.1002/
sim.1501

Gupta, D., Malviya, A., and Singh, S. (2012). Performance Analysis of Classification
Tree Learning Algorithms. Int. J. Comput. Appl. 55, 39–44. doi:10.5120/8762-
2680

Hand, D. J. (2009). Measuring Classifier Performance: A Coherent Alternative to
the Area under the Roc Curve. Mach Learn. 77, 103–123. doi:10.1007/s10994-
009-5119-5

Hasan, M. A. M., Nasser, M., and Pal, B. (2013). On the Kdd’99 Dataset: Support
Vector Machine Based Intrusion Detection System (Ids) with Different Kernels.
Int. J. Electron. Commun. Comput. Eng. 4, 1164–1170.

Hasan, M. A. M., Ahmad, S., and Molla, M. K. I. (2017). Protein Subcellular
Localization Prediction Using Multiple Kernel Learning Based Support Vector
Machine. Mol. Biosyst. 13, 785–795. doi:10.1039/c6mb00860g

John, G. H., and Langley, P. (2013). Estimating Continuous Distributions in
Bayesian Classifiers, 338–345. arXiv preprint arXiv:1302.4964.

Kozdrowski, S., Cichosz, P., Paziewski, P., and Sujecki, S. (2021). Machine Learning
Algorithms for Prediction of the Quality of Transmission in Optical Networks.
Entropy 23, 7.

Kramer, O. (2013). “K-nearest Neighbors,” in Dimensionality Reduction with
Unsupervised Nearest Neighbors (USA, New York: Springer), 13–23. doi:10.
1007/978-3-642-38652-7_2

Kuang, Q., and Lei, Z. (2009). “L.: A Practical Gpu Based Knn Algorithm,” in
proceedings of international symposium on computerence & computational
technology, 151.

Lieberman, Y., Rokach, L., and Shay, T. (2018). CaSTLe - Classification of Single
Cells by Transfer Learning: Harnessing the Power of Publicly Available Single
Cell RNA Sequencing Experiments to Annotate New Experiments. PLoS ONE
13 (11), e0205499. doi:10.1371/journal.pone.0205499

Lin, Y., Cao, Y., Kim, H. J., Salim, A., Speed, T. P., Lin, D. M., et al. (2020).
scClassify: Sample Size Estimation and Multiscale Classification of Cells Using
Single and Multiple Reference. Mol. Syst. Biol. 16, 1–16. doi:10.15252/msb.
20199389

Lu, J., Chen, M., and Qin, Y. (2021). Drug-Induced Cell Viability Prediction from
Lincs-L1000 through Wrfen-Xgboost Algorithm. BMC bioinformatics 22,
13–18. doi:10.1186/s12859-020-03949-w

Ma, B., Meng, F., Yan, G., Yan, H., Chai, B., and Song, F. (2020). Diagnostic
Classification of Cancers Using Extreme Gradient Boosting Algorithm and
Multi-Omics Data. Comput. Biol. Med. 121, 103761. doi:10.1016/j.
compbiomed.2020.103761

Malik, V., and Kumar, A. (2018). Sentiment Analysis of Twitter Data Using Naive
Bayes Algorithm. Int. J. Recent Innovation Trends Comput. Commun. 6,
120–125.

Packer, J. S., Zhu, Q., Huynh, C., Sivaramakrishnan, P., Preston, E., Dueck, H., et al.
(2019). A Lineage-Resolved Molecular Atlas of c. elegans Embryogenesis at
Single-Cell Resolution. Science 365, 1–15. doi:10.1126/science.aax1971

Park, C. H., and Park, H. (2008). A Comparison of Generalized Linear
Discriminant Analysis Algorithms. Pattern Recognition 41, 1083–1097.
doi:10.1016/j.patcog.2007.07.022

Pasquini, G., Rojo Arias, J. E., Schäfer, P., and Busskamp, V. (2021). Automated
Methods for Cell Type Annotation on scRNA-Seq Data. Comput. Struct.
Biotechnol. J. 19, 961–969. doi:10.1016/j.csbj.2021.01.015

Pliner, H. A., Shendure, J., and Trapnell, C. (2019). Supervised Classification
Enables Rapid Annotation of Cell Atlases. Nat. Methods 16, 983–986. doi:10.
1038/s41592-019-0535-3

Qi, R., Ma, A., Ma, Q., and Zou, Q. (2020). Clustering and Classification Methods
for Single-Cell Rna-Sequencing Data. Brief. Bioinformatics 21, 1196–1208.
doi:10.1093/bib/bbz062

Salvador-Meneses, J., Ruiz-Chavez, Z., and Garcia-Rodriguez, J. (2019).
Compressed Knn: K-Nearest Neighbors with Data Compression. Entropy 21
(3), 234. doi:10.3390/e21030234

[Dataset] Soneson, C., and Robinson, M. D. (2016). Available at: http://
imlspenticton.uzh.ch/robinson_lab/conquer_de_comparison. (Accessed
March 15, 2021).

Soneson, C., and Robinson, M. D. (2018). Bias, Robustness and Scalability in
Single-Cell Differential Expression Analysis. Nat. Methods 15, 255–261. doi:10.
1038/nmeth.4612

Soomro, B. N., Xiao, L., Huang, L., Soomro, S. H., and Molaei, M. (2016). Bilayer
Elastic Net Regression Model for Supervised Spectral-Spatial Hyperspectral
Image Classification. IEEE J. Sel. Top. Appl. Earth Observations Remote Sensing
9, 4102–4116. doi:10.1109/jstars.2016.2559524

Steinwart, I., and Christmann, A. (2008). Support Vector Machines. Germany:
Springer Science & Business Media.

Svensson, V., Vento-Tormo, R., and Teichmann, S. A. (2018). Exponential Scaling
of Single-Cell Rna-Seq in the Past Decade. Nat. Protoc. 13, 599–604. doi:10.
1038/nprot.2017.149

Tharwat, A., Gaber, T., Ibrahim, A., and Hassanien, A. E. (2017). Linear
Discriminant Analysis: A Detailed Tutorial. Aic 30, 169–190. doi:10.3233/
aic-170729

Frontiers in Genetics | www.frontiersin.org February 2022 | Volume 13 | Article 83679813

Cao et al. Benchmark Study of Cell Phenotype Classification

http://www.westgrid.ca
http://www.computecanada.ca
http://www.computecanada.ca
https://www.frontiersin.org/articles/10.3389/fgene.2022.836798/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2022.836798/full#supplementary-material
https://doi.org/10.1186/s13059-019-1795-z
https://doi.org/10.1186/s13059-019-1795-z
https://doi.org/10.1186/s13059-019-1862-5
https://doi.org/10.1038/nmeth.2801
https://doi.org/10.1038/nmeth.2801
https://doi.org/10.1016/j.xpro.2021.100705
https://doi.org/10.1016/j.xpro.2021.100705
https://doi.org/10.1016/j.isci.2020.100914
https://doi.org/10.1016/j.isci.2020.100914
https://doi.org/10.1016/j.asoc.2018.09.029
https://doi.org/10.1016/j.asoc.2018.09.029
https://doi.org/10.3389/fbioe.2020.00496
https://doi.org/10.3389/fbioe.2020.00167
https://doi.org/10.3389/fbioe.2020.00167
https://doi.org/10.1186/s12859-017-1996-y
https://doi.org/10.1186/s12859-017-1996-y
https://doi.org/10.1093/nar/gkz543
https://doi.org/10.1093/nar/gkz543
https://doi.org/10.1002/sim.1501
https://doi.org/10.1002/sim.1501
https://doi.org/10.5120/8762-2680
https://doi.org/10.5120/8762-2680
https://doi.org/10.1007/s10994-009-5119-5
https://doi.org/10.1007/s10994-009-5119-5
https://doi.org/10.1039/c6mb00860g
https://doi.org/10.1007/978-3-642-38652-7_2
https://doi.org/10.1007/978-3-642-38652-7_2
https://doi.org/10.1371/journal.pone.0205499
https://doi.org/10.15252/msb.20199389
https://doi.org/10.15252/msb.20199389
https://doi.org/10.1186/s12859-020-03949-w
https://doi.org/10.1016/j.compbiomed.2020.103761
https://doi.org/10.1016/j.compbiomed.2020.103761
https://doi.org/10.1126/science.aax1971
https://doi.org/10.1016/j.patcog.2007.07.022
https://doi.org/10.1016/j.csbj.2021.01.015
https://doi.org/10.1038/s41592-019-0535-3
https://doi.org/10.1038/s41592-019-0535-3
https://doi.org/10.1093/bib/bbz062
https://doi.org/10.3390/e21030234
http://imlspenticton.uzh.ch/robinson_lab/conquer_de_comparison
http://imlspenticton.uzh.ch/robinson_lab/conquer_de_comparison
https://doi.org/10.1038/nmeth.4612
https://doi.org/10.1038/nmeth.4612
https://doi.org/10.1109/jstars.2016.2559524
https://doi.org/10.1038/nprot.2017.149
https://doi.org/10.1038/nprot.2017.149
https://doi.org/10.3233/aic-170729
https://doi.org/10.3233/aic-170729
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Vieth, B., Ziegenhain, C., Parekh, S., Enard, W., and Hellmann, I. (2017). Powsimr:
Power Analysis for Bulk and Single Cell Rna-Seq Experiments. Bioinformatics
33, 3486–3488. doi:10.1093/bioinformatics/btx435

Wang, S., Dong, P., and Tian, Y. (2017). A Novel Method of Statistical Line Loss
Estimation for Distribution Feeders Based on Feeder Cluster and Modified
Xgboost. Energies 10, 2067. doi:10.3390/en10122067

Wang, T., Li, B., Nelson, C. E., and Nabavi, S. (2019). Comparative Analysis of
Differential Gene Expression Analysis Tools for Single-Cell Rna
Sequencing Data. BMC bioinformatics 20, 40–16. doi:10.1186/s12859-
019-2599-6

Xanthopoulos, P., Pardalos, P. M., and Trafalis, T. B. (2013). “Linear Discriminant
Analysis,” in Robust Data Mining (USA, New York: Springer), 27–33. doi:10.
1007/978-1-4419-9878-1_4

Xing, L., Joun, S., Mackey, K., Lesperance, M., and Zhang, X. (2020). Handling
High Correlations in the Feature Gene Selection Using Single-Cell Rna
Sequencing Data, 1–12. arXiv e-prints.

Xu, C., Lopez, R., Mehlman, E., Regier, J., Jordan, M. I., and Yosef, N. (2021).
Probabilistic Harmonization and Annotation of Single-Cell Transcriptomics
Data with Deep Generative Models. Mol. Syst. Biol. 17, e9620. doi:10.15252/
msb.20209620

Zou, H., and Hastie, T. (2005). Regularization and Variable Selection via the Elastic
Net. J. R. Stat. Soc B 67, 301–320. doi:10.1111/j.1467-9868.2005.00503.x

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors, and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Cao, Xing, Majd, He, Gu and Zhang. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Genetics | www.frontiersin.org February 2022 | Volume 13 | Article 83679814

Cao et al. Benchmark Study of Cell Phenotype Classification

https://doi.org/10.1093/bioinformatics/btx435
https://doi.org/10.3390/en10122067
https://doi.org/10.1186/s12859-019-2599-6
https://doi.org/10.1186/s12859-019-2599-6
https://doi.org/10.1007/978-1-4419-9878-1_4
https://doi.org/10.1007/978-1-4419-9878-1_4
https://doi.org/10.15252/msb.20209620
https://doi.org/10.15252/msb.20209620
https://doi.org/10.1111/j.1467-9868.2005.00503.x
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

	A Systematic Evaluation of Supervised Machine Learning Algorithms for Cell Phenotype Classification Using Single-Cell RNA S ...
	1 Introduction
	2 Materials and Methods
	2.1 Datasets
	2.1.1 The 27 Datasets From Conquer
	2.1.2 GSE126954 Datasets
	2.1.3 Simulated Conquer Datasets

	2.2 Classification Methods
	2.2.1 ElasticNet
	2.2.2 Linear Discriminant Analysis
	2.2.3 NaiveBayes
	2.2.4 Support Vector Machine
	2.2.5 K-Nearest Neighbors
	2.2.6 Tree
	2.2.7 XGBoost
	2.2.8 Five Ensemble Algorithms

	2.3 Design of Evaluation Experiments
	2.3.1 Cross-Validation
	2.3.2 Evaluation of Classification
	2.3.3 Evaluation for Computation Time
	2.3.4 Evaluation of Gene Selection


	3 Results
	3.1 Classification Performance
	3.1.1 Benchmarks for Each Classifier in Small Datasets
	3.1.2 Benchmarks for Each Classifier in Medium-sized Datasets
	3.1.3 Benchmarks for Each Classifier in Large Datasets
	3.1.4 Computation Time

	3.2 Gene Selection

	4 Discussion
	4.1 Classification With Small Datasets
	4.2 Classification With Medium-Sized Datasets
	4.3 Classification With Large Datasets
	4.4 Gene Selection on Simulated Datasets

	5 Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


