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Abstract

Previous studies have compared the physicochemical properties of allosteric compounds to

non-allosteric compounds. Those studies have found that allosteric compounds tend to be

smaller, more rigid, more hydrophobic, and more drug-like than non-allosteric compounds.

However, previous studies have not properly corrected for the fact that some protein targets

have much more data than other systems. This generates concern regarding the possible

skew that can be introduced by the inherent bias in the available data. Hence, this study

aims to determine how robust the previous findings are to the addition of newer data. This

study utilizes the Allosteric Database (ASD v3.0) and ChEMBL v20 to systematically obtain

large datasets of both allosteric and competitive ligands. This dataset contains 70,219 and

9,511 unique ligands for the allosteric and competitive sets, respectively. Physically relevant

compound descriptors were computed to examine the differences in their chemical proper-

ties. Particular attention was given to removing redundancy in the data and normalizing

across ligand diversity and varied protein targets. The resulting distributions only show that

allosteric ligands tend to be more aromatic and rigid and do not confirm the increase in

hydrophobicity or difference in drug-likeness. These results are robust across different nor-

malization schemes.

Author summary

We investigated the differences between allosteric and competitive ligands. Competitive

ligands bind in the active site of a protein while allosteric ligands exhibit their effect from

a remote location on the protein. Traditionally, drugs take advantage of competitive bind-

ing; however when this is not possible, an allosteric site may be a potential target. We used

comprehensive, large datasets containing allosteric and competitive ligands curated from

publicly available data. We carefully removed redundancy using clustering of both pro-

teins and ligands. Here, we find allosteric ligands tend to be more rigid and aromatic than

competitive ligands. However, we contradict previous studies which had indicated alloste-

ric ligands to be more hydrophobic and drug-like. Our study provides insight into chemi-

cal traits biochemists should potential consider when designing allosteric ligands.
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Introduction

A large number of active sites have physicochemical properties that are hard to target with a

drug-like small molecule [1–3]. However, these proteins can have secondary, allosteric sites

with the potential to modulate function by inducing conformational or dynamic changes.

Allosteric sites usually have no steric overlap with the active site. It is hypothesized that these

binding sites have different physical and chemical properties which may be amenable to small

molecule design when the active site has been found to be difficult to target and potentially

“undruggable”.[4]

Many examples of allosterically modulated proteins have been annotated and thoroughly

studied in the literature since the formalization of the theory by Monod, Wyman, and Chan-

geux in 1965 [4,5]. Until recently, most studies have focused on characterization of allosteric

ligands to a single protein [6–9]. Studies of allosteric ligands have ranged from the control of

metabolic mechanisms to signal-transduction pathways [10]. Large databases such as PubChem

[11], DrugBank [12], and ChEMBL [13] have allowed researchers to mine interesting patterns

to help predict protein-ligand interactions. In particular, ChEMBL is annotated with descrip-

tions of the included assays, which often note the type of interaction, including allostery [13].

An additional allosteric-specific database, the Allosteric Database (ASD), has been created with

>100,000 allosteric ligands for data mining [14,15]. This study utilizes both ChEMBL and ASD

to mine patterns that discriminate between allosteric and competitive ligands.

Many studies have explored allosteric mechanisms, but they tend to focus on the issue from

the perspective of the protein [16–20]. Two previous studies have mined for physicochemical

properties of allosteric ligands. Wang et al. compared the properties of the ligands contained

in ASD to several databases of known biologically active compounds [21]. They showed that

ligands in ASD contain more hydrophobic scaffolds and have a higher structural rigidity than

the molecules in other databases, including the Available Chemicals Directory (ACD) [22], the

Comprehensive Medicinal Chemistry (CMC) dataset [23], Chinese Natural Product Database

(CNPD) [24], DrugBank [12,25,26], MDDR [27], and NCI Open Database [28]. In their study,

ASD contained only allosteric compounds, but there was no guarantee that the other databases

were free of allosteric ligands. In the second study, Van Westen et al. compared allosteric ver-

sus non-allosteric compounds in ChEMBL [29]. They found that allosteric compounds tended

to be smaller, more lipophilic, and more rigid than non-allosteric compounds. Furthermore,

they observed that allosteric ligands were not distinct from but appeared to be a subset of non-

allosteric ligands. In their study, the allosteric compounds had a much narrower range of

molecular weights and were more likely to adhere to Lipinski’s rule of five. Therefore, allosteric

ligands were more drug-like than non-allosteric ligands.[29] They went on to focus on devel-

oping predictive models for Class B G-protein coupled receptors (GPCRs), HIV reverse tran-

scriptase, adenosine receptors, and kinase modulators.

In our study, we focus on specifically differentiating physical properties of allosteric and

competitive ligands. This asks a slightly different question than those previous studies described

above. In those studies, both groups compared allosteric ligands to all other biologically active

ligands as “non-allosteric ligands,” but their definitions and data compilation may have intro-

duced allosteric complexes into the non-allosteric sets. This study uses both ASD [14,15,30] and

ChEMBL [13] to have larger coverage of possible allosteric compounds than the previous stud-

ies. Furthermore, the assay descriptions in ChEMBL were used to ensure that our non-allosteric

compounds are competitive inhibitors that are less likely to include allosteric compounds.

An issue that has not been properly addressed before is normalization of the data to correct

for biases that come from some systems being overrepresented and having considerably more
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data. Many protein-ligand complexes are present multiple times in these datasets due to their

importance in the field. This creates redundancy. Clearly, each protein-ligand complex should

be represented only once in the datasets. In addition, some protein classes are more studied

than others which creates a broader type of redundancy at both the protein level and ligand

level. To address this, we performed clustering on two levels to reduce the redundancy of pro-

tein-ligand complexes and yet maintain the diversity across the sets. First, protein targets were

grouped by sequence similarity, and then within each protein family, all the ligands were clus-

tered by chemical similarity. Previous studies have only clustered molecules [21], adjusted allo

and non-allo sets to be similar in size, or limited their analysis to individual protein families

[29].Below, we show that allosteric ligands are more aromatic and rigid. This is in agreement

with previous studies.[21,29] The previous findings that allosteric ligands are more hydropho-

bic or drug-like are not supported by our analysis.

Result and discussion

Table 1 shows that the allosteric set is composed of 70,219 unique ligands which target 1048

proteins (67,749 ligands from ASD and 2470 from ChEMBL). The competitive set has 9511

unique ligands from ChEMBL, targeting 860 unique proteins. The list of SMILES strings and

proteins for the allosteric and competitive ligands are given as an Excel file in the Supporting

Information (allo-comp-SMILES.xlsx).

We clustered the data at several levels to ensure that we identified robust trends that were

valid for the data in fine detail and over broad categories. The clustering was done at four levels

of BLAST (protein similarity) and chemical similarity: sequence identity/Tanimoto coefficient

(Tc) = 100%/�1.0, 90%/�0.9, 75%/�0.75, and 60%/�0.6. Protein clustering was performed

with greedy clustering requiring the desired sequence identity in both directions (a ~ b and b

~ a). Ligands in each family were clustered on Tc calculated from the extended connectivity

fingerprint with a diameter of six (ECFP6) using maximum dissimilarity in Pipeline Pilot [31].

These thresholds were chosen in parallel as they evenly cover a wide range of possible defini-

tions of similarity while keeping a manageable number of clustering calculations. Polypharma-

cology has shown that ligands with similar chemical fingerprints have very high likelihood to

bind to the same receptors [32]. Isoforms should be grouped together with 60% identity, but

distinguished separately at 90% or 100% identity.

Differences in the physical properties had to be statistically significant at all four levels of

clustering. The distribution of each physical property (see Table 2) was compared between the

allosteric ligands and the competitive ligands, and statistically significant differences were

required to have Wilcoxon p-values < 0.0001 and no overlap in the 95% confidence intervals

(ci) of the medians determined from 100,000 bootstrapped samples as described in the Meth-

ods section. Below, we show that allosteric ligands are more aromatic and rigid, in agreement

with previous studies.[21,29] We disagree with previous studies in terms of hydrophobicity.

The difference in the median SlogP of the allosteric and competitive compounds is marginal

and within the error of the SlogP method [33]. SlogP calculations have a standard deviation of

0.677 [33]. Furthermore, we find no differences in drug-like or lead-like metrics.

Table 1. The number of protein families and their protein-ligand clusters at varying cutoffs for sequence (% identity) and chemical similarity as

defined by the Tanimoto coeffficient (Tc) using the extended connectivity fingerprint (ECFP6).

# Unique Ligands #Protein Families (Providing #Protein-Ligand Clusters)

100%/1 90%/0.9 75%/0.75 60%/0.6

70,219 Allosteric Ligands 1048 (144,685) 923 (95,955) 858 (54,739) 759 (24,760)

9511 Competitive Ligands 860 (14,215) 757 (13,259) 681 (9157) 599 (5259)

https://doi.org/10.1371/journal.pcbi.1005813.t001
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Physicochemical differences between allosteric and competitive ligands

The medians of each physicochemical property (and their 95%ci) are given in Table 3. The val-

ues that are listed with bold font have statistically significant differences between the allosteric

and competitive sets. This is determined by both a weighted Wilcoxon test (p-value <0.0001)

and no overlap in the 95%ci. The physical property label is in bold font when the same statisti-

cally significant trend is seen for all levels of protein-ligand clustering.

Allosteric ligands are more aromatic and constrained. We find that there are multiple

descriptors that indicate the allosteric ligands are more rigid. The distributions show that allo-

steric ligands have more aromatic atoms and fewer bonds per heavy atom (meaning fewer sat-

urated bonds). Furthermore, there are fewer rotatable single bonds per heavy atom (HA). The

distributions are shown in Fig 1.

The combination of the increase in aromatic atoms and the decrease in the number of rotat-

able single bonds in the allosteric ligands suggests that these molecules tend to be more rigid.

This rigidity is somewhat surprising since allosteric binding sites frequently undergo a change

in conformation upon ligand binding. The change of protein flexibility upon ligand binding

has been seen by Demerdash et al. [17]. That study used a Support Vector Machine (SVM)

approach and indicated that the deformation energy and change in solvent-accessible surface

area (SASA) of the protein residues are important features in predicting an allosteric hotspot.

The SVM models indicated that allosteric hotspots would form dense networks within the pro-

tein. They did not look specifically at the residues in contact with allosteric ligands, and they

make no comment on their flexibility [17]. Panjkovich and Daura also noted that a large

change in B-factors can be used to indicate the location of allosteric binding sites [20]. How-

ever, a recent study by Li et al. suggested that the pocket flexibility (normalized B-factor) and

pocket depth are not significantly different for allosteric binding sites.[18] Although, they

Table 2. The 29 physicochemical properties that were compared between allosteric and competitive ligands.

Category Code Description Size-Corrected Property*

Atom a_heavy (HA) Number of heavy (non-hydrogen) atoms.

a_aro Number of aromatic atoms. a_aro/HA

a_acc Number of hydrogen-bond acceptor atoms. a_acc/HA

a_don Number of hydrogen-bond donor atoms. a_don/HA

a_acid Number of acidic atoms. a_acid/HA

a_base Number of basic atoms. a_base/HA

Bond b_count Number of bonds. b_count/HA

b_ar Number of aromatic bonds. b_ar/HA

b_1rotN Number of rotatable single bonds. b_1rotN/HA

Physical Properties FCharge Total charge of the molecule. FCharge/HA

SlogP Log of the octanol/water partition coefficient.

a_nC/HA Number of carbon atoms (rough metric of hydrophobicity).

logS Log of the aqueous solubility (mol/L).

Chiral The number of chiral centers. chiral/HA

Rings The number of rings.

Drug/Lead-like lip_druglike One if and only if lip_violation < 2 otherwise zero.

lip_violation The number of violations of Lipinski’s Rule of Five.

opr_leadlike One if and only if opr_violation < 2 otherwise zero.

opr_violation The number of violations of Oprea’s lead-like test.

* Descriptors divided by the number of heavy atoms (HA), which corrects for the correlation between molecule size and the number of atom and bond types.

https://doi.org/10.1371/journal.pcbi.1005813.t002
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implied from these factors that arthosteric and orthosteric sites would have similar flexibility,

they state that the allosteric sites are “buried and more compact”.

The decrease in flexibility of allosteric compounds is consistent with two other studies on

large datasets of allosteric compounds[21,29]. In the work of Wang et al, allosteric ligands

have significantly fewer rotatable bonds than drug molecules from DrugBank (their criteria

was p-value <0.01, two sample t-test) [21]. Van Westen et al. describes that allosteric ligands

have more sp2 hybridized carbons, fewer sp3 hybridized carbons, and more aromatic bonds

[29] compared to non-allosteric compounds targeting transmembrane proteins. Taken

together, it appears that relatively rigid ligands bind to allosteric sites, inducing a change in

flexibility of the protein as it adapts to the presence of the allosteric ligand.

Allosteric ligands are not necessarily more hydrophobic. The number of hydrogen-

bond donors and acceptors per HA (a_don/HA and a_acc/HA) indicate that allosteric ligands

have fewer hydrophilic functional groups. Also, differences in SlogP are statistically significant

with the weighted Wilcoxon test and when comparing the 95% confidence intervals, but there

is only a difference of 0.2 log units in the medians. This is within the error of the SlogP

Table 3. Medians (95%ci) of 29 physicochemical properties for the full dataset at all levels of clustering. Numbers in bold denote differences between

allosteric and competitive compounds with p<0.0001 and no overlap in 95%ci of medians.

60%/0.6 75%/0.75 90%/0.9 100%/1.0

Properties Allosteric Competitive Allosteric Competitive Allosteric Competitive Allosteric Competitive

a_heavy 25 (±1) 26 (±1) 26 (±0) 27 (±0) 28 (±0) 28 (±1) 28 (±0) 29 (±0)

a_aro 12 (±0) 12 (±0) 12 (±0) 12 (±0) 15 (±0) 12 (±0) 15 (±0) 12 (±0)

a_aro/HA 0.50 (±0.01) 0.46 (±0.01) 0.50 (±0.01) 0.462 (±0.007) 0.515 (±0.001) 0.444 (±0.005) 0.511 (±0.011) 0.429 (±0.006)

a_acc 3 (±0) 4 (±0) 4 (±0) 4 (±0) 4 (±0) 4 (±0) 4 (±0) 4 (±0)

a_acc/HA 0.136 (<0.001) 0.148 (±0.005) 0.136 (±0.001) 0.143 (<0.001) 0.138 (±0.001) 0.143 (<0.001) 0.136 (<0.001) 0.143 (±0.004)

a_don 1 (±0) 2 (±0) 1 (±0) 2 (±0) 1 (±0) 2 (±0) 1 (±0) 2 (±0)

a_don/HA 0.045 (<0.001) 0.083 (±0.003) 0.042 (<0.001) 0.077 (±0.003) 0.038 (<0.001) 0.074 (±0.003) 0.037 (<0.001) 0.076 (±0.002)

a_acid 0 (±0) 0 (±0) 0 (±0) 0 (±0) 0 (±0) 0 (±0) 0 (±0) 0 (±0)

a_acid/HA 0 (±0) 0 (±0) 0 (±0) 0 (±0) 0 (±0) 0 (±0) 0 (±0) 0 (±0)

a_base 0 (±0) 0 (±0) 0 (±0) 0 (±0) 0 (±0) 0 (±0) 0 (±0) 0 (±0)

a_base/HA 0 (±0) 0 (±0) 0 (±0) 0 (±0) 0 (±0) 0 (±0) 0 (±0) 0 (±0)

b_count 44 (±1) 49 (±1) 47 (±0) 52 (±1) 51 (±1) 55 (±1) 51 (±0) 56 (±0)

b_count/HA 1.808 (±0.008) 1.92 (±0.01) 1.800 (<0.001) 1.932 (±0.007) 1.800 (±0.006) 1.943 (±0.005) 1.813 (±0.002) 1.951 (±0.006)

b_ar 12 (±0) 12 (±0) 12 (±0) 12 (±0) 16 (±0) 12 (±0) 16 (±0) 12 (±0)

b_ar/HA 0.500 (<0.001) 0.462 (±0.005) 0.516 (±0.006) 0.462 (±0.009) 0.522 (±0.006) 0.444 (±0.009) 0.515 (<0.001) 0.44 (±0.01)

b_1rotN 4 (±0) 5 (±0) 4 (±0) 5 (±0) 5 (±0) 6 (±0) 5 (±0) 6 (±0)

b_1rotN/HA 0.167 (<0.001) 0.185 (±0.003) 0.167 (<0.001) 0.188 (±0.003) 0.172 (<0.001) 0.195 (±0.005) 0.174 (<0.001) 0.2 (±0)

FCharge 0 (±0) 0 (±0) 0 (±0) 0 (±0) 0 (±0) 0 (±0) 0 (±0) 0 (±0)

FCharge/HA 0 (±0) 0 (±0) 0 (±0) 0 (±0) 0 (±0) 0 (±0) 0 (±0) 0 (±0)

SlogP 3.42 (±0.03) 3.26 (±0.07) 3.61 (±0.02) 3.52 (±0.05) 3.85 (±0.01) 3.62 (±0.03) 3.89 (±0.01) 3.59 (±0.03)

a_nC/HA 0.731 (±0.001) 0.741 (±0.004) 0.731 (<0.001) 0.750 (±0.003) 0.731 (±0.001) 0.750 (±0.006) 0.731 (<0.001) 0.744 (±0.006)

logS -4.48 (±0.03) -4.61 (±0.08) -4.79 (±0.02) -4.87 (±0.05) -5.13 (±0.01) -5.13 (±0.04) -5.15 (±0.01) -5.15 (±0.04)

chiral 0 (±0) 0 (±1) 0 (±0) 1 (±0) 0 (±0) 1 (±0) 0 (±0) 1 (±0)

chiral/HA 0 (±0) 0.00 (±0.02) 0 (±0) 0.029 (±0.002) 0 (±0) 0.032 (±0.001) 0 (±0) 0.033 (±0.001)

rings 3 (±0) 3 (±0) 3 (±0) 3 (±0) 4 (±0) 3 (±1) 4 (±0) 3 (±1)

lip_druglike 1 (±0) 1 (±0) 1 (±0) 1 (±0) 1 (±0) 1 (±0) 1 (±0) 1 (±0)

lip_violation 0 (±0) 0 (±0) 0 (±0) 0 (±0) 0 (±0) 0 (±0) 0 (±0) 0 (±0)

opr_leadlike 1 (±0) 1 (±0) 1 (±0) 1 (±0) 1 (±0) 1 (±0) 1 (±0) 1 (±0)

opr_violation 0 (±0) 1 (±1) 0 (±0) 1 (±0) 1 (±0) 1 (±0) 1 (±0) 1 (±0)

https://doi.org/10.1371/journal.pcbi.1005813.t003
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calculations [33], and therefore, we conclude the difference is negligible, regardless of statisti-

cal analysis.

We were surprised to find this result because previous studies have indicated that allosteric

ligands are more hydrophobic and have hydrophobic binding sites. A study by Li et al. [18]

found allosteric binding sites contain more hydrophobic surface area, and are likely to bind

more hydrophobic ligands. Hydrophobicity is also used as an important characteristic for the

prediction of allosteric sites by Huang et al. [34] and by Demerdash et al.[17] Although these

latter two studies did not directly implicate hydrophobicity, many of the characteristics impli-

cated by the models, such as hydrogen-bonding characteristics of the active site do. Hydropho-

bicity was also important in the prediction of allosteric protein-ligand interactions using

models developed by Li et al.[35] In that study the hydrophobicity, as determined by a hydro-

phobic matching algorithm, had the highest contribution to Alloscore, which is their metric to

predict allosteric interactions. The Monod-Wyman- Changeux model also states that protein-

protein or subunit interfaces are frequent allosteric binding sites [4], and protein-protein

interfaces have generally been shown to be more hydrophobic in nature.[36–38]

The structural properties of allosteric binding sites likely constrain the chemical characteris-

tics of allosteric ligands. Studies for identifying allosteric binding sites show that the SASA

[17], the number of hydrogen bonds [17], interaction between residues, local hydrophobic

density [18,34], pocket size [17,34], and correlated features are important for describing an

allosteric binding site. Here, we investigate the hydrophobicity of the lignds (SlogP/logS)

which does not necessarily represent to the hydrophobicity of the binding site. Van Westen

et al observed that allosteric compounds for GPCRs tend to be more lipophilic (higher logP),

more rigid (higher sp2 C and lower sp3 C), and relatively smaller than non-allosteric ligands

from ChEMBL data [29]. It is difficult to determine the overlap between our dataset and van

Westen’s as their compounds were derived from ChEMBL and were not provided with their

publication.

Wang et al. compared allosteric ligands from ASD with compounds from databases like

DrugBank, MDDR, ACD, etc [21]. However, the compounds in these databases can have

many mechanisms to bind target proteins, which are not necessarily binding at the active site.

Even so, they also showed that the allosteric ligands contain more hydrophobic scaffolds and

are more rigid. Wang et al. determined that SlogP and Total Polar Surface Area (TPSA) of allo-

steric ligands were statistically significant from six other compound libraries. Although statisti-

cally significant, the distributions displayed do not show a large difference and have large error

bars. It should be noted that they utilized an older version of the ASD database, which has

shown a large expansion since the 2010 version (7,851 compounds compared to 67,749).

As a sanity check, we also performed single-level clustering on the ligands (ligands were

simply clustered by chemistry without regard for protein families). The competitive ligands

were grouped together and the allosteric ligands were grouped together, and then each set was

clustered at Tc of 0.6, 0.75, 0.9, and 1.0 and compared to see if the above trends held. The dif-

ferences between the two sets at each clustering level can be seen in Supporting Information

(S1 Table). When compared to Table 3 the conclusion that allosteric ligands were more aro-

matic and constrained can still be drawn. Only one variable, the number of single, rotatable

bonds was not significant at all levels, but the number of single, rotatable bonds per HA

remained significant. SlogP is marginally different between the two ligand sets, with no

Fig 1. The normalized histograms of the number of aromatic atoms corrected by size, the number of

bonds per heavy atom (HA), and the number of rotatable single bonds per HA for the full dataset

(60%/0.6 clustering). The median (dashed line) is labeled on the graph with its 95%ci derived from bootstrap

sampling.

https://doi.org/10.1371/journal.pcbi.1005813.g001
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significant difference in logS, hence allosteric ligands do not appear to be more hydrophobic,

as seen with the two-level clustering.

Overall, the allosteric and competitive ligands span similar chemical space. Fig 2 shows a

map of the chemical similarity based on ECFP6; the fingerprint was used to give a broader char-

acterization of similarity rather than focusing on one property. The map was generated by

ChemTreeMap which was developed in our lab [39]. Van Westen et al. suggested that allosteric

modulators form a subset of non-allosteric modulators, based on the observation that their allo-

steric ligands had a narrower range of molecular weight and covered a smaller area in a scatter

plot of logP vs molecular weight. However, when we compare our allosteric and competitive

sets based on ligand similarity (Tc), the compounds of both categories appear to cover similar

chemical space in Fig 2. Furthermore, Fig 3 gives a graph of SlogP vs HA for our data that

shows both competitive ligands and allosteric ligands span the same range of chemical features.

Distributions of protein targets

Due to the different modes of action, one might expect to see a difference in the types of pro-

teins targeted by allosteric vs competitive ligands as this depends upon protein function (Fig

4). One might also expect that the range of proteins could contribute to any differences in our

findings versus previous studies.

When clustering the dataset at 60%, the number of unique protein families in the full allo-

steric dataset was 759, while there were 599 different protein families in the competitive data-

set. ASD 3.0 has increased by>400% since the initial ASD 1.0, due to the significant expansion

of allosteric drug discovery [14,15,30]. Three categories of allosteric proteins are dramatically

augmented from ASD 1.0 to ASD 3.0: kinases (from 46 to 207), GPCRs (from 48 to 118), and

Fig 2. ChemTreeMap [39] of the allosteric (blue) and competitive (red) ligands is a hierarchical tree

based on grouping ligands by the Tc of the ECFP6 fingerprints. The size of each circle represents the

number of ligands in a cluster of Tc� 0.6. Though a few small regions of chemical space are dominated by

one set or the other, the large number of branches with interdigitated red and blue circles shows that there is a

great deal of chemical similarity between the allosteric and competitive ligands. To quantify the overlap, we

should note that 623 out of 70,219 allosteric ligands (1%) are within Tc� 0.6 of a competitive ligand, and 582

of the 9511 competitive ligands (6%) are within Tc� 0.6 of an allosteric compound.

https://doi.org/10.1371/journal.pcbi.1005813.g002
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ion channels (from 21 to 134), which are highly associated with the therapeutic targets in

recent drug discovery studies [12,40]. As one would expect, there are differences in the protein

targets of allosteric and competitive ligands. A large portion (46.3%) of allosteric ligands target

GPCR proteins, while 29.1% of competitive compounds bind to these proteins. A larger per-

centage of allosteric compounds (14.4%) target neuronal proteins (for example, the GABA

receptor, glutamate receptor, and acetylcholine receptor) compared to competitive com-

pounds (8.1%). Li et al. found that the majority of allosteric proteins obtained from ASD were

transferases (44.8%) instead of GPCRs. This percentage is artificially high as it is only the per-

centage of enzymes, not all proteins, since they did not have a category designation for non-

enzymatic proteins.[18] In our dataset, 21.9% of allosteric ligands and 13.2% of competitive

ligands target transferases. For enzymes in the datasets, 53.3% of the targets in the allosteric set

and 26.7% of the targets of the competitive set are transferase. A complete list of the protein

targets in each set is given in the Supporting Information (S2 Table).

A large number of GPCR-based allosteric compounds appear in ASD v3.0 [30]. GPCRs play a

critical role in multiple diseases, and there are significant efforts in developing new GPCR-based

drugs [41]. Moreover, many subtype GPCRs have high sequence similarity in their orthosteric

sites. It has been difficult to obtain high selectivity when targeting those sites. In recent years, tar-

geting allosteric sites has been a major thrust for developing GPCR drugs [42,43].

Van Westen et al. built a dataset from ChEMBL (417 targets for allosteric ligands and 1,869

for non-allosteric ligands) and examined the distribution of targets and found a bias to trans-

membrane proteins (~50%). That study did not remove redundancy on the protein level or the

ligand level. Our study reduced this bias caused by overrepresented proteins and ligands utiliz-

ing two-level clustering for both protein and ligands to remove redundancy (see Methods).

Protein-ligand clusters

One reason that we may have some disagreement with previous findings regarding hydropho-

bicity of allosteric ligands is that our sets of compounds are different from those earlier results.

The number of protein-ligand clusters is different for each protein and is dictated for each

protein by the chemical diversity of its ligands. In our full dataset, there are 70,219 allosteric

ligands and 9511 competitive ligands. These are spread across 1048 and 860 protein targets,

Fig 3. SlogP versus the number of heavy atoms. Clustering was performed at 100% sequence identity and

Tc = 1.0.

https://doi.org/10.1371/journal.pcbi.1005813.g003
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respectively. Some compounds can interact with more than one target, and the number of pro-

tein-ligand clusters ranges from 599 clusters for the competitive compounds at 60/0.6 cluster-

ing up to 144,685 for allosteric ligands clustered at 100/1.0 (Table 1). The clusters are used to

reduce the bias from heavily studied proteins vs newer targets.

The number of ChEMBL ligands in our datasets is smaller than those used by van Westen

et al. because our datasets were built with compounds from experiments that expressly defined

assay activity as either allosteric or competitive. Therefore, evidence was identified using

restrictive search terms on the assay descriptions as opposed to parsing the language of the

ChEMBL documents. The allosteric set from ChEMBL is smaller (our 2,470 vs. 17,829 in van

Westen et al.) due to the fact only “alloster�” was used in the keyword search of the assay
description and a manual curation was performed to remove high throughput screening (HTS)

data. However, van Westen et al. used several additional terms, which may imply allostery,

when searching the whole document from ChEMBL. Discarding the HTS data also limits the

size of the dataset used in this study. Using the assay description and the more restrictive

search term helps to ensure that each ligand obtained from ChEMBL is indeed an allosteric

modulator. Our “competitive” dataset obtained from ChEMBL is also smaller than their “non-

allosteric” set, since the focus is on competitive inhibitors annotated in the assay descriptions

and ambiguous mechanisms are not included in our set. The growth of allosteric ligands in

ASD brings the dataset to a size comparable to van Westen’s study.

Conclusions

This study compares common features of allosteric ligands to competitive ligands in order to

understand their unique chemical properties. The datasets were carefully curated to ensure the

correct designation of their known mechanisms. Verifying the assays assures that we are only

comparing allosteric ligands to competitive ligands. Also, this study provides a dataset as large

as or larger than previous studies performed on allosteric ligands.

We took great care in normalizing the data so that frequently studied proteins did not

overly bias the outcomes. The results indicate that allosteric compounds tend to be more

Fig 4. The distribution of protein targets for the allosteric (A) and competitive (B) compounds.

https://doi.org/10.1371/journal.pcbi.1005813.g004
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aromatic and rigid. This is supported by allosteric ligands having more aromatic atoms per

heavy atom. It is also supported by a decrease in chemical saturation and fewer rotatable single

bonds for allosteric ligands. The rigid nature of these ligands, combined with other studies that

have shown protein allosteric hotspots are more flexible, suggest that the protein may adapt its

conformation to the more rigid ligand and inducing an allosteric conformational change.

This also has application in the drug discovery process. Knowledge of the physical proper-

ties of allosteric ligands, may allow researchers in drug discovery understand if a particular

molecule or drug candidate would have a higher potential to bind allosterically. Investigating

all allosteric ligands, we have found them to be more rigid and aromatic in nature. This may

assist in determining a mode of action, when one is not known. Additionally, if the known

binding site of a protein is difficult to target, one might be able to limit or enrich their search

to molecules which are rigid and more aromatic in order to increase likelihood of identifying

an allosteric site, which one might target instead.

Methods

Ethics statement

No humans or animals were used in this research.

Data collection

The information on ligands (SMILES strings) and their target proteins (FASTA sequences)

were collected from ASD version 3.0 [30] and ChEMBL version 20 [13,44]. Filtering and data

analysis was performed as follows.

The allosteric data was extracted from both ChEMBL and ASD. ASD data is imported without

filtering since it focuses exclusively on allosteric mechanisms. Data from ChEMBL was filtered to

select appropriate allosteric ligands to augment the ASD dataset. The entire set of ChEMBL assay

descriptions (‘description’ field in the assays table of the ChEMBL MySQL database) was filtered

for those which contain the term “alloster�” (the “�” indicates a wild card which allows any set of

characters to follow the search pattern). All ligands which were characterized by HTS assays were

then removed due to the high error rate in HTS approaches. Allosteric-relevant assays from the

remaining set were then selected by manually reading the descriptions. Only active molecules

were kept based on the reporting of a non-zero ‘standard value’ field in the ‘activities’ table of the

ChEMBL MySQL database. The dataset for competitive compounds, which is based only on

ChEMBL, was obtained by searching for the term “compet�”. The dataset was also filtered using

by-hand verification of assay descriptions. For completeness, the list of ChEMBL assays is pro-

vided in the Supporting Information (allo-comp_ChEMBL_assays.xlsx). We should note that we

did not include binding affinities or inhibition constants in our analysis because some ligands did

not have explicit Kd, Ki, or IC50 data given.

Removing seven overrepresented molecules. There are seven compounds in the compet-

itive set that are overrepresented because of a single study where each was tested against a

panel of>200 kinases. ChEMBL has included all data and appropriately marked them as active

[45]. Fig 5 shows the influence that these seven assay standards have on the set of thousands of

competitive ligands; clearly, they had to be removed because they reflect a man-made artifact.

Calculation of compound descriptors

Molecular Operating Environment (MOE) 2014 [46] was used to calculate the compound

descriptors. The SMILES were converted to molecular structures in MOE, and ligands were

properly protonated using the default options of the wash procedure in the MOE database

Are there physicochemical differences between allosteric and competitive ligands?

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005813 November 10, 2017 11 / 18

https://doi.org/10.1371/journal.pcbi.1005813


viewer. The wash procedure ionizes strong bases and strong acids at a pH of 7 and adds explicit

hydrogens to each molecule.

Physicochemical descriptors were calculated to characterize the molecules, including atom

counts, bond counts, physical properties (SlogP, FCharge), and drug/lead-like characteristics.

Some descriptors are highly correlated with ligand size; for example, the number of bonds is

highly correlated to the number of heavy atoms (HA). Therefore, descriptors were also exam-

ined when corrected for size by dividing by the number of heavy atoms (e.g. chiral/HA, a_nC/

HA). All descriptors available in MOE were computed, but we only examined descriptors that

are experimentally measurable and can be predicatively modified, meaning chemical substitu-

tions can logically alter the descriptor. The list of the descriptors we analyzed is in Table 2.

Removing redundancy

Any identical data (exact same protein with exact same ligand) was culled to one entry. Then,

a two-level clustering method was used to remove redundancy. The target proteins were

grouped by sequence identity with BLAST [47] (x-axes of Fig 6) by running formatdb and

blastp on the protein sequences with default parameters. Four different thresholds for sequence

identity were used (60%, 75%, 90%, and 100%) to group homologous sequences into protein

families. All ligands for the proteins in each family are then clustered by Pipeline Pilot 9.2 [31]

(final boxes for ligands in Fig 6) with the Cluster Molecules component using the maximum

dissimilarity [48] setting. The ligand similarity is quantified by the Tanimoto coefficient (Tc)

based on the ECFP6 fingerprints [49]. Four different thresholds for similarity were used to

cluster the ligands (Tc = 0.6 for protein families at 60% sequence identity, 0.75 for 75%

sequence identity, 0.9 for 90% sequence identity, and 1 for 100% sequence identity). To be

considered robust, we required any statistically significant difference in physical properties to

be present at all four levels of clustering.

Fig 5. The normalized distribution of heavy atoms for the ligands in the competitive set, with (brown,

dashed line) and without (red, solid line) the seven kinase standards.

https://doi.org/10.1371/journal.pcbi.1005813.g005
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This process allowed us to examine the data in both fine detail and across broader levels.

The resulting dataset is described in Table 1. One method of normalizing for the different sizes

of each protein-ligand cluster is to choose the “center” of each cluster to represent those mole-

cules in the data analysis. The center is defined as the molecule with smallest sum of Tc dis-

tances to other molecules in the cluster (top scheme in Fig 7). The centers of each cluster were

used to calculate the distribution of physical properties. All results based on the analysis of the

centers are given in the Supporting Information for completeness (S3 Table). An alternative

method of calculating these distributions (bottom scheme of Fig 7) is described in the next sec-

tion, and it is the focus of the analysis in the results and discussion. However, the results from

both normalization methods are nearly identical.

Weighting to remove redundancy

Traditional clustering chooses only the center for each cluster. Unfortunately, this loses the

information from the other ligands in the cluster. To include every molecule in the analysis, a

simple adjustment was needed to correct for the different number of ligands in each protein-

ligand cluster. We used the normalized distributions so that protein-ligand clusters of different

sizes had the same contribution to the combined analysis (all histograms sum to 1.0). This is

shown in the bottom scheme of Fig 7. The normalized distributions from each cluster are

added to calculate the mean and median of the entire set. For the histograms, binning was

done at intervals of 1 for discrete variables and 0.001 for continuous variables.

Data analysis to identify statistically significant differences in

physicochemical properties of allosteric and competitive ligands

Wilcoxon. The differences between the allosteric and competitive distributions were

assessed by two methods: the Wilcoxon rank-sum test [50] for data from the centers of the

clusters and the weighted Wilcoxon rank-sum test for our normalized distributions. Many

descriptors have non-Gaussian distributions; therefore, the non-parametric Wilcoxon test was

the appropriate choice. The weighted Wilcoxon test is calculated with all compounds in the

cluster based on the weighting procedure described above. We used a strict threshold of p-

value < 0.0001 to define a statistically significant difference between allosteric and competitive

Fig 6. Clustering the data in two levels. The horizontal axis represents “protein space.” In the first step,

similar proteins are grouped into families. The vertical axis represents “ligand space.” The second step

clusters all the ligands associated with each protein in the protein family. The final boxes are the protein-ligand

clusters used in normalizing the data.

https://doi.org/10.1371/journal.pcbi.1005813.g006
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distributions; this was to reduce the likelihood that the differences were a coincidental artifact

of having two large datasets and many comparisons of physical properties. These tests were

implemented through R-Statistics (version 3.2.2) using the Wilcoxon Test in the R stats pack-

age [51]. Functions svydesign and svyranktest in R’s survey package were used for the weighted

Wilcoxon test.

Fig 7. Weighting the data. In the top scheme, the center of each protein-ligand cluster is chosen, and only the centers are used to calculate the

distribution of properties. In the bottom scheme, all ligands of each cluster contribute to the cluster’s normalized distribution of physical

properties. The normalized distributions compensate for the different number of ligands in each cluster. The normalized distributions of all

clusters are simply added to give the distribution of physical properties for the entire set of data.

https://doi.org/10.1371/journal.pcbi.1005813.g007
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Bootstrap sampling. Bootstrap sampling was performed to determine the errors and vari-

ability in the means and medians of the calculated physical properties. Here, 100,000 samples

(on the order of the number of ligand clusters in each set) were generated by selecting from

each bin with probabilities corrected for the size of the cluster. Straight random sampling was

used for the analysis using cluster centers. The bin widths for the weighted histograms were

again 1 for descriptors with discrete values and 0.001 for continuous variables. The distribu-

tions of the mean and median from each sample were computed, and the 95% confidence

intervals (95%ci) were then defined as the range of 2.5% to 97.5% of those distributions. We

required all statistically significant differences to have no overlap in the 95%ci of the medians

(in addition to Wilcoxon p-values < 0.0001 for the analysis above). It should be noted that all

trends found to be significant in our data met the criteria by both weighted analysis and by

center-of-cluster analysis (of course, the exact values for the means and medians were slightly

different based on which analysis was used).

Displaying the chemical similarity between the allosteric and competitive

datasets

ChemTreeMap [52] was used to view the chemical space of the structures and display the

chemical similarities in the two sets. ChemTreeMap organizes molecules in a hierarchical tree

structure to convey molecular similarity information by combining extended connectivity fin-

gerprint and a neighbor-joining algorithm. With hierarchical organization and color coding,

ChemTreeMap is able to highlight the regions where chemical space is unique to each group

of compounds. ECFP6 is used to characterize the molecules, and the hierarchical structure is

determined from the Tc between molecules.
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