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Abstract

Although individuals with coronavirus disease 2019 (COVID‐19) are known to be

at increased risk for other conditions resulting from pathogenic changes (including

metaplastic or anaplastic) in the lungs and other organs and organ systems, it is

still unknown whether COVID‐19 affects childhood intelligence. The present two‐

sample Mendelian randomization study aims to identify the genetic causal link

between COVID‐19 and childhood intelligence. Four COVID‐19 genetic instru-

mental variants (IVs) were chosen from the largest genome‐wide association

studies (GWAS) for COVID‐19 (hospitalized vs. population) (6406 cases and

902 088 controls of European ancestry). The largest childhood intelligence GWAS

(n = 12 441 individuals of European ancestry) was used to evaluate the effect of the

identified COVID‐19‐associated genetic IVs on childhood intelligence. We found

that as the genetic susceptibility to COVID‐19 increased, childhood intelligence

followed a decreasing trend, according to mr_egger (β = −0.156; p = 0.601; odds

ratio [OR] = 0.856; 95% confidence interval [CI]: 0.522–1.405), simple mode

(β = −0.126; p = 0.240; OR = 0.882; 95% CI: 0.745–1.044), and weighted mode

(β = −0.121; p = 0.226; OR = 0.886; 95% CI: 0.758–1.036) analyses. This trend was

further demonstrated by the weighted median (β = −0.134; p = 0.031; OR = 0.875;

95% CI: 0.774–0.988) and the inverse variance weighted (β = −0.152; p = 0.004;

OR = 0.859; 95% CI: 0.776–0.952). Our analysis suggests a causal link between

genetically increased COVID‐19 and decreased childhood intelligence. Thus,

COVID‐19 may be a risk factor for declines in childhood intelligence.
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1 | INTRODUCTION

In late 2019, severe acute respiratory syndrome coronavirus 2

(SARS‐CoV‐2)‐induced respiratory distress syndrome named coronavirus

disease 2019 (COVID‐19) was identified in humans.1 The ongoing

COVID‐19 pandemic has affected millions worldwide and continues to

present a serious public health threat.2 Researchers have estimated that

30% of COVID‐19 survivors may be affected by the long‐term

consequences of the illness, known as post‐COVID‐19 condition after

they recover from acute illness.3
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COVID‐19 and cancer demonstrate some clinical and molecular

similarities in the four major signaling pathways: immune checkpoint

signaling, type I interferon, cytokine, and androgen receptor.4

Histopathological analyses revealed diffuse alveolar damage includ-

ing viral cytopathic changes, metaplastic epithelial changes, intra‐

alveolar hemorrhaging, and pulmonary edema. These studies suggest

that COVID‐19 infection may result in an increased risk of other

diseases such as lung cancer.

COVID‐19 can infect people of ages, including children.5

Children comprise a small percentage of the total number of

COVID‐19 cases and usually present with milder symptoms than

adults.5 Only 6% of pediatric cases have been classified as severe

and critical.6 The symptoms of severe and critical COVID‐19 are

acute respiratory distress syndrome, hypoxia (defined as blood

oxygen saturation of less than 92%), shock, and the failure of organs

such as the heart and kidneys.5,6 Children with both mild and severe

COVID‐19 have experienced long‐term symptoms including tired-

ness, fatigue, headache, trouble sleeping, trouble concentrating,

muscle and joint pain, and cough. In addition, the levels of cardiac

troponin, a marker of myocardial (heart muscle) injury, are elevated

in an unexpected number of patients hospitalized with COVID‐19.7

One underexplored area of long COVID is how COVID‐19 may

affect children's intelligence.

Using genetic variants independent of many factors that bias

observational studies, Mendelian randomization (MR) studies have many

advantages in assessing the causal association between an exposure and

an outcome.8–13 Thus, we used a two‐sample MR study to identify the

causal genetic link between COVID‐19 and childhood intelligence.

2 | METHODS

2.1 | COVID‐19 genetic instrumental variants (IVs)

The largest GWAS for COVID‐19 (hospitalized vs. population)

RELEASE 4 was described by the COVID‐19 Host Genetics Initiative

in 2020.14 This GWAS data set is based on 6406 cases and 902 088

controls with European ancestry. The summary data set is available

in https://gwas.mrcieu.ac.uk/datasets/ebi‐a‐GCST010779. Four inde-

pendent COVID‐19 genetic IVs were obtained based on the following

three criteria: (1) genome‐wide significance threshold p < 5 × 10−8;

(2) r2 < 0.001, indicating no linkage disequilibrium between single‐

nucleotide polymorphisms (SNPs); (3) no effects on other potential risk

factors including body mass index, smoking, and blood pressure.

Detailed information about these IVs is shown in Table 1.

2.2 | Childhood intelligence GWAS

Benyamin et al.15 described the largest GWAS for childhood. This

GWAS consists of 12 441 individuals of European ancestry. The profile

of this GWAS is provided inTable 2. The summary data set is available

at https://gwas.mrcieu.ac.uk/datasets/ebi‐a‐GCST001837.

2.3 | Association of COVID‐19 genetic IVs with
childhood intelligence GWAS

Potential proxy SNPs were identified by the LD proxy tool (r2 > 0.8)

when COVID‐19 genetic IVs could not be found in childhood

intelligence summary statistics. However, we were able to success-

fully extract four independent COVID‐19 genetic IVs from the

childhood intelligence GWAS summary data set. The association of

four independent COVID‐19 genetic IVs with childhood intelligence

GWAS is shown in Table 3.

2.4 | Pleiotropy test

Both mr_egger_intercept and PRESSO methods16,17 were used to

test the pleiotropy of four independent COVID‐19 genetic IVs in the

childhood intelligence GWAS data set. The results of the pleiotropy

test are shown in Table 4. A p value > 0.05 represents no significant

pleiotropy of the four independent COVID‐19 genetic IVs in

childhood intelligence GWAS.

2.5 | Heterogeneity test

Both mr_egger and inverse variance weighted (IVW) in Cochran's

Q statistic18,19 were used to test the heterogeneity of four

independent COVID‐19 genetic IVs in the childhood intelligence

GWAS data set. The results of the heterogeneity test are shown in

Table 4. A p value > 0.05 represents no significant heterogeneity in

the four independent COVID‐19 genetic IVs in the childhood

intelligence GWAS.

2.6 | MR analysis

mr_egger, weighted median, IVW, simple mode, and weighted mode

methods16,20,21 were used to analyze the causal association of

COVID‐19 with childhood intelligence. The results of the MR analysis

are shown inTable 5. A p value < 0.05 represents a causal association

of COVID‐19 with childhood intelligence.

TABLE 1 COVID‐19 genetic IVs.

SNP EA NEA EAF β SE p Value

rs2166172 C A 0.410 0.124 0.022 2.74E−08

rs143334143 A G 0.088 0.229 0.036 1.28E−10

rs2269899 T C 0.685 0.124 0.022 3.24E−08

rs13050728 C T 0.649 −0.153 0.023 1.91E−11

Abbreviations: β, the regression coefficient based on the COVID‐19 effect

allele; COVID‐19, coronavirus disease 2019; EA, effect allele; EAF, effect
allele frequency; IVs, instrumental variants; NEA, non‐effect allele;
SE, standard error; SNP, single‐nucleotide polymorphism.
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2.7 | Single SNP effect analysis

“mr” and “mr_scatter_plot” were used to test the individual putative

causal effects of COVID‐19 on childhood intelligence (Figure 1).

“mr_singlesnp” and “mr_forest_plot” were used to determine single

SNP effect size for COVID‐19 on childhood intelligence (Figure 2).

“mr_singlesnp” and “mr_leaveoneout_plot” were used to analyze the

effect of leave‐one‐out of the four independent COVID‐19 genetic

IVs of childhood intelligence (Figure 3).

3 | RESULTS

3.1 | No significant pleiotropy or heterogeneity
was observed among the four COVID‐19 genetic IVs

Four COVID‐19 genetic IVs (Table 1) were successfully extracted from

the childhood intelligence GWAS data set (Table 2). The association of

the four COVID‐19 genetic IVs with childhood intelligence GWAS is

shown (Table 3).

TABLE 2 GWAS for childhood intelligence.

GWAS ID Year Trait Sample size nsnp Population PMID

ebi‐a‐GCST001837 2013 Intelligence (childhood) 12 441 1 374 543 European 23358156

Abbreviations: GWAS, genome‐wide association study; GWAS ID, GWAS identity; nsnp, the number of single‐nucleotide polymorphism; PMID, PubMed
unique identifier.

TABLE 3 Association of COVID‐19
genetic IVs with childhood
intelligence GWAS.

SNP
Exposure (COVID‐19) GWAS Outcome (childhood intelligence) GWAS
β SE p Value β SE p Value

rs13050728 −0.153 0.023 1.91E−11 0.017 0.014 0.227

rs143334143 0.229 0.036 1.28E−10 −0.041 0.026 0.113

rs2166172 0.124 0.022 2.74E−08 −0.015 0.013 0.262

rs2269899 0.124 0.022 3.24E−08 −0.027 0.014 0.048

Abbreviations: β, the regression coefficient based on COVID‐19 raising effect allele; COVID‐19,
coronavirus disease 2019; GWAS, genome‐wide association study; IVs, instrumental variants;
SE, standard error; SNP, single‐nucleotide polymorphism.

TABLE 4 Pleiotropy and
heterogeneity test of COVID‐19 genetic
IVs in childhood intelligence GWAS.

Pleiotropy test Heterogeneity test
mr_egger PRESSO mr_egger IVW
Intercept SE p Value p Value Q Q_df p Value Q Q_df p Value

0.001 0.037 0.989 0.896 0.676 2 0.713 0.677 3 0.879

Note: p value > 0.05 represent no significant pleiotropy. Q_p value > 0.05 represents no significant
heterogeneity.

Abbreviations: COVID‐19, coronavirus disease 2019; GWAS, genome‐wide association study;
IVs, instrumental variants; IVW, inverse variance weighted; MR, Mendelian randomization;

SE, standard error.

TABLE 5 The causal association of
COVID‐19 with childhood intelligence.

Method nsnp β SE p Value OR OR_lci95 OR_uci95

mr_egger 4 −0.156 0.253 0.601 0.856 0.522 1.405

Weighted median 4 −0.134 0.062 0.031 0.875 0.774 0.988

IVW 4 −0.152 0.052 0.004 0.859 0.776 0.952

Simple mode 4 −0.126 0.086 0.240 0.882 0.745 1.044

Weighted mode 4 −0.121 0.080 0.226 0.886 0.758 1.036

Note: p < 0.05 represents the causal association of the increased COVID‐19 with childhood
intelligence.

Abbreviations: β, the regression coefficient based on COVID‐19 raising effect allele; COVID‐19,
coronavirus disease 2019; IVW, inverse variance weighted; MR, Mendelian randomization;
nsnp, number of single‐nucleotide polymorphism; OR, odds ratio; OR_lci95, lower limit of 95% confidence
interval for OR; OR_uci95, upper limit of 95% confidence interval for OR; SE, standard error.

ZHU ET AL. | 3235



Both mr_egger_intercept and PRESSO methods suggested no

significant pleiotropy in the four independent COVID‐19 genetic

IVs in the childhood intelligence GWAS (Table 4). Both mr_egger

and IVW in Cochran's Q statistic showed no significant heteroge-

neity in the four independent COVID‐19 genetic IVs in the

childhood intelligence GWAS (Table 4). Therefore, all selected

COVID‐19‐associated genetic variants can be taken as the

effective IVs in this MR study.

3.2 | COVID‐19 genetically reduces childhood
intelligence

We found that as COVID‐19 genetically increased, childhood

intelligence had an decreased trend using mr_egger (β = −0.156;

p = 0.601; odds ratio [OR] = 0.856; 95% confidene interval [CI]:

0.522–1.405), simple mode (β = −0.126; p = 0.240; OR = 0.882; 95%

CI: 0.745–1.044), and weighted mode (β =−0.121; p = 0.226;

OR= 0.886; 95% CI: 0.758–1.036) (Table 5). This trend was further

demonstrated by weighted median (β =−0.134; p = 0.031; OR= 0.875;

95% CI: 0.774–0.988) and IVW (β = −0.152; p = 0.004; OR= 0.859;

95% CI: 0.776–0.952) (Table 5). Altogether, our analysis suggests a

causal link between genetically increased COVID‐19 and reduced

childhood intelligence.

F IGURE 1 Individual estimates about the putative causal effect
of COVID‐19 on childhood intelligence. The x‐axis shows the
SNP effect and SE on each of COVID‐19 IVs. The y‐axis shows the
SNP effect and SE on childhood intelligence. The regression line for
mr_egger, weighted median, IVW, simple mode, and weighted mode
is shown. COVID‐19, coronavirus disease 2019; IV, instrumental
variant; IVW, inverse variance weighted; MR, Mendelian
randomization; SE, standard error; SNP, single‐nucleotide
polymorphism.

F IGURE 2 Forest plot of COVID‐19 associated with childhood
intelligence. The x‐axis shows MR effect size for COVID‐19 on
childhood intelligence. The y‐axis shows the analysis for each of
SNPs. COVID‐19, coronavirus disease 2019; MR, Mendelian
randomization; SNP, single‐nucleotide polymorphism.

F IGURE 3 MR leave‐one‐out sensitivity analysis for the effect of
COVID‐19 SNPs on childhood intelligence. The x‐axis shows
MR leave‐one‐out sensitivity analysis for COVID‐19 on childhood
intelligence. The y‐axis shows the analysis for the effect of leave‐one‐
out of SNPs on childhood intelligence. COVID‐19, coronavirus
disease 2019; MR, Mendelian randomization; SNP, single‐nucleotide
polymorphism.
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3.3 | Single COVID‐19 SNP effect is robust
without obvious bias

The individual MR estimates (mr_egger, weighted median, IVW, simple

mode, and weighted mode) demonstrate that as the effect of a single

SNP on COVID‐19 increased, the suppressive effect of a single SNP on

childhood intelligence increased (Figure 1). All effect size analyses

suggest that each effect of COVID‐19 SNPs on childhood intelligence

was robust (Figure 2). MR leave‐one‐out sensitivity analysis suggested

that removing a specific SNP of the four COVID‐19 SNPs did not

change the results (Figure 3). Altogether, these results indicate that our

data were robust without obvious bias.

4 | DISCUSSION

The present MR study showed that genetic predisposition to a higher

COVID‐19 was genetically associated with reduced childhood

intelligence. Thus, to protect childhood intelligence, COVID‐19

prevention in children is essential.

Although COVID‐19 primarily attacks the lungs, it can also

affect many other organs such as the brain, heart, and kidneys.

One previous study provided objective neuroimaging evidence for

the coexistence of recoverable and long‐term unrecovered

changes in the brain at 10‐month after acute COVID‐19.22

Moreover, COVID‐19 has been found to lead to psychiatric

illness.23 Our study suggests that genetic predisposition to a

higher COVID‐19 reduced childhood intelligence.

The human brain develops over a prolonged period.24–26 The

infant's brain is relatively immature with simultaneous traits of

competence and vulnerability.26 It possesses an immense capacity to

learn, remodel, and adapt, but is vulnerable and sensitive to environ-

mental exposures.26–30 Neurodevelopmental processes such as myeli-

nation and synaptogenesis and external cues such as maternal

interaction and physical skin‐to‐skin “kangaroo” care play important

roles in optimal brain development.26,31–34 The brain's adaptive

plasticity is promoted by positive and enriching environments26,35–39

and impaired by neglect, insecurity, stress, and lack of

stimulation.26,40–42 Our results suggest that COVID‐19 genetically

reduces childhood intelligence. Thus, the brain development of infants

and young children may be impaired by COVID‐19 infection.

MR studies use genetic variants independent of many factors that

bias observational studies in assessing the causal association of an

exposure with an outcome.8–12 Thus, the genetical effect of COVID‐19

on childhood intelligence, identified by our present MR study, is not

related to the lack of a stimulating environment during the pandemic but

to COVID‐19 infection. There is clear evidence that SARS‐CoV‐2 could

infect neurons in the brain organoids, killing some and reducing the

formation of synapses.43,44 Animal studies have proposed that SARS‐

CoV‐2 can infect cerebrovascular endothelium and brain parenchyma via

the angiotensin‐converting enzyme 2 receptor, resulting in COVID‐19‐

related neuronal damage via apoptosis and necrosis.45 In addition, SARS‐

CoV‐2‐induced immune‐mediated demyelinating disease, cerebrovascular

damage, neurodegeneration, and depression are among the neurological

complications described.46 Thus, COVID‐19 infection may reduce

childhood intelligence by SARS‐CoV‐2‐induced neurological complica-

tions via direct damage and indirect immune responses.

One strength of our study is that because both COVID‐19

genetic IVs and childhood intelligence GWAS were from popula-

tions with European ancestries, it removed the influence of

population stratification. Second, four different analytical meth-

ods demonstrated no significant pleiotropy or heterogeneity in

severe COVID‐19 genetic IVs. Third, all five MR analyses

(mr_egger, weighted median, IVW, simple mode, and weighted

mode) showed the causal link between genetically increased

COVID‐19 and decreased childhood intelligence.

This study has several limitations. First, because four indepen-

dent COVID‐19 genetic IVs and childhood intelligence GWAS are

from European ancestry, our conclusions cannot necessarily be

extrapolated to populations of other ancestries. Second, randomized

controlled trials are necessary to clarify whether COVID‐19 can

reduce childhood intelligence.

In conclusion, although our analysis suggests a causal link

between genetically increased COVID‐19 and reduced childhood

intelligence, it is necessary for future studies to examine the

mechanism underlying this link.
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