
ORIGINAL ARTICLE

Probiotic Pre-treatment Reduces Gliclazide Permeation (ex vivo)
in Healthy Rats but Increases It in Diabetic Rats to the Level Seen
in Untreated Healthy Rats

Hani Al-Salami, Postgrad Dip Pharmacy, MPS, MPD,* Grant Butt, PhD,† Ian Tucker, Prof,*
Ranko Skrbic, Prof,‡ Svetlana Golocorbin-Kon, Mast Pharmacy,‡ and Momir Mikov, Prof*

*School of Pharmacy and †Department of Physiology, University of Otago, Dunedin, New Zealand; ‡Department of
Pharmacology, Medical Faculty, University of Banja Luka, Save Mrkalja Banja Luka, Bosnia and Herzegovina

DOI: 10.1111/j.1753-5174.2008.00006.x

A B S T R A C T

Aim. To investigate the influence of probiotic pre-treatment on the permeation of the antidiabetic drug gliclazide
in healthy and diabetic rats.
Methods. Wistar rats (age 2–3 months, weight 350 � 50 g) were randomly allocated into one of 4 groups (N = 16
each group): healthy control, healthy probiotic, diabetic control, and diabetic probiotic. Probiotics (75 mg/kg, equal
quantities of Lactobacillus acidophilus, Bifidobacterium lactis, and Lactobacillus rhamnosus) were administered twice a day
for three days to the appropriate groups after diabetes had been induced with alloxan i.v. 30 mg/kg. Rats were
sacrificed, ileal tissues mounted in Ussing chambers and gliclazide (200 mg/mL) was administered for the measure-
ment of the mucosal to serosal absorption Jss(MtoS) and serosal to mucosal secretion Jss(StoM) of gliclazide.
Results. Treatment of healthy rats with probiotics reduced Jss(MtoS) of gliclazide from 1.2 � 0.3 to 0.3 � 0.1 mg/min/
cm2 (P < 0.01) and increased Jss(StoM) from 0.6 � 0.1 to 1.4 � 0.3 (P < 0.01) resulting in net secretion while, in diabetic
tissues, treatment with probiotics increased both Jss(MtoS) and Jss(StoM) fluxes of gliclazide to the comparable levels of
healthy tissues resulting in net absorption.
Discussion. In healthy rats, the reduction in Jss(MtoS) after probiotics administration could be explained by the
production of bacterial metabolites that upregulate the mucosal efflux drug transporters Mrp2 that control gliclazide
transport. In diabetic rats, the restored fluxes of gliclazide after probiotic treatment, suggests the normalization of the
functionality of the drug transporters resulting in a net absorption.
Conclusion. Probiotics may alter gliclazide transport across rat ileal tissue studied ex vivo.
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Introduction

P robiotics are dietary supplements that con-
tain live bacteria, which when consumed in

adequate amounts, confer a health benefit on the
host [1]. In order to improve the efficacy of pro-
biotics, combinations of different bacterial strains
can be used [2–4] with the mixture of Lactobacillus
and Bifidobacteria being a common choice [3]. Pro-
biotics are used in the treatment of a range of
diseases such as infections, allergies, and inflam-

matory disorders [5–9]. However their use as a
form of treatment for autoimmune diseases such as
type 1 diabetes (T1D) is a current area of intense
research and development [10].

Diabetic patients differ considerably in their
response to antidiabetic drugs due to factors such
as ethnicity, drug interactions and disease state
[11,12], hence a thorough understanding of
the pharmacokinetics and pharmacodynamics of
antidiabetic drugs is essential to optimize individu-
alized drug therapy. Drug optimization can also
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lead to fewer diabetic complications and a better
quality of life [13]. Given the potential to use pro-
biotics for the treatment of T1D, their integration
with drug therapy should be explored further.
Antidiabetic drugs are generally administered
orally and vary considerably in their bioavailability
[14–16]. This variation plays a significant role in
their efficacy and safety [12,13]. Gliclazide is a
second generation sulphonylurea used to treat
non-insulin dependent diabetes mellitus (Type P
diabetes) [17]. Its primary mode of action is to
induce insulin secretion by pancreatic b-cells
[18,19] and as a result, it is ineffective, when
administered alone, in the treatment of insulin
dependent diabetes (Type I diabetes) [20].

The oral route is the most popular means for
drug administration, since dosing is convenient
and non-invasive [21]. However, the gastrointesti-
nal mucosa represents a physical and biochemical
barrier to the systemic availability of orally
ingested, pharmacologically active molecules [22].
The function of the biochemical barrier depends
largely upon the metabolism of drugs by intracel-
lular enzymes and the operation of specific mem-
brane transport systems. The efficacy of many
drugs depends largely on their ability to cross cel-
lular barriers to reach their target. However, the
extent to which a drug reaches its targets within a
tissue is limited not only by its ability to enter cells
but by its tendency to depart due to the activity
of efflux mechanisms in the plasma membrane.
These efflux mechanisms such as the drug trans-
porters Mdr1, Mrp2 and Mrp3, play a critical role
in limiting the absorption and excretion of poten-
tially toxic drugs and can effectively confer resis-
tance to a diverse range of compounds [23].
Studying the influence of efflux drug transporters

on drug permeability, in humans and animals, can
be achieved by using Ussing chambers [24]. Tran-
scellular absorption from lumen to blood requires
drug uptake across the apical membrane, followed
by transport across the cytosol, then exit across the
basolateral membrane into blood [25]. Drugs that
cross the apical membrane may be substrates for
apical efflux transporters, which extrude com-
pounds back into the lumen [26,27]. These apical
efflux transporters are principally ABC transport
proteins such as Mdr1, Mrp2, and Mrp3. These
transporters pump out intracellular drugs or
metabolites which they recognize [28]. Mdr1 and
Mrp2 are located in the apical membrane of the
intestinal epithelial cells and act as the first line of
defence by limiting the absorption of potentially
toxic compounds while Mrp3 are located on the
basolateral membrane and remove their substrates
from enterocytes to circulation (Figure 1). In a
recent study, gliclazide absorption through the
rat’s ileum has been shown to be controlled by the
efflux drug transporters Mrp2 and Mrp3 [29].

The changes in gut flora composition and gut
motility have been reported in diabetes [30,31].
Accordingly, in this study we investigated the
influence of treatment with probiotics on the per-
meation of the antidiabetic drug gliclazide in
healthy and diabetic animals.

Materials and Methods

Materials
Gliclazide (99.92%) was purchased from Sigma
Chemical Co, St Louis, MO, USA. ULTRA Water
soluble transmission gel (hypoallergenic) was pur-
chased from Medtel PTY. LTD. NSW, Australia.
Freeze dried cultures of Lactobacillus acidophilus,

Figure 1 Gliclazide permeation through the ileal enterocytes through the action of the efflux transporters Mrp2 and Mrp3.
G: gliclazide, G-: the negative ion of gliclazide molecule and H+: the proton produced from gliclazide ionization. Mrp:
multi-resistance associated protein transporter. 5%: the percentage of the unionized gliclazide molecule inside the entero-
cytes (ileal mucosa). 95%: the percentage of the ionized gliclazide molecules inside the enterocytes.
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Bifidobacterium lactis, and Lactobacillus rhamnosus
were kindly provided by Professor John Tagg
(Department of Microbiology, University of
Otago) and Dr. Chris Chilcott (BLIS Technolo-
gies, Dunedin, New Zealand). All chemicals and
solvents were of HPLC grade.

Drugs Preparations
The gliclazide suspension 20 mg/mL was prepared
by adding gliclazide powder to 10% Ultra water-
soluble gel and mixing thoroughly at 37°C for 6
hours, and used within 48 hours of preparation.

Animal Protocol and Ussing Chambers’
Samples Preparations
The study was approved by the Otago University
Animal Ethics Committee, New Zealand.

Male Wistar rats (age 3–5 months, weight
350 � 50 g g) were randomly allocated into 2
groups, healthy (group 1) and diabetic (group 2),
and were maintained in an experimental animal
facility and given standard diet and water ad
libitum. Temperature and light were controlled to
mimic the natural habitat. Diabetes was induced
by injecting alloxan (30 mg/kg) intravenously
into the tail vein [32,33]. Rats were considered
diabetics if blood glucose concentration was
>20 mmol/L and serum insulin <0.04 mg/L, 2 to 3
days after alloxan injection [34–36]. Diabetic rats
showed signs of polydipsia (abnormal thirst), poly-
uria (increased urination), weight loss (due to lean
mass loss), and asthenia (weakness due to inability
to utilise glucose) [33]. Healthy-probiotic (group
1) and diabetic-probiotic (group 2) were gavaged a
freshly made mixture of L. rhamnosus GG, L. aci-
dophilus, and Bifidobacterium lactis 25 mg/kg each,
twice daily for three days starting the next day after
the onset of diabetes. Rats were sacrificed by CO2

then a midline longitudinal incision was made and
the distal ileum (10 cm) was removed, flushed free
of luminal contents with Ringer’s (in mM: 140
Na+, 5.2 K+, 1.2 Ca2

+, 1.2 Mg2
+, 120 Cl-, 25

HCO3
-, 2.4 HPO4

2- and 0.4 H2PO4
-). The iso-

lated ileum was mounted on a glass rod and the
adherent tissues were carefully removed using a
pair of blunt forceps. The Ringer’s was then
warmed to 37°C in a water bath and bubbled with
carbogen (95% O2: 5% CO2) for 20 minutes to
obtain a pH of 7.4 � 0.05 prior to use. The excised
section was opened along the mesenteric border,
stripped off the underlying muscular layer, and
mounted in Ussing chambers as flat sheets
(exposed area 0.7 cm2). The pieces of the ileal
mucosa (tissues) were placed between the two

halves of the chambers and bathed by 10 mL of
Ringer’s on each side, and maintained at 37°C in
water-jacketed reservoirs. Oxygenation and circu-
lation was achieved by gas lift.

100 mL of gliclazide suspension (20 mg/mL)
was added to the mucosal or the serosal side (final
concentration = 200 mg/mL) of the Ussing
chambers (at t = 0) and 20 mL samples were taken
at -20, -19, 0, 10, 20, 30, 40, 60, 90, 120, and
180 minutes. Samples taken were immediately
replaced by the same volume of Ringer’s. Cumu-
lative corrections were made for previously
removed samples.

HPLC and MS Analysis
The gliclazide concentrations in Ringer’s was
measured using high performance liquid chroma-
tography (HPLC) based on the method of Park
et al. and Rouini et al. [37,38]. Samples were
mixed with acetonitrile in a 2:1 ratio, and after
vortexing (for 20 seconds) and centrifuging
(15,000 rpm for 15 minutes), the supernatant
(20 mL) was injected into the HPLC system.

The column was a Luna 5 mm C18 (2)
100 ¥ 2.00 mm from Phenomenex with a guard
column (4 ¥ 2.0 mm) also from Phenomenex. The
detector was a Shimadzu, UV-V15 detector set at
229 nm. The mobile phase was acetonitrile 49%
and water 51%, pH adjusted to 2.7 by orthophos-
phoric acid, at a flow rate of 0.4 mL/minute. The
retention time for gliclazide was 2.9 minutes. A
gliclazide standard curve was constructed using
standard solutions of 0.5, 1, 2.5, 5, 10, 20, 40, 100,
200, 400 and 600 mg/mL. The within-day coeffi-
cient of variation ranged from 1.2% at 100 mg/mL
to 2.9% at 0.5 mg/mL. The limit of detection
was 0.4 mg/mL and the limit of quantitation was
0.8 mg/mL. The recovery rate of gliclazide from
serum was 89 � 4.1%.

Gliclazide samples were assayed once by MS,
to assess gliclazide stability. MS was carried out
on an LCQ Deca ion trap (Finnigan, Austin, TX,
USA). Electrospray ionization in the negative ion
mode was used. The instrumental parameters
were: source spray voltage, 5.5 kV; capillary
voltage, 44 V; heated capillary temperature,
150°C; sheath gas (nitrogen), 50 units. The
MS/MS product ion spectra were produced by
collision induced dissociation of the target
molecular ions with optimized relative collision
energy (CE) of 30 eV and isolated width (m/z) of
1. Excalibur version 1.2 (Finnigan) was used for
data processing.
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The steady-state flux (Jss) was based on the
appearance of drug in the receiver (recipient)
chamber under sink conditions:

Jss dC V dt Ar r= ( )[ ]. .

Where dCr/dt is the change in drug concentra-
tion in the receiver chamber at steady-state over
time, Vr is the volume of receiver buffer (10 mL),
A is the cross-sectional area of the exposed tissue
(0.7 cm2). The flux ratio was calculated as the ratio
of Jss of the mucosal to serosal over the serosal to
mucosal, at equal drug concentrations.

Measurements of electrophysiological param-
eters of the mounted segments were made [39].
Transmural potential difference (PD) was short
circuited by a dual voltage-clamp system (Biode-
sign, South Campus Electronics, University of
Otago, Dunedin, NZ). The short circuit current
(Isc) was corrected for fluid resistance. At the end
of each experiment, tissues viability was tested by
adding 30 mM glucose solution into the mucosal
chamber and reporting the change in resistance
(W.cm2) and Isc (mA/cm2). All data was from tissues
which had a resistance and Isc >30 W.cm2 and
30 mA/cm2, respectively through out the experi-
ment, and with >20 increase in Isc (mA/cm2)
observed after the addition of glucose. Data were
reported as mean � standard deviation. Differ-
ences were considered significant if P < 0.05 using
the nonparametric K-independent samples tests
by SPSS (SPSS Inc. Version 13, USA) as well as
the analysis of variance (anova) by Minitab
(Minitab, Version 14; Minitab Inc, USA).

Results

The Effect of Probiotics on the Permeation of
Gliclazide in Healthy and Diabetic Tissues
We have previously shown that in the ileum from
healthy rats, the Jss(MtoS) of gliclazide was signifi-

cantly greater than Jss(StoM) flux resulting in the net
absorption of gliclazide, which was most likely due
to the activity of the efflux drug transporters Mrp2
and Mrp3. In contrast, in the ileum of diabetic
rats, there was no net flux of gliclazide and the
unidirectional fluxes were much smaller than those
seen in healthy animals, suggesting a modification
of the activity of Mrp2 and Mrp3 in type 1 diabe-
tes.40 In the present study we demonstrate that the
treatment with probiotics modified the gliclazide
fluxes in both healthy control and diabetic animals.
Accordingly, treatment with probiotics of healthy
rats for three days reduced gliclazide permeation
and increased its secretion through the ileum.
This was a consequence of a six fold reduction
(P < 0.01) of the Jss(MtoS) of gliclazide and a two fold
stimulation of the Jss(StoM) of gliclazide (P < 0.01)
compared to untreated animals. In contrast, in dia-
betic animals, treatment with probiotics stimu-
lated the net absorption of gliclazide as a result of
increasing Jss(MtoS) and reducing Jss(StoM) (P < 0.01)
to levels similar to that of healthy untreated
animals (Table 1).

Collectively, our data show a change in gli-
clazide permeation through the ileum brought
about by probiotic pre-treatment. This effect was
different between healthy and diabetic rats.

Discussion

In this study, we investigated the influence of treat-
ment with probiotics on the ex vivo permeation of
gliclazide, in healthy and diabetic rats, with the
proposition that the chronic treatment with pro-
biotics can change tissues permeability in healthy
and diabetic animals. Gliclazide flux was used as an
index of its permeation through the intestinal
tissues and was measured using Ussing chambers.

We demonstrated in a previous study that gli-
clazide is a substrate of the ileal efflux drug trans-
porters Mrp2 and Mrp3, and that these drug

Table 1 Comparison between, the mucosal to serosal (M to S) and the serosal to mucosal (S to M) flux of gliclazide, at
steady state (Jss), after treatment with probiotics, in tissues from healthy and diabetic rats. Tissues resistance through
the course of the experiments, and the current change after glucose challenge, are shown. Data are mean � SD

Groups

Jss (M to S)

(mg/min/cm2)
N = 16

Jss (S to M)

(mg/min/cm2)
N = 16

Resistance (W.cm2)
N = 32

D Short Circuit current (Isc)
after glucose challenge (mA/cm2)
N = 32

M to S
N = 16

S to M
N = 16

M to S
N = 16

S to M
N = 16

Healthy (control) 1.18 � 0.27 0.62 � 0.14 41.03 � 8.4 46.17 � 10.6 30.36 � 7.91† 33.14 � 9.7†

Healthy-probiotic 0.26 � 0.05* 1.38 � 0.29* 55.03 � 9.4 41.17 � 8.6 35.9 � 6.5† 29.21 � 5.8†

Diabetic (control) 0.34 � 0.09 0.35 � 0.10 44.25 � 9.97 45.39 � 8.4 41.08 � 6.23† 38.47 � 8.14†

Diabetic-probiotic 1.26 � 0.26* 0.66 � 0.19* 50.25 � 11.7 46.22 � 10.6 37.4 � 4.8† 40.36 � 7.66†

*P < 0.01 gliclazide flux at steady state compared with the corresponding control.
†P < 0.01 Isc after glucose challenge compared with zero difference.
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transporters are inhibited in the alloxan-induced
diabetic rats with no net absorption of gliclazide
[40]. In the present study, we have introduced the
chronic treatment with probiotics, to investigate
the influence of probiotics on gliclazide perme-
ation in diabetic tissues. Our results show that
chronic treatment of diabetic rats, with probiotics
for three days, resulted in the net absorption of
gliclazide through presumably the stimulation of
Mrp2 and Mrp3, increasing both Jss(MtoS) and
Jss(StoM) to the comparable levels of healthy tissues,
while tissue resistance remained constant in all the
groups throughout the course of the experiment.

Our results show that, in healthy tissues, treat-
ment with probiotics markedly reduced Jss(MtoS) (6
fold, P < 0.01). One potential explanation would
be Mrp2 upregulation, which could reduce the
absorption of gliclazide by extruding more gli-
clazide back into the mucosal solution. This
upregulation of Mrp2 was supported when probi-
otic treatment increased the secretory unidirec-
tional flux Jss(StoM) of gliclazide in healthy tissues (2
fold, P < 0.01). Another possibility is the forma-
tion of a “thicker” layer of the adherent mucous as
a result of the chronic treatment with probiotics
[41], which increases the physical barrier protect-
ing the enterocytes. This newly formed “bacterial”
barrier may reduce gliclazide ability to reach the
mucosal layer of the enterocytes and results in less
gliclazide penetrating the enterocytes. Polypep-
tides originating from gut flora, such as Lactobacil-
lus and Bifidobacteria have been shown to stimulate
bacterial efflux drug transporters although a
similar effect has not been shown in mammalian
epithelial enterocytes [42–44]. Accordingly, in this
study we postulate a similar effect on rat’s ileal
enterocytes, in particular the upregulation of the
efflux drug transporters Mrp2 which we have
shown, in a previous study [29] to control gli-
clazide ileal permeation. However, the study had
significant limitations:

1. The expression of efflux transporters was not
measured e.g., by immunohistochemistry or by
blocking with a drug or antibody.

2. No controlled drug(s) was used which is known
for being an Mrp substrates.

3. PK parameters were not measured.
4. Other cell cultures such as Caco-2 cells or

Madin Derby Canine Kidney cells were not
used to confirm results.

In conclusion, in the intestinal tissue of alloxan
treated diabetic rats there is no net absorption of
gliclazide across the ileal epithelium presumably

due either to suppressed or malfunctional drug
transporters. The results presented in this study
demonstrate that the treatment with probiotics
reversed the effect of alloxan-induced diabetes on
ex vivo gliclazide transport, resulting in the net
absorption of gliclazide across the tissue. In addi-
tion, when administered to healthy rats, probiotics
treatment inhibited the absorptive and stimulated
the secretory fluxes of gliclazide. In contrast, when
applied to diabetic tissues, probiotics treatment
induced an overall absorptive efflux through
stimulating the net unidirectional flux, in the
mucosal to serosal direction, and thus enhancing
the net absorption of gliclazide across the tissue.
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