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Abstract

Motivation: There is growing interest in the biomedical research community to incorporate retrospective data, avail-
able in healthcare systems, to shed light on associations between different biomarkers. Understanding the associ-
ation between various types of biomedical data, such as genetic, blood biomarkers, imaging, etc. can provide a hol-
istic understanding of human diseases. To formally test a hypothesized association between two types of data in
Electronic Health Records (EHRs), one requires a substantial sample size with both data modalities to achieve a rea-
sonable power. Current association test methods only allow using data from individuals who have both data modal-
ities. Hence, researchers cannot take advantage of much larger EHR samples that includes individuals with at least
one of the data types, which limits the power of the association test.

Results: We present a new method called the Semi-paired Association Test (SAT) that makes use of both paired and
unpaired data. In contrast to classical approaches, incorporating unpaired data allows SAT to produce better control
of false discovery and to improve the power of the association test. We study the properties of the new test theoret-
ically and empirically, through a series of simulations and by applying our method on real studies in the context of
Chronic Obstructive Pulmonary Disease. We are able to identify an association between the high-dimensional char-
acterization of Computed Tomography chest images and several blood biomarkers as well as the expression of doz-
ens of genes involved in the immune system.

Availability and implementation: Code is available on https://github.com/batmanlab/Semi-paired-Association-Test.

Contact: kayhan@pitt.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Increasingly, data from Electronic Health Records (EHRs) in hospi-
tals are becoming available to clinical researchers. Such massive
collections contain various types of data from sources such as high-
resolution imaging, genome sequencing and physiological metrics.
By studying such a large and diverse data, researchers can provide a
holistic view of the underlying mechanisms of human diseases. For
example, while a large proportion of human diseases are influenced
by genetic variants (Altshuler et al., 2008; Ehret et al., 2011), their
mechanisms are not well understood (Visscher et al., 2017; Willer
et al., 2013). To understand the mechanism, measuring other varia-
bles such as gene expression is required. Unfortunately, it is unlikely
that all patients in the EHR have all measurement modalities. For
example, due to the high cost of image acquisition and specimen
maintenance, hospitals order those only when they are needed.
Consequently, only the record of a few patients contains all data

modalities, which reduces the power of association tests and
increases the chance of false discovery.

Furthermore, a multidimensional phenotype can offer better sensi-
tivity to the clinical and genetic underpinning of human diseases than
a one-dimensional scalar phenotype (Csernansky et al., 1998; Ge
et al., 2016). For instance, high-dimensional features can be com-
puted to summarize the folding pattern of the brain structure in
Magnetic Resonance (MR) imaging (Ge et al., 2016), or the texture
and distribution of the lung tissue destruction can be measured and
summarized by computed tomography (CT) imaging (Schabdach
et al., 2017). Those metrics are highly predictive of the diseases [e.g.
Alzheimer’s disease (Csernansky et al., 2005) and bipolar disorder
(Hwang et al., 2006) for MR, and Chronic Obstructive Pulmonary
Disease (COPD) (Schabdach et al., 2017) for CT]. Relating that high-
dimensional phenotype to genetic and genomic measurements pro-
vides more evidence for understanding the etiology of the disease.
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In this article, we present a new method to formally test the asso-
ciation between two types of potentially high-dimensional data that
allows incorporating unpaired samples, i.e. samples with one data
modality (see Fig. 1 for a schematic illustration). Our approach pro-
vides better control of false-positive and, under some mild assump-
tions, increases the statistical power of the test. Unpaired data
enables us to better estimate the null distribution, which results in
more accurate control of the false positive rate. Furthermore, it
allows us to leverage the underlying structure of the high-
dimensional measurements, which consequently increases the power
of the test. The proposed method, the Semi-paired Association Test
(SAT), falls in the kernel machine framework (Ge et al., 2015;
Gretton et al., 2008a; Liu et al., 2007; Székely et al., 2007; Zhang
et al., 2011). More specifically, two variants of our method general-
ize the Variance Component Score Test (VCST) (Ge et al., 2015;
Kwee et al., 2008; Liu et al., 2007) and the Kernel Independence
Test (KIT) (Gretton et al., 2008a; Székely et al., 2007; Zhang et al.,
2011) such that they can exploit unpaired data. The VCST is com-
monly used to test for heritability of a phenotype (Ge et al., 2015;
Kwee et al., 2008; Liu et al., 2007) and is implemented in popular
software such as GCTA (Yang et al., 2011). The KIT is widely used
for statistical independence test in various scenarios (Gretton et al.,
2008a; Hua and Ghosh, 2015; Wei and Lu, 2017). We provide a
connection between those methods. Our proposed test makes un-
paired data, previously wasted, available for discovering novel asso-
ciations in massive uncontrolled datasets, such as EHRs. Unearthing
unnoticed associations assists in understanding the underlying mech-
anism of human diseases.

This article makes two contributions. First, it provides a statistic-
ally grounded method for the inclusion of unpaired data. The exten-
sive simulation, as well as theoretical study, supports the hypothesis
that the unpaired data is beneficial to control the false discovery and
if the conditions are satisfied, can improve the power. Second, we
apply our method to two different real studies. In the first experi-
ment, we show that unpaired data can discover a new association
between the high-dimensional radiographic measurements of COPD
and peripheral blood biomarkers that play a role in the immune sys-
tem. In this dataset, only a subset of the cohort has blood samples.
In the second experiment, we apply our approach to genotype-
phenotype data from the General Population Cohort from Uganda
(Asiki et al., 2013). In this dataset, all subjects have genotype data
but only one-fourth of them have phenotypes. Our method is able to
find more heritable phenotypes.

2 Materials and methods

In this section, we first give a brief review of the VCST and the ker-
nel independence test (KIT). We then discuss the connections be-
tween them and show that the differences between them lead to
different ways to utilize unpaired data. Finally, we detail our SAT

method by demonstrating how unpaired data can be incorporated to
improve both VCST and KIT.

2.1 Variance component score test (VCST)
We start with the variance component model (a.k.a. the random ef-
fect model), which is widely used in statistical genetics for genetic
association studies (Ge et al., 2016; Liu et al., 2007; Maity et al.,
2012; Yang et al., 2011). We use the same nomenclature where Y 2
Rp is a p-dimensional phenotype and X 2 Rd is genotype.
However, our method is general and can be applied elsewhere.
Given a paired sample containing n observations fyi; xign

i¼1, we con-
sider the following multidimensional variance component model
(Ge et al., 2016):

yik ¼ lik þ gkðxiÞ þ �ik; (1)

where yik is the kth element of yi, gk is a non-parametric function in
a reproducing kernel Hilbert space (RKHS) associated with kernel
kðx; x0Þ ¼ h/ðxÞ;/ðx0Þi, lik is the offset term and �ik is the error
term. Equation (1) can be rewritten in matrix form:

Y ¼ lþGþ �; (2)

where Y 2 Rn�p is the phenotypic matrix of the n observations (sub-
jects) with ith row y>i ; l ¼ ðl1; . . . ; lpÞ � 1n is a matrix of offsets
(1n is an n� 1 vector of ones), G 2 Rn�p is the matrix of the aggre-
gate genetic effects and � 2 Rn�p is a matrix of residual effects. We
have the following distributional assumptions:

vecðGÞ � N ð0;Rg � KÞ; vecð�Þ � Nð0;R� � InÞ; (3)

where vec(�) is the matrix vectorization operator that converts a ma-
trix into a vector by stacking its columns, � is the Kronecker prod-
uct of matrices, In denotes an n 3 n identity matrix, Rg is the genetic
covariance matrix, R� is the residual covariance matrix and K is the
kernel matrix with ijth element ½K�ij ¼ kðxi; xjÞ. For example, in the
context of statistical genetics, K denotes identity-by-state (IBS) ker-
nel (Kwee et al., 2008; Schaid, 2010a,b), where ½K�ij represents the
relatedness between individual i and j.

To test whether Y and X are associated (whether Y is heritable if
X is the genotype), we can test the variance components as H0 :
trðRgÞ ¼ 0 versus H1 : trðRgÞ > 0 using the following score test stat-
istic derived from model (1):

ŜnðK;LÞ ¼
1

n2
trðKHnLHnÞ �

1

n3
trðHnLÞtrðHnKÞ; (4)

where trð�Þ computes the trace of a matrix, L ¼ YR̂�2
Y Y> and Hn ¼

In � 1
n 1n1>n and R̂Y is the empirical covariance matrix of Y. The der-

ivation details are provided in Supplementary Section S1 of
Supplementary Information. The exact fraction of phenotype vari-
ability attributed to genetic variation is defined as heritability. There
are various ways to define heritability for a multivariate phenotype
(e.g. Ge et al., 2016; Zhou et al., 2013). We adopt the definition by
Ge et al. (2016) that closely related to the VCST and subsumes the
definition of the heritability for the univariate phenotype, which can
be calculated as follows (Ge et al., 2016):

h2 ¼ trð RgÞ
trðRgÞ þ trðR�Þ:

(5)

2.2 Kernel independence test (KIT)
Kernel independence tests are a class of non-parametric methods
which are also widely used for genetic association studies (Gretton
et al., 2008a; Wei and Lu, 2017). Here we briefly review the
Hilbert-Schmidt Independence Criterion (HSIC)-based independ-
ence test (Gretton et al., 2008a), which provides a general frame-
work for many association tests (Sejdinovic et al., 2013). Let F y be
a RKHS associated with the kernel function lðy; y0Þ ¼ hwðyÞ;wðy0Þi.
HSIC tests H0 : PYX ¼ PXPY versus H1 : PYX 6¼ PXPY by testing
H0 : I ¼ 0 versusH1 : I > 0, where I is defined as follows:

Fig. 1. X and Y represent two modalities. Current approaches only use paired data

fxi ; yig
n
i¼1. Assuming that the total number of samples of X (M) and Y (N) is more

than the paired data, we aim to find out how the control of the false discovery and

the power of association tests can be improved by the unpaired data fxigM
i¼nþ1 and

fyig
N
i¼nþ1
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I ¼ EXYEX0Y 0 ½kðX;X0ÞlðY;Y 0Þ�
þ EXEX0EYEY0 ½kðX;X0ÞlðY;Y 0Þ�
� 2EXY ½EX0 ½kðX;X0Þ�EY 0 ½lðY;Y 0Þ��:

(6)

Given paired data of n subjects, an unbiased estimator of I is the
following (Gretton et al., 2008b):

ÎnðK;LÞ ¼
1

nðn� 3Þ trð~K ~LÞ þ 1>n
~K1n1>n

~L1n

ðn� 1Þðn� 2Þ �
21>n

~K ~L1n

n� 2

" #
;

(7)

where ~K ¼ K� diagðKÞ and similarly for ~L and Lij ¼ lðyi; yjÞ. To

test for statistical independence, one can use characteristic kernels,

e.g. the radial basis function Kij ¼ exp
kxi�xjk2

r2

� �
, such that I can be

zero only when X and Y are independent (Sriperumbudur et al.,
2011).

2.3 Connections between VCST and KIT
Now we discuss the similarities and differences between VCST and
KIT. Table 1 displays the test statistics and null distributions of
VCST and KIT.

Test statistic It can be seen from Table 1 that the biased statistics
of VCST and KIT are identical to each other, if setting wðyÞ ¼ R̂�1

Y y.
The unbiased test statistics of VCST and KIT differ. This is because
VCST tests for random effects but assumes that the covariate induc-
ing the random effect (X) and the corresponding kernel matrix (K)
are fixed while KIT assumes X is random, leading to different ways
to correct for the bias.

Null distribution Let gj (ĝ j) be the eigenvalues (empirical) of the
covariance of /ðXÞ and let ki (k̂ j) be the eigenvalues (empirical) of
the covariance of wðYÞ. As shown in Table 1, the null distributions
for VCST and KIT have exactly the same forms, except that VCST
uses ĝ j while KIT uses gj. This is also because of their respective
fixed or random X assumptions. In practice, because ki and gj are
both unknown, we need to replace them with k̂ i and ĝ i. Therefore,
the empirical null distributions of VCST and KIT are identical if
only given n paired examples. However, they are inherently different
because the null distribution of KIT is derived from asymptotic the-
ory, while the null distribution of VCST is derived from the
Gaussian error terms in the variance component model (2). This
subtle difference is significant when using unpaired data, which is
described as follows.

Unpaired data The main difference between VCST and KIT is
that X (K) is considered fixed or random respectively. When given
unpaired data, VCST cannot make use of the unpaired data of X
due to the fixed X assumption, while KIT can benefit from unpaired
data of both X and Y. More specifically, unpaired data can only be
used to improve the estimation of ki in VCST but they can be used
to improve the estimation of both gj and ki in KIT.

2.4 Semi-paired association test
In this section, we present our SAT method that incorporates unpaired
data to improve test power. In addition to the n paired data, suppose
we also have access to an unpaired sample fxigN

i¼nþ1 and an unpaired
sample fyig

M
i¼nþ1. Without loss of generality, we assume N¼M and re-

place M with N for notational simplicity. We will show two ways that
unpaired data can improve the association test: (i) better control of type
I error by improving the estimation of null distributions and (ii)
improved test power by devising a new test statistic under the intrinsic
low-dimension assumption of high-dimensional data.

Enhancing type I error control To calculate P-values, we need to
estimate the parameters ki and gj in the null distributions from em-
pirical data. Because ki and gj are the eigenvalues of the covariance
of wðYÞ and /ðXÞ, respectively, the estimation does not require
paired Y and X examples. Therefore, we can readily make use of un-
paired data to obtain more accurate estimation of ki or gj involved
in the null distribution.

For SAT-fx, we add unpaired Y data to estimate the covariance
of wðYÞ and its eigenvalues ki from both paired and unpaired data
fyig

N
i¼1, while gj should be estimated from only fxign

i¼1 in the paired
sample. For SAT-rx, we can further incorporate unpaired X data
and use all the X data fxigN

i¼1 to estimate gj.
The following theorem shows that (i) the empirical null distribu-

tion convergences to the true (asymptotic) distribution and (ii) the
variance of the empirical null distribution converges to the variance
of the true (asymptotic) null distribution with rate 1=

ffiffiffiffi
m
p

, where m
is the sample size of available data for estimating ki and gj.

THEOREM 1 (Informal) Let I�¼
Pp
i¼1

Pq
j¼1

kigjðz2
ij � 1Þ and I�m ¼Pp

i¼1

Pq
j¼1

k̂ i ĝ jðz2
ij � 1Þ, where p is the dimension of wðYÞ and q is the di-

mension of /ðXÞ.

1. As m!1; I�m converges in distribution to I�.

2. For all PXY ; EðI�mÞ ¼ EðI�Þ and VðI�mÞ converges in probability

to VðI�Þ with rate 1=
ffiffiffiffi
m
p

.

The theorem is developed for SAT-rx and a similar theorem for
SAT-fx can be considered as a special case of the above theorem.
From the theorem, we can see that if only using paired data, m¼n;
if further using unpaired data, m¼N. Because N>n, incorporating
unpaired data to estimate ki and gj leads to lower estimation error
and provides more accurate estimation of the null distribution.
Hence, our method results in better control of the type I error. This
result holds regardless of the dimensionality of X or Y. The proof
details of Theorem 1 are given in Supplementary Section S2 of
Supplementary Information.

Improving test power Unpaired data contribute to a better esti-
mation of the null distribution, resulting in better control of type I
error. It can also improve test power if the high-dimensional data (of
at least one modality) live on a lower dimensional space. Such an as-
sumption is mostly the case for real data. For example, previous
studies have shown that the space of Magnetic Resonance images of
the brain can be modeled by a relatively low-dimensional manifold
(Amir et al., 2013; Gerber et al., 2010). A similar assumption has
been explored to model the low-dimensional space of gene expres-
sion for single-cell expression analysis (Haghverdi et al., 2015; Qiu
et al., 2011). Unpaired data help us to estimate the low-dimensional
space more accurately. If both X and Y are one-dimensional, our
method cannot improve the test power, but the variant without di-
mension reduction can better control the false discovery rate.

Specifically, if X or Y data (approximately) lie in a low-
dimensional space, we show that unpaired data can be used to con-
struct a new test statistic with improved test power. To devise the
new test statistics, we first learn the low-dimensional space of X or
Y by applying the kernel Principal Component Analysis (PCA) algo-
rithm on both paired and unpaired data. Second, we project the
paired data to the learned low-dimensional space and obtain the test
statistics of our SAT-fx and SAT-rx by estimating the test statistics
of VCST and KIT on the projected data. Due to the use of the kernel
trick, calculating the test statistic of SAT-fx and SAT-rx requires

Table 1. Comparison of VCST and KIT

Test statistic

(unbiased)

Null distribution

(unbiased)

Test statistic (biased) Null distribution

(biased)

Unpaired X Unpaired Y

VCST ŜnðK;LÞ kiĝ jðz2
ij � 1Þ 1

n2 trðKHnLHnÞ kiĝ jz
2
ij � �

KIT Î nðK;LÞ kigjðz2
ij � 1Þ 1

n2 trðKHnLHnÞ kigjz
2
ij � �
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only the kernel matrices KN and LM which are calculated on all the
data, paired and unpaired.

In SAT-fx, because we do not consider X as random as does
VCST, we can only incorporate unpaired Y data to learn the low-
dimensional structure of Y. In SAT-rx, we further use unpaired data
X to learn the low-dimensional space of X. The proposed new test
statistics of SAT-fx and SAT-rx have the same form as that of VCST
(4) and KIT (7), respectively. We only need to change the kernel
matrices in the test statistics. Specifically, the new test statistic for
SAT-fx is defined as ŜnðK;L0Þ, wherE

L0 ¼ L
>

UK�1
y U>L: (8)

In L0; L is the matrix comprised of the first n columns of
LN ; U ¼ ðu1; . . . ; urY

Þ and Ky ¼ diagðk̂1; . . . ; k̂rY
Þ are the top rY

eigenvectors and eigenvalues of LN.
Similarly, the new test statistic of SAT-rx that considers X as

random is ÎnðK0;L0Þ, wherE

K0 ¼ K
>

VK�1
x V>K: (9)

In K0; K is the matrix composed of the first n columns of
KN ; V ¼ ðv1; . . . ; vrX

Þ and Kx ¼ diagðĝ1; . . . ; ĝrX
Þ are the top rX

eigenvectors and eigenvalues of KN. The asymptotic null distribu-
tions of the proposed Ŝ 0n and Î

0
n have the same forms as the null dis-

tributions of Ŝn and În, but using only the top eigenvalues fkigrY

i¼1

and fgjgrX

j¼1
, respectively. The derivation details are provided in

Supplementary Section S3 of Supplementary Information.
The following theorem shows that the power of the new test stat-

istic of SAT-rx is greater than the classical one that only uses paired
data.

THEOREM 2 (Informal) Assuming that data from X and Y lie in a low-

dimensional manifold, the test power of the proposed SAT-rx is higher

than that of the KIT method, which only uses paired data.

SAT-fx follows similar properties as SAT-rx and can be considered as a

special case of SAT-rx. The proof details of Theorem 2 are given in

Supplementary Section S4 of Supplementary Information. The main

steps of our method SAT-rx is summarized in Algorithm 1. The algo-

rithm for SAT-fx is similar to that of SAT-rx, except that SAT-fx does

not use the unpaired X data.

3 Simulation study

3.1 Simulation method
To evaluate our method’s improvement of type I and type II errors,
we mimic the data missingness mechanism by conducting two levels
of simulations:

1. We synthesize both modalities X and Y. In this simulation, we

evaluate both variants of our method, including SAT-fx and

SAT-rx.

2. Following the literature of population genetics in which testing

for the heritability of traits is a topic of interest, we use genotype

data as X and synthesize Y. We only evaluate SAT-fx because X

is fixed.

In simulation (1), to generate X, we first generate N low-
dimensional (dim¼10) data points from a Gaussian distribution
and then map them to high-dimensional X using a linear transform-
ation plus independent Gaussian noise. To generate Y, we first gen-
erate low-dimensional data according to the variance components
model (see Equation 1 in the Section 2) and then map them to high-
dimensional Y using another linear transformation plus independent
Gaussian noise.

In simulation (2), we use genotype data from the COPDGene
study (Regan et al., 2011) to simulate low-dimensional phenotype
data. The COPDGene study recruited 6751 subjects with Non-
Hispanic White (NHW) and 3395 subjects with non-Hispanic
African American (AA) Backgrounds. The platform used for data
collection is Illumina HumanOmni1 Quad v1. Since the Linkage
Disequilibrium (LD) pattern in AA and NHW sub-population are
different (Shifman et al., 2003), we focus on the NHW sub-
population to avoid introducing confounder to the simulation. We
use the standard quality-controlled data that removes SNPs with
MAF < 5% or missing rate > 1% and SNPs that deviate from
Hardy-Weinberg equilibrium. We follow the generative model of a
polygenic disease where the polygenic quantitative trait y is modeled
with the model 1. The gkðxiÞ ¼

P
j2C zijuj is the genetic caused by C

causal SNPs with effect size uj and zij is the genotype of j’th SNP of
the i’th individual. We assume that C is spread out across all SNPs.
To control for population structure, we follow the common practice
in the human population genetics and use the top six principal com-
ponents of the relatedness matrix as covariates. To mimic the low-
dimensional structure of Y, we map the generated low-dimensional
phenotypes to high-dimensional Y using a linear transformation plus
independent Gaussian noise.

In all the simulations, we create 1000 simulation replicates to
evaluate the type I error rate and test power. Type I error rates and
powers are calculated using the percentage of P-values smaller than
a given significance level (a ¼ 0:05) under null models and alterna-
tive models, respectively. We set the heritability h2 ¼ 0 for the
evaluation of type I error rates and h2 ¼ 0:1 for the evaluation of
power. To show the benefits of incorporating unpaired data, we
compare the type I errors of the VCST/KIT as a baseline with two
variants of both SAT-fx and SAT-rx: with and without
Dimensionality Reduction (DR). VCST and KIT only use n paired
data points, while SAT-fx and SAT-rx use n paired data points to-
gether with an additional N – n unpaired data points. For evalu-
ation, we have access to the oracle where we can apply VCST and
KIT using all N data points as paired, which is the best we can
achieve. We set n¼100 for simulation (1) and n¼3000 for simula-
tion (2).

3.2 Simulation results
Figures 2 and 3 report the type I error rates and power in simulation
(1), respectively. Here we only show results for random X. The
results for fixed X have similar trends and are available in
Supplementary Section S5 of Supplementary Information. The
results in Figure 2 demonstrate that the type I error rates of our pro-
posed method approach the predefined significance level (0.05) as
we add more unpaired data. In addition, Figure 3 shows that our

Algorithm 1: Semi-paired association test (SAT-rx)

Data: Paired data fyi; xign
i¼1 and unpaired data fxigN

i¼nþ1 and

fyig
N
i¼nþ1, the dimension of X after dimension reduction rX,

the dimension of Y after dimension reduction rY.

1. According to kernel functions kðxi; xjÞ and lðyi; yjÞ com-

pute kernel matrices K and L on the paired data and KN

and LN on both paired and unpaired data

2. Compute kernel matrices K0 and L0 according to Equation

(8) and (9)

3. Compute the test statistic ÎnðK0;L0Þ according to Equation

(7)

4. Perform eigendecomposition of KN and get the top rX

eigenvalues ĝrX

j¼1. Perform eigendecomposition of LN and

get the top rY eigenvalues k̂
rY

j¼1

5. Sample data points fbigB
i¼1 from the asymptotic distribu-

tion
PrY

i¼1

PrX

j¼1

k̂ iĝ jðz2
ij � 1Þ, calculate the ratio R of data points

greater than the test statistic ÎnðK0;L0Þ
6. Return R as the estimated P-value;
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method’s test power increases when adding unpaired data. Though
our method has lower power than the oracle method which has ac-
cess to all the paired data, it consistently outperforms the baseline
KIT method that uses only paired data.

Figures 4 and 5 report the type I error rates and powers of all the
methods evaluated in simulation (2). Again, we can see from
Figure 4 that the type I error rates of our proposed methods ap-
proach the significance level (0.05) as we add more unpaired data.
However, because the dimensionality of the genotype is very high,
the test is still very conservative even after adding unpaired data.
Nevertheless, our method’s power exceeds that of VCST and
increases as we add unpaired data.

4 Real data application

4.1 COPD: imaging data and peripheral blood

biomarkers
In this experiment, we investigate whether the high-dimensional
radiographical measurement from Computed Tomography (CT)
imaging is associated with peripheral blood biomarker signature of
emphysema. COPD is a highly heterogeneous disease and involves
many subprocesses, including emphysema (Vestbo et al., 2013). CT
imaging is increasingly used for emphysema diagnosis because it dir-
ectly characterizes anatomical variation introduced by the disease
(Schroeder et al., 2013). Currently, Low Attenuation Area (LAA) is
used to quantify the emphysema (Rames and Jones, 2011; Sakai
et al., 1994). However, LAA is based on a single intensity threshold
value and cannot characterize variation in the texture of the lung
parenchyma due to different disease subtypes (Satoh et al., 2001).
Over the past year, researchers have proposed various generic and
specific local image descriptors that extract higher order statistical
features from CT images (Mendoza et al., 2012; Schabdach et al.,
2017; Sorensen et al., 2012). However, it is not clear whether such
high-dimensional measurements are considered phenotypes, and
whether the relationship to the causal biological processes is
maintained.

We test the association between one of these multidimensional
phenotypes and peripheral blood biomarkers. For the phenotypes,
we use the method proposed by Schabdach et al. (2017) that com-
putes the similarity between 4629 patients and associates a 100-di-
mensional vector to each patient (see Supplementary Section S6 for
details). For the blood biomarkers, we use the 114 candidate bio-
markers in Carolan et al. (2014), which were selected based on the
pilot work from the BIOSPIR group (O’Neal et al., 2014). A full list
of biomarkers analyzed in the COPDGene cohort is available in
Supplementary Table S3 of Carolan et al. (2014). Because bio-
markers are only measured for a subset of subjects, only 377
patients have both the blood biomarker and imaging data. We cor-
rect for the effects of covariates including age, sex, BMI (body mass
index) and pack-year smoking history. Figure 6a reports the
�log10ðP� valueÞ of different methods with respect to size of the
unpaired imaging data. The results show that our method takes ad-
vantage of unpaired data and detects an association between high-
dimensional imaging phenotypes and blood biomarkers that was not
detected by the baseline method using only paired data.

4.2 COPD: imaging data and peripheral blood genes
Although smoking is a major risk factor for COPD, not all smokers
develop debilitating disease, which suggests that COPD is a systemic
disease and other factors might be involved in its development. Bahr
et al. (2013) identified a set of genes whose expression is associated
with two measurements used to diagnose COPD: percent predicted
Forced Expiratory Volume in one second (FEV1) and the ratio of
FEV1 to forced vital capacity (FEV1/FVC). These genes in
Peripheral Blood Mononuclear Cells (PBMC) play a role in the im-
mune system, inflammatory responses and sphingolipid metabolism.
Similar to the previous experiment, we investigate whether the

Fig. 3. Evaluation of SAT-rx test power on the simulated data generated by proced-

ure (1) in the random X setting (DR: Dimension Reduction). The results for herit-

ability values h2 ¼ 0:1 and dimensionality dimðXÞ ¼ dimðYÞ ¼ 50; 100; 200 are

shown. KIT only uses the n¼ 100 paired data points. Our methods start with n pairs

and gradually add unpaired data to improve test power

Fig. 4. Evaluation of SAT-fx type I error rate control on the data generated in simu-

lation (2). VCST only uses the n¼ 3000 paired data points. Our method SAT-fx

starts with n pairs and gradually adds unpaired data to improve type I error control

Fig. 5. Evaluation of SAT-fx test power on the data generated in simulation (2).

VCST only uses the n¼ 3000 paired data points. Our method SAT-fx starts with n

pairs and gradually adds unpaired data to improve test power

Fig. 6. Experiments on three real imaging and genetics datasets. (a) Test an associ-

ation between multidimensional imaging features and plasma biomarkers. (b) Test

an association between imaging features and peripheral blood mononuclear cell

gene expression data. (c) Test an association between imaging features and gene ex-

pression of genes in immune system pathway of the disease. In all the experiments,

we start with n paired data points and show the behavior of our methods when add-

ing unpaired data, with and without dimensionality reduction (DR)

Fig. 2. Evaluation of SAT-rx type I error rate control on the simulated data gener-

ated by procedure (1) in the random X setting. The blue line (KIT) is the result of

using only paired data; hence it does not change with addition of unpaired data.

KIT only uses the n¼ 100 paired data points. Our methods (green and orange) start

with n pairs and gradually adds unpaired data to improve type I error control.

False-positive rates for both variants of our method SAT-rx are well controlled

around the nominal value (DR: Dimension Reduction)
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multidimensional imaging phenotype is associated with the genes
identified in (Bahr et al., 2013). We use the same set of imaging phe-
notypes as done in the previous experiment. In this dataset, 90 sub-

jects have both phenotype and gene expression measurements while
more than 4539 subjects only have imaging phenotypes. We use the
same covariates as the previous experiment. Figure 6b shows that

our method exploits the unpaired data and results in lower P-values,
suggesting an association between the imaging phenotypes and

PBMC gene expression (P-value < 0.05) while the P-values of the
baseline method using only paired data fails to pass the significance
level.

4.3 COPD: imaging data and immune system gene

expression
In this experiment, we apply our method again in the context of
COPD but on a different dataset (Kim et al., 2015). We investigate

the hypothesis that anatomical changes manifested on images are

related to auto immune pathways. More specifically, we chose the
‘immune disease’ and ‘immune system’ gene pathways in the KEGG
database (Kanehisa and Goto, 2000). We apply our method to imag-

ing phenotypes and gene expression data containing 319 subjects
from several sources (gene expression data from the GEO reposi-
tory, imaging and clinical information from the Lung Genomics

Research Consortium) (Kim et al., 2015). The details of imaging
phenotypes are given in Supplementary Table S1. Because only 60

patients have imaging phenotypes, we have a number of unpaired
gene expression data. We compare our method with the baseline
method that does not use the unpaired gene data and the results are

shown in Figure 6c. We can see that our method finds more signifi-
cant associations as we add more unpaired data.

4.4 Heritable phenotype discovery
In this section, we use the General Population Cohort (GPC),
Uganda (Asiki et al., 2013), to establish genotype-phenotype

Table 2. P-values on Uganda General Population Cohort

h2 KIT SAT-rx (w/o DR) SAT-rx Oracle

P-value P-value

(Bonf)

P-value P-value

(Bonf)

P-value P-value

(Bonf)

P-value P-value (Bonf)

SBP 0.22 0.293 1.000 0.224 1.000 0.128 0.897 0.010 0.195

DBP 0.29 0.091 0.928 0.031 0.537 7.25e-03 0.138 <1.00e-05 <1.90e-04

BMI 0.37 0.101 0.907 0.035 0.528 0.011 0.214 <1.00e-05 <1.90e-04

WHR 0.14 0.249 1.000 0.171 0.901 0.119 0.810 0.033 0.630

Weight 0.43 0.057 0.819 0.012 0.235 1.63e-03 0.031 <1.00e-05 <1.90e-04

Height 0.50 0.031 0.532 3.81e-03 0.072 1.74e-04 3.31e-03 <1.00e-05 <1.90e-04

HC 0.37 0.095 0.930 0.031 0.503 0.010 0.196 <1.00e-05 <1.90e-04

WC 0.31 0.127 0.928 0.057 0.662 0.022 0.345 1.20e-05 2.28e-04

ALT 0.37 0.204 0.920 0.172 0.646 0.106 0.617 1.76e-03 0.033

Albumin 0.44 0.117 0.983 0.046 0.593 0.024 0.395 <1.00e-05 <1.90e-04

ALP 0.12 0.442 1.000 0.419 1.000 0.318 1.000 0.261 1.000

AST 0.25 0.293 1.000 0.322 1.000 0.276 0.875 0.187 1.000

Bilirubin 0.45 0.046 0.629 0.027 0.390 8.43e-03 0.160 <1.00e-05 <1.90e-04

Cholesterol 0.60 0.024 0.448 2.25e-03 0.043 1.96e-04 3.72e-03 <1.00e-05 <1.90e-04

GGT 0.11 0.307 1.000 0.290 0.801 0.265 0.800 0.039 0.734

HDL 0.51 0.063 0.717 0.017 0.326 4.76e-03 0.090 <1.00e-05 <1.90e-04

LDL 0.60 0.012 0.222 6.10e-04 0.012 2.20e-05 4.18e-04 <1.00e-05 <1.90e-04

Triglycerides 0.27 0.242 1.000 0.164 1.000 0.126 0.880 6.76e-04 0.013

HbA1c2 0.56 6.23e-03 0.118 3.66e-04 6.95e-03 1.80e-05 3.42e-04 <1.00e-05 <1.90e-04

WBC 0.44 6.95e-03 0.139 <1.00e-05 <2.00e-04 <1.00e-05 <2.00e-04

RBC 0.39 0.011 0.219 4.40e-05 8.80e-04 �1.00e-05 <2.00e-04

Hemoglobin 0.20 0.041 0.815 1.18e-03 2.36e-02 1.40e-05 2.80e-04

HCT 0.22 0.025 0.508 3.36e-04 6.72e-03 <1.00e-05 <2.00e-04

MCV 0.57 1.47e-03 0.029 <1.00e-05 <2.00e-04 <1.00e-05 <2.00e-04

MCH 0.53 2.50e-03 0.050 <1.00e-05 <2.00e-04 <1.00e-05 <2.00e-04

MCHC 0.72 <1.00e-05 <2.00e-04 <1.00e-05 <2.00e-04 <1.00e-05 <2.00e-04

RDW 0.33 6.70e-03 0.134 <1.00e-05 <2.00e-04 <1.00e-05 <2.00e-04

PLT 0.48 3.00e-03 0.060 <1.00e-05 <2.00e-04 <1.00e-05 <2.00e-04

MPV 0.57 1.00e-05 2.00e-04 <1.00e-05 <2.00e-04 <1.00e-05 <2.00e-04

NEUPr 0.39 0.015 0.304 7.80e-05 1.56e-03 <1.00e-05 <2.00e-04

LYMPHPr 0.47 3.30e-03 0.066 <1.00e-05 <2.00e-04 <1.00e-05 <2.00e-04

MONOPr 0.48 7.48e-03 0.150 <1.00e-05 <2.00e-04 <1.00e-05 <2.00e-04

EOSPr 0.41 1.13e-01 1.000 0.017 0.331 7.08e-04 0.014

BASOPr 0.47 9.60e-04 0.019 <1.00e-05 <2.00e-04 <1.00e-05 <2.00e-04

LYMPH 0.52 4.10e-04 0.008 <1.00e-05 <2.00e-04 <1.00e-05 <2.00e-04

NEU 0.35 0.062 1.000 3.31e-03 0.066 6.00e-05 1.20e-03

MONO 0.43 0.012 0.236 2.40e-05 4.80e-04 <1.00e-05 <2.00e-04

EOS 0.39 0.212 1.000 0.080 1.000 6.78e-03 0.136

BASO 0.50 1.20e-05 2.40e-04 <1.00e-05 <2.00e-04 <1.00e-05 <2.00e-04

Note: The newly found associations by our method at the significance level 0.05 are marked as bold. Since we mimic the missingness for phenotypes in the top

part of the table, we are able to compare our performance with the oracle. In the bottom part of the table, a subset of the subjects has a missing phenotype; hence,

the oracle columns are empty.
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associations in Genome-Wide Association Studies (GWAS), and
show that our method can benefit from unpaired data.

GWAS have discovered many genetic risk variants of common
diseases (Ehret et al., 2011; Gratten et al., 2014). Before performing
GWAS, one should test the hypothesis that a given phenotype is
‘heritable’ or not. Given the observation of a phenotype in a popula-
tion of subjects, so-called narrow sense heritability is defined as an
additive genetic portion of the phenotypic variance (Visscher et al.,
2006; Yang et al., 2010). A linear mixed model (LMM), which is a
form of multivariate regression, is used to estimate the heritability
(h2). Testing for the null hypothesis ofH0 : h2 ¼ 0 can be done using
VCST and the power of the test is affected by the sample size.

We apply our method to study the heritability of a set of pheno-
types from the General Population Cohort (GPC), Uganda. More
specifically, it contains 37 phenotypes, including anthropometric in-
dices, blood factors, glycemic control, blood pressure, lipid tests and
liver function tests (see the complete list of phenotypes in
Supplementary Section S8). Initially, 5000 individuals were geno-
typed using the Illumina HumanOmni 2.5 M BeadChip array, out of
which 4778 samples pass the quality control. We follow
(Heckerman et al., 2016) exactly for quality control including the
Hardy-Weinberg equilibrium (HWE) test, exclusion of Single
Nucleotide Polymorphisms (SNPs) with low Minor Allele Frequency
(MAF) and computation of the related matrix.

Among all the phenotypes, 18 phenotypes were measured for all
the subjects, while the remaining 19 phenotypes were recorded for
only 1423 subjects. Thus we conduct two sets of experiments for
these two sets of phenotypes. For the 18 phenotypes measured for
all individuals, we conduct experiments to mimic the random miss-
ingness of phenotypes. We subsample 3000 individuals as unpaired
data and allocate the rest as paired data. We compare the P-values
of the KIT as a baseline with two variants of SAT-rx, with and with-
out dimensionality reduction. In this experiment, we are mimicking
the missingness, hence we have access to the oracle, i.e. applying
KIT using all data as paired, which is the best we can achieve and
which we also compare with our method. For each phenotype, we
run the experiments for five times and report the mean of the P-val-
ues. The standard deviation of the P-values is reported in
Supplementary Information S9. The upper half of Table 2 reports
the P-values generated by different methods for all evaluated pheno-
types. We can see that the oracle produces much smaller P-values in
general, while the baseline KIT method can hardly find significant
associations. Our SAT-rx method clearly outperforms the KIT
method and approaches the performance of the oracle on some phe-
notypes. Among the 18 phenotypes, our method finds 5 more herit-
able phenotypes than the baseline method at significance level 0.05.

For the other 19 phenotypes, 1415 individuals have both geno-
type and phenotype values, and the remaining individuals are con-
sidered unpaired (only genotype). For each phenotype, we also run
the experiments for five times and report the mean of the P-values.
The standard deviation of the P-values is reported in Supplementary
Information S9. We compare the P-values of the KIT as a baseline
with two variants of SAT-rx, with and without dimensionality re-
duction. The lower half of Table 2 reports the P-values for all meth-
ods evaluated on these phenotypes. Among the 19 phenotypes, our
method identifies 12 more heritable phenotypes than the baseline
method at significance level 0.05.

From the results, we can see that the P-values of the 19 unpaired
phenotypes are more significant than the 18 paired phenotypes. This
suggests that phenotypes with unpaired data may have a stronger
correlation with the genotypes. We also provide heritability estima-
tion of all the phenotypes, as shown in Table 2. It can be seen that
the heritability values for the 19 unpaired phenotypes are generally
larger than those of the paired phenotypes.

5 Discussion

In this article, we have developed SAT, an association test method
that can incorporate unpaired data to improve the test power.
Unpaired data is unavoidable because existing datasets often require
efforts from multiple sites and the data collection process is not

necessarily perfectly synchronized. Our method makes better use of
current datasets, providing greater test power and thus enabling new
discoveries from limited data. First, we have used simulations to
show that SAT better controls type I error and has improved power
compared to classical methods that only use paired data. Second, in
an analysis of 18 phenotypes in the General Population Cohort for
which all individuals have paired data, we have found that SAT,
using a fraction of the data as paired data and the rest as unpaired
data by mimic missingness, produces P-values that are closer to the
P-values generated by the oracle method, which has access to all the
paired data, than does the classical KIT method. In the analysis of
the other 19 phenotypes in the GPC, for which only 1/4 of the sub-
jects have phenotype data, our SAT method discovers new genetic
associations that cannot be discovered by KIT, which ignores the un-
paired data. Finally, we applied our method to three real imaging-
genetics tasks in which not all subjects have paired data, and the
results demonstrate that P-values from our method pass the signifi-
cance level while previous methods fail to find significant associa-
tions. All of the results suggest that our method has much better
chance to discover new associations when given limited paired data
and a reasonable amount of unpaired data. Although we demon-
strate the capability of SAT in imaging-genetics tasks, it can be po-
tentially applied to discover relations between many types of
multidimensional data when unpaired data exist. It is worth noting
that our method relies on the assumption that the data missing
mechanism is independent to the association relationship. If this as-
sumption is violated, for example we are only given biased paired
data, our method cannot recover the original association.
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Data availability

The imaging and genetic data for the COPD genomic data are
accessible via dbGap (https://www.ncbi.nlm.nih.gov/projects/
gap/cgi-bin/study.cgi?study_id¼phs000179.v1.p1). Further, pre-
processed data can be requested from the COPDGene consor-
tium by submitting an ancillary study to SteppL@njhealth.org.
Pre-processing of the imaging data follows steps explained in
(Schabdach et al. 2017). The GPC genomic data are available
at the European Genome-phenome Archive (EGA) under acces-
sion number EGAS00001001558.
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