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Texture and feature extraction is an important research area with a wide range of applications in science and technology. Selective
extraction of entangled textures is a challenging task due to spatial entanglement, orientation mixing, and high-frequency
overlapping. The partial differential equation (PDE) transform is an efficient method for functional mode decomposition. The
present work introduces adaptive PDE transform algorithm to appropriately threshold the statistical variance of the local variation
of functional modes. The proposed adaptive PDE transform is applied to the selective extraction of entangled textures. Successful
separations of human face, clothes, background, natural landscape, text, forest, camouflaged sniper and neuron skeletons have
validated the proposed method.

1. Introduction

Texture is one of the important features characterizing many
natural and man-made images. Texture characterization and
analysis are usually performed according to the spatial as
well as frequency variations of brightness, pixel intensities,
color, and texture orientation in the different regions of
the image corresponding to different types of textures. For
example, the roughness or bumpiness of an image usually
refers to variations in the intensity values, or gray levels.
Texture segmentation, recognition, and interpretation are
critical for human visual perception and processing. As a
result, research on texture analysis has received considerable
attention in recent years. A large number of approaches has
been proposed for texture classification and segmentation
[1–16]. In general, texture analysis methods fall into two
categories: statistical methods which analyze the Fourier
power spectrum, gray level values, and various variance
matrices of the input image, and structural methods which
are knowledge-based algorithms with an emphasis on the
structural primitives and their placement rules. Some exam-
ples of such methods include Markov random field mod-
els [17, 18], simultaneous autoregressive model [19], and
fractal models [20]. Among many existing approaches, local

variation minimization has been a popular and powerful
technique in image analysis [21] with applications to the
texture modeling [22]. Multiphase segmentation approaches
are based on the structural division of gray scales [23]. More
recently, multiresolution approaches have become more
important in texture analysis [19, 24–26], where fixed-size
neighborhood and window size are used to derive features at
varying scales corresponding to the input image at different
resolutions.

In general, the total texture extraction has become a
mature technique in real applications. However, despite the
progress in the past few decades, selective extraction of
entangled textures encounters a number of difficulties. One
difficulty is due to spatial entanglement, including orienta-
tion mixing of various textures. Another difficulty is due
to gray-scale entanglement, especially the near-continuous
merging of various textures. The other difficulty is due
to frequency entanglement when two similar but different
textures share overlapping frequency band in the frequency
domain. This difficulty would especially plague texture anal-
ysis when many high-frequency textures coexist.

In this work, we propose an adaptive partial differential
equation (PDE) transform approach for selective extraction
of entangled textures. By using arbitrarily high-order PDEs,
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the PDE transform is able to decompose signals, images,
and data into functional modes, which exhibit appropriate
time-frequency localizations [27–31]. Additionally, the PDE
transform is able to provide a perfect reconstruction. Unlike
wavelet transform or Fourier transform, the PDE trans-
form offers results in the physical domain, which enables
straightforward mode analysis and secondary processing.
Based on the image mode functions generated by the PDE
transform method, the adaptive PDE transform algorithm
calculates the variance of the local variation of the image
mode functions followed by the corresponding thresholding
analysis.

2. PDE Transform Method

In the past two decades, PDE-based image processing
approaches have raised a strong interest in the image process-
ing and applied mathematical communities and have opened
new approaches for image denoising, enhancement, edge
detection, restoration, segmentation, and so forth. The use of
PDEs for image analysis started as early as 1980s when Witkin
first introduced diffusion equation for image denoising [32].
The time evolution of an image under a diffusion operator
is formally equivalent to the lowpass filter. After Perona
and Malik introduced anisotropic diffusion equation in 1990
[33], nonlinear PDEs have found great applications for a
variety of image processing tasks such as edge detection and
denoising. Two important advances in the history of image
processing, namely, the Perona-Malik equation and the total
variation methods [21], employ second-order nonlinear
PDEs for image analysis. The Willmore flow, proposed in
1920s, is a fourth-order geometric PDE and has also been
used for surface analysis. In the past decade, fourth-order
nonlinear PDEs have attracted much attention in image
analysis [34–36].

Arbitrarily high-order nonlinear PDEs were introduced
by Wei in 1999 to more efficiently remove image noise in
edge-preserving image restoration [34]:

ut(r, t) =
∑

q

∇ ·
[
dq(u, |∇u|)∇∇2qu

]

+ e(u, |∇u|),
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where u ≡ u(r, t) is the image function, dq(u(r), |∇u(r)|, t)
and e(u(r), |∇u(r)|, t) are edge-sensitive diffusion coeffi-
cients and enhancement operator, respectively. The Perona-
Malik equation is recovered at q = 0 and e(u(r), |∇u(r)|, t) =
0. As in the original Perona-Malik equation, the hyperdiffu-
sion coefficients dq(u(r), |∇u(r)|, t) in (1) can be chosen in
many different ways. For instance, one can set
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where the values of constants dq0 depend on the noise level,
and σ0 and σ1 are chosen as the local statistical variance of u
and∇u:

σ2
q (r) = ∣∣∇qu−∇qu

∣∣2 (
q = 0, 1

)
. (3)

The notation Y(r) above denotes the local average of Y(r)
centered at position r. In this algorithm, the statistical mea-
sure based on the variance is important for discriminating
image edges from noise. As such, one can bypass the image
preprocessing, that is, the convolution of the noise image
with a test function or smooth mask.

In general, the nonlinear PDE operators described above
serve as lowpass filters. PDE-based nonlinear highpass filters
were introduced by Wei and Jia [37] in 2002. They con-
structed two weakly coupled PDEs to act as a highpass filter.
Recently, this approach has been combined with Wei’s earlier
arbitrarily high-order nonlinear PDE operator to give [29]
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where εum ≡ εum(|∇um|) and εun ≡ εun(|∇vn|) are made
edge sensitive. As lowpass filters, both duj ≡ duj(|∇um|) ≥ 0
and dv j ≡ dv j(|∇vn|) ≥ 0 when j is even. Similarly, both
duj(|∇um|) ≤ 0 and dv j(|∇um|) ≤ 0 when j is odd. We can
define a PDE transform as

wm,n(r, t) = um(r, t)− vn(r, t) = Hmn(r, t)X(r), (5)

where Hmn(r, t) can be regarded as a coupled nonlinear
PDE operator. In order for (5) to work properly, we choose
|dv j(|∇vn|)| � |duj(|∇um|)|. As shown in our earlier work,
by increasing the order of the highest derivative, one can
increase frequency localization and accuracy of the PDE
transform for mode decomposition [29]. The frequency
selection of wm,n(r, t) also depends on the evolution time.
High-order PDEs are integrated by using the Fourier pseu-
dospectral method [29].

In the PDE transform, intrinsic mode functions wk are
systematically extracted from residues Xk, that is,

wk
mn = HmnX

k
mn, ∀k = 1, 2, . . . , (6)

where wk
mn is the kth mode function. Here, the residue

function is given by

Xk
mn = X1

mn −
k−1∑

j=1

w
j
mn, ∀k = 2, 3, . . . , (7)

where X1
mn = X(r). Therefore, X = ∑k−1

j=1w
j
mn + Xk

mn is
a perfect reconstruction of X in terms of all the mode
functions and the last residue. The mode decomposition
algorithm given in (6) is inherently nonlinear, even if a linear
PDE operator might be used.

The PDE transform is applied to Figure 1(a) to extract
the three textures in Figures 1(b), 1(c), and 1(d). Note that
only one texture is isolated at each time, which means the
proposed PDE transform is able to perform a controlled or
selective segmentation of textures. The PDEs of up to order
200 have been used for the selective texture segmentation.
Numerically, such high-order linear PDE needs to be solved
in the frequency domain [29]. Due to the ideal frequency
localization, three textures are separated with clear boundary
sharpness.
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Figure 1: Extraction of various embedded textures using the PDE transform. (a) shows the original image composed of various horizontal
and vertical textures. (b)–(d) show the three texture patterns extracted by applying the PDE transform, one at each time. (e) shows the edge
mode obtained by applying the PDE transform to (a). (f) shows the variance of the local variation of the image mode function (e). (g) and
(h) show the projection, or average, of the variance in (f) along x- and y-direction, respectively.

3. Adaptive PDE Transform Algorithm

The separation of textures that are highly entangled in spatial
locations, frequency ranges, and gray scales become a
challenge, and conventional segmentation techniques are in
general not applicable for such cases. For example, highly
oscillatory textures can be separated from slowly varying
background but cannot be separated from another texture
with overlapping frequency distribution purely based on
frequency fingerprints. To selectively distinguish such entan-
gled textures of high frequency, one needs a mode decom-
position algorithm that is able to be highly localized in
frequency. Second-order PDEs are poorly localized in the
frequency domain [29]. Whereas, the PDE transform with
high-order PDEs provides desirable frequency localization
[29]. However, the PDE transform by itself does not perform
well for the separation of entangled textures. To this end,
we introduce an adaptive PDE transform algorithm for
selective texture extraction. The essence of the adaptive PDE
algorithm lies in the realization that features of various
textures are closely correlated with both the magnitude and
smoothness of the gray-scale values, or, equivalently, the local
variation of the image mode functions. Similar ideas have
been implemented in other methods such as total variation
[21].

Nonlinear PDEs have been widely applied to detect
images with noises. However, despite better image edge pro-
tection, the nonlinear anisotropic diffusion operator may
still break down when the gradient generated by noise is
comparable to image edges and features [38]. Application
of a preconvolution with a smoothing function to the image

can practically alleviate the instability and reduce gray-scale
oscillation, but the image quality is often degraded. One
alternative solution introduced by Wei [34] is to statistically
discriminate noise from image edges by a measure based on
the local statistical variance of the image or its gradient. Such
a local statistical variance based edge-stopping algorithm was
found to work very well for image restoration.

Similar statistical analysis can be employed to perform
selective texture extraction for images containing highly
entangled and overlapping textures. In the present approach,
we first compute the local variation of each pixel of the image
mode functions obtained by the high-order PDE transform.
Unlike the total variation, the local variation is still a
function, of which the variance can be calculated:

E(X(r)) =
∣∣∣
∣∣∇Xk(r)

∣∣− ∣∣∇Xk(r)
∣∣
∣∣∣

2
, (8)

where Xk(r) is the kth mode function obtained by the
PDE transform (7), and |∇Xk(r)| is evaluated locally
over the neighbor pixels. Equation (8) yields a statistical
analysis which is used for various texture separation and
segmentation with appropriate threshold values. Various
threshold values need to be chosen to select the range
of the variance corresponding to the particular texture of
interest. All the previously classified textures are registered
for sequential/recursive texture extractions. A flowchart of
the adaptive algorithm of PDE transform is shown in
Figure 2.

Figure 1(e) shows the edge mode obtained by applying
the PDE transform to Figure 1(a). Figure 1(f) shows the
variance of the local variation of gray scale calculated using
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Figure 2: Algorithm of adaptive PDE transform for entangled texture separation.

the adaptive PDE transform. Figures 1(g) and 1(h) show the
projection, or average, of the variance in Figure 1(f) along x-
and y-direction, respectively. By slicing out different domain
of the variance in Figure 1(f), three different textures in
Figures 1(b)– 1(d) are then perfectly separated from each
other.

4. Applications

In this section, the adaptive PDE transform is applied to three
different cases to illustrate its superior capability of selective
texture separation. The three images feature different types of
entangled textures. Figure 3(a) contains textures overlapping
in the physical space with entangled frequency fingerprints.
Figures 5(a) and 6(a) contain spatially segmented textures
overlapping in the frequency domain. Figure 7 contains
textures with overlapping textures highly entangled in both
the frequency and spatial domains.

4.1. Text-Image Separation. The adaptive PDE transform
method employing the variance of the local variation of the
image mode functions is applied to several benchmark test
cases. In particular, separation of text and texture can be
regarded as a generalized type of texture analysis. In Figure 3,
texts of various fonts are imprinted on the background
image. Additional background watermark in Chinese is also
presented in Figure 3(a). The separation of English title
from both background image and Chinese characters is a
challenging task in terms of texture analysis because of the
high degree of entanglement of very similar textures. Due to
the font size difference in this application, high-order PDE
transform plays an extremely important role in differentiat-
ing modes with slightly different frequency characteristics. In
Figure 3(b), the PDE transform successfully suppresses the
low-frequency parts and extracts the mode with frequency
band mainly corresponding to texts. Such a procedure is
similar to the edge detection in a general image processing.
Statistical segmentation is then performed on the high-
frequency mode. A suitable threshold value is used to cut
off the region with low variance and yields only the texts as
shown in Figure 3(c).

4.2. Selective Texture Extraction. The present algorithm of
selective texture extraction is also tested on one of the most

widely used images, the Barbara, in Figure 5. Barbara image
is a benchmark test for edge detection and denoising. It
contains fine details of different textures such as the table
cloth, curtain behind Barbara, scarf, and clothes on her. Dis-
tinctions between all these textures and the background
are much larger than those among these textures, which
leads to the difficulty of selective texture separation and
segmentation. Due to the tiny difference between the fre-
quency or spectrum features of different textures mentioned
above, a highly frequency-selective separation method is
required. However, the conventional Fourier method is not
applicable for this case since the textures are entangled in
the frequency domain. Moreover, conventional statistical
segmentation approaches do not perform well for this case
due to the gray-scale entanglement. The present adaptive
PDE transform method performs well for the selective
texture extraction in the Barbara image. The total texture,
or image edge, is extracted from the high-frequency mode of
the PDE transform as shown in Figure 5(b). The variance of
the local variation is shown in Figure 4, which is calculated
and employed for selective texture extraction and separation
with appropriate thresholding values. The resulting textures
are shown in Figures 5(c)–5(f) which correspond to those
of clothes, curtain, and table cloth, respectively. The four
textures in Figure 5 are superimposed on the original image
for the purpose of a clearer visualization.

In Figure 6, the present adaptive PDE transform is
applied to detect a sniper hidden in the forest (Figure 6(a)).
The whole image is composed of highly entangled textures.
The boundaries between these textures are very challenging
to be identified appropriately. In our approach, variance of
the local variation is calculated and used for texture sep-
aration as in the previous examples. By appropriate thresh-
olding, the variance can be decomposed into three regions
corresponding to those of the forest, the tree trunk, and the
sniper. The resulting texture modes are shown in Figures
6(b)–6(d).

4.3. Natural Neuron Skeleton Analysis. In the previous in-
troduction to the adaptive PDE transform algorithm and
applications, local variation is defined and calculated for
the intensity of image mode functions to selectively extract
textures beyond the total texture extraction. The selective
texture extraction can be generalized to indicate any spatial
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(a) (b) (c)

Figure 3: Extraction and separation of texts, background watermark, and textures of (a). Shown in the 3(b) and 3(c) are the image mode
function and extracted texture using the proposed adaptive PDE transform.
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Figure 4: Adaptive PDE transform for selective texture extraction in the Barbara image. The variance of the local variation is shown in the
top chart.

parts of the image characterized with specific (and usually
functionally important) spatial orientation and/or frequency
oscillation, such as different parts in the neuron synapses,
brain cells, and retina vasculatures. In Figure 7(a), the image
of a typical neuron is shown. With advanced imaging
techniques made available, research scientists have been able
to obtain more and clearer 2D images and 3D data of
various neuron cells and networks, whose study will be
important for identifying the relation between phenotype
and genotype patterns in physiology and molecular biology.
Closely related to the advancement in the experimental
imaging techniques, various improved computational image
processing techniques have been proposed to better analyze
neuron images. Neuron morphology study has become more

and more important since the shape and branching of
dendrites in neurons are closely related to the structure
and functioning of the neuron network. Advancements in
both experimental imaging techniques and computational
image enhancements have led to better visualization and
exploration of neuron morphology [39–45]. In the study
of neuron morphology, image processing and segmentation
of cultured neuron skeletons provide details of how neuron
grow and branches. In this work, we apply the adaptive
PDE transform to the study of “natural” neuron skeleton to
segment and classify neuron skeletons into desirable classes
according to the spatial extension and frequency oscillation
of neuron dendrites, very much like the way of dividing a
total image texture into several selective fine textures. Such
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(a) Original image (b) Image mode function (c) Texture 1

(d) Texture 2 (e) Texture 3 (f) Texture 4

Figure 5: PDE transform is applied on (a) to extract edges of all textures into 5(b). Adaptive PDE transform is then applied to extract
different textures from 5(b). In 5(c)–5(f), all the textures are superimposed on the original image for better viewing.

(a) Original image (b) Texture 1 (c) Texture 2 (d) Texture 3

Figure 6: Sniper detection by using adaptive PDE transform method. Textures 1, 2, and 3 are, respectively, from the forest, the tree trunk,
and the sniper.

(a) Original neuron image (b) Class 1 of the selective neuron
skeleton

(c) Class 2 of the selective neuron
skeleton

(d) Class 3 of the selective neuron
skeleton

Figure 7: Neuron image classification by using the adaptive PDE transform.
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Table 1: Classification of natural neuron skeletons.

Neuron skeleton class Physical meaning Percentage of the total neuron surface area

Class 1 shown in Figure 7(b) Soma (neuron cell body) 22%

Class 2 shown in Figure 7(c) Major (root of) dendrite 24%

Class 3 shown in Figure 7(d) Fine (tips of) dendrite 54%

separation and classification enable secondary processing
and analysis of neuron morphology, such as the computation
of surface areas (for 2D images) or volumes (for 3D data) for
different classes of neuron skeletons. Specifically, we aim to
separate different parts, or textures, such as soma, dendrites,
axon, terminal or lobe, and numerous ramifications, from
the neuron imaging as shown in Figures 7(b)–7(d), where
three classes of neuron parts are separated according to the
spatial extension and frequency oscillation. Surface area of
each class is listed in Table 1. Ratios of these surface areas
and many other geometric ratios of neuron morphology are
related, on both molecular and cellular levels, to the many
physiological diseases as well as the classification of neuron
synapses.

5. Conclusion

Selective extraction and separation of image textures involv-
ing spatial entanglement, gray-scale mixing, and high-
frequency overlapping are challenging tasks in image anal-
ysis. In this work, we introduce an appropriate adaptation
to our earlier partial differential equation (PDE) transform
[29] to construct an adaptive PDE transform algorithm. The
adaptation is realized via a proper thresholding with the
statistical variance of the local variation of image functional
mode functions. The present PDE transform enables one to
decompose and separate modes with entanglement in both
spatial and frequency domains. The proposed method is
applied to several challenging benchmark images. Textures
of very similar features in the same image are successfully
decomposed and separated using the present adaptive PDE
transform method.
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