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Diffuse neural coupling mediates complex network
dynamics through the formation of quasi-critical
brain states
Eli J. Müller 1✉, Brandon R. Munn1 & James M. Shine 1,2

The biological mechanisms that allow the brain to balance flexibility and integration remain

poorly understood. A potential solution may lie in a unique aspect of neurobiology, which is

that numerous brain systems contain diffuse synaptic connectivity. Here, we demonstrate

that increasing diffuse cortical coupling within a validated biophysical corticothalamic model

traverses the system through a quasi-critical regime in which spatial heterogeneities in input

noise support transient critical dynamics in distributed subregions. The presence of quasi-

critical states coincides with known signatures of complex, adaptive brain network dynamics.

Finally, we demonstrate the presence of similar dynamic signatures in empirical whole-brain

human neuroimaging data. Together, our results establish that modulating the balance

between local and diffuse synaptic coupling in a thalamocortical model subtends the emer-

gence of quasi-critical brain states that act to flexibly transition the brain between unique

modes of information processing.
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The brain is a complex, adaptive system that is organized
across multiple spatial and temporal scales. Systems
arranged in this way must solve a number of competing

challenges. First, they must balance segregation—the need to
retain precise, specialist functional capacities—and integration—
in which information from segregated subregions is recombined
at larger spatiotemporal scales1,2. Second, the brain must remain
flexible enough to retain sufficient sensitivity to fluctuations in
evolving fitness landscapes3. Finally, the systems must coordinate
these capacities in ways that are energetically frugal4, which
favors systems with relatively low-dimensional architectures5.
How the brain is arranged to achieve these distinct constraints,
and what physical mechanisms underpin them, remains poorly
understood.

A solution to this challenge may be found in a somewhat over-
looked principle of neuroanatomy. A number of circuits in the
brain, such as the ascending neuromodulatory system6 and the
non-specific, “matrix” cells of the thalamus7, project their axons
in a relatively diffuse pattern that targets multiple distinct neural
regions. These circuits are incompatible with the traditional
notion of “message passing” between individual neurons that are
typically ascribed to targeted, feed-forward projections between
neurons8. So why might these highly conserved, diffuse connec-
tions exist as such a prominent feature of neuroanatomy?

A potential benefit of balancing targeted and diffuse coupling is
that systems structured in this way may be able to support
multiple distinct modes of processing. For instance, targeted
connections between neural subregions will influence local
neighbors in a relatively segregated mode, whereas diffuse con-
nections may force distant regions into novel regimes that are
impacted more strongly by the global brain state. Crucially, by
modulating the amount of global, diffuse connectivity, the system
could control its information processing capacity in an energy
efficient manner9.

Systems that support multiple distinct modes often exhibit optimal
functional properties at the transition point (or critical point), such as
maximizing information transmission, the dynamic range, and the
number of metastable states10–12. Rather than balancing precisely at a
specific critical point, there is now robust evidence to suggest that
complex systems such as the brain may display an enlarged/stretched
critical point. This stretched critical regime (quasi-critical) allows the
system to more readily utilize the optimal functional properties
bestowed at criticality13–16. Near this quasi-critical region of state
space, heterogeneity within the brain should allow subregions to
experience transient excursions into the quasi-critical regime17,18.
This would allow the system to harness the benefits of criticality (e.g.,
divergence of correlation length), without the associated risk of
transitioning en masse into a pathological state of global
synchronization19,20.

In this manuscript, we propose that this mechanism could be
exploited in the brain by modulating the balance between local
and diffuse synaptic coupling in the thalamocortical system. This
in turn would imbue the system with the capacity to support the
complex, adaptive system dynamics that support higher brain
function.

Results
To test the hypothesis that diffuse coupling promotes a diversity
of quasi-critical neural states, a network of biophysically plausible
corticothalamic neural mass models was used to simulate large-
scale human brain activity (Fig. 1). Neural mass models, which
are a spatially discretized class of a neural field model, provide a
tractable framework for the analysis of large-scale neuronal
dynamics by averaging microscopic structure and activity21–26.
These models are flexible, physiologically realistic, and inherently

non-linear,23–31, and have successfully accounted for many
characteristic states of brain activity20,21,25,27,30,32–34. Impor-
tantly, this work extends an existing and validated biophysical
model, which itself has been extensively constrained by human
electrophysiology data35. This feature ensures that we have
oriented the system to a plausible region of state space, and
further implies that our results will lead to testable empirical
predictions related to the impact of diffuse inputs.

The specific neural mass model used in our study contained
four distinct neural populations: an excitatory pyramidal cell, e,
and an inhibitory interneuron, i, population in the cortex; and
excitatory specific relay nuclei, s, and inhibitory thalamic reticular
nuclei, r, population in the thalamus. The parameters from the
model were fit to a region of state-space defined by the awake,
human brain using field potentials from human scalp EEG
data35,36. We simulated a 12 × 12 network of corticothalamic
neural masses (Fig. 1a) using the neural field simulation software,
nftSim37. The parameters for each neural mass were identically
set to “eyes-closed” estimates35, which results in simulated activity
with a characteristic 1/f spectrum and a peak in the alpha fre-
quency band (8–13 Hz).

In addition to the identical intranode coupling, our model
contained two classes of connectivity: local coupling, which was
defined as a connection between an excitatory population in the
cortex and its immediate neighbors (with diagonal nodes addi-
tionally scaled by a spatial decay factor of 1=

ffiffiffi
2

p
); and diffuse

coupling, which connected the pyramidal e populations’ activity
to all other nodes in the network (Fig. 1b). The diffuse coupling
term, which is defined as χ, was swept through a range and was
the only parameter changed in this work. Periodic boundary
conditions (i.e., a toroidal topological structure) were applied so
that each node had an equal number of local afferent connections.

The presence of structural heterogeneities in neural network
models, such as the human connectome and neural networks in
the Caenorhabditis elegans have been shown to extend an
idealized critical point into a region of state space that is
known in statistical mechanics as a “Griffiths phase”17,18.
This form of quasi-criticality is analogous to the inherent
balance present between the liquid and gaseous phases of water
at room temperature (Fig. 1c), during which time the vast
majority of the water molecules are in their liquid phase. As the
temperature rises towards water’s boiling point, a subset of
these molecules may, for a short time, collide with other
energetic molecules in their immediate surroundings. From the
vantage point of this subset, it would appear as though the
temperature of the entire fluid had risen. Those regions with
slightly more energy than others would be able to cross their
own locally defined bifurcation (or critical boundary)—i.e.,
“transition” into water vapor—while leaving the rest of the
water molecules in their liquid phase. This phenomenon will
occur more often as the temperature approaches the
boiling point.

The brain may exploit a similar physical mechanism, whereby
subregions cross locally defined critical boundaries while the bulk
of the global brain state remains subcritical. We hypothesized that
the prevalence of these critical regions should be modulated by
diffuse inputs, in a manner analogous to increasing temperature
in the fluid to gas transition. In other words, increasing diffuse
coupling in the brain could drive the system such that a subset of
nodes can cross their locally defined critical boundaries (e.g.,
orange nodes in Fig. 1d), while ensuring that the rest of the
network remains in a subcritical state (e.g., blue nodes in Fig. 1d).
It is important to note that this phenomenon only occurs when
there are heterogeneities within the system. In the model used
here, only the simplest form of spatial heterogeneity was included:
namely, an independent white noise drive (uniquely sampled
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from an identical Gaussian distribution) to each neural mass in
the network. Based on these factors, we hypothesized that the
combination of heterogeneity and elevated diffuse coupling, χ,
would be sufficient to transition a subset of nodes over their
locally defined bifurcation, which in turn should alter the infor-
mation processing dynamics of the brain. In order to test this
hypothesis, we needed to identify a way to track transient, super-
critical excursions at the nodal level in our model.

Quantifying regional dynamics through distance to local
bifurcation. In dynamical systems, such as the brain, activity is
often defined by the systems’ “attractors”, which are idealized
states that a system evolves towards under a wide variety of
starting conditions38. Multi-stable systems are those with more
than one attractor present for a single set of parameters: each
attractor has unique stability properties and can be explored by
the system given appropriate inputs and/or initial conditions. The
biophysical model utilized in this study describes a multi-stable
system near a Hopf and a saddle-node bifurcation, both of which
occur when a smooth incremental change in a control parameter
(in our case, diffuse coupling) causes qualitatively abrupt changes
in the system’s behavior.

Knowledge of a node’s attractors is important for under-
standing the node’s behavior; however, it can be challenging to
extrapolate patterns from local nodes to the activity of the whole
network. This makes it difficult to define the presence (or
absence) of quasi-critical brain state dynamics in large-scale
network models. To solve this problem, we note that the
bifurcation point for each corticothalamic neural mass can be
identified as a function of a constant postsynaptic potential
induced by incident activity from other nodes. Time-independent
solutions can then be produced by sweeping over this induced
potential change in order to find the neural mass’ bifurcation
point (i.e., the point where the two low-firing attractors meet and
annihilate each other, leaving only a stable high firing attractor).
Furthermore, the time-independent solutions can be used to
determine the linear response gains between each population
within the neural mass (Fig. S2).

As χ is increased, individual nodes become increasingly
sensitive to their own inputs—that is, they have heightened
“response gain”39–41. This effect is characterized by a sigmoidal
function that maps population average membrane potential to
firing rate25, as well as the slope (first derivative) of this function
(Fig. S1). All of the simulated data in our experiment lies on the
left-hand side of the peak in the gain curve (subpanel in Fig. S1),
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Fig. 1 Model schema. a Corticothalamic neural mass model implemented at each node of the network: each mass was comprised of four distinct cellular
populations: an excitatory cortical pyramidal cell (“e“), an inhibitory cortical interneuron (“i”), an excitatory, specific thalamic relay nucleus (“s”), and an
inhibitory thalamic reticular nucleus (“r”), with intranode corticothalamic neural mass coupling defined according to known anatomical connectivity.
b Connectivity schematic—local and diffuse coupling with periodic boundary conditions (toroidal topology). c Distribution of nodal firing rates across the
network—an increase in diffuse coupling subsequently increases the standard deviation of firing rates, with the tails of this distribution having greater
above (and below) average values. The cartoons depict subsets of a thermal system with temperature T below (left) and above (right) the average T.
d Qualitative effect of increasing diffuse coupling in the presence of heterogeneity on the attractor landscape: increased diffuse coupling shifts all nodes
towards their local saddle-node bifurcation point. In the middle of this continuum, the heterogeneous inputs allow a particular subset of nodes (shaded
orange) to cross this point and the activity of these nodes begins to move towards the high firing attractor.
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such that incremental increases in response gain have large effects
on the nodes’ activity (i.e., the slope of the function is positive;
orange in the right side of Fig. S1), and hence, cause the region to
cross its locally defined bifurcation (Fig. 1d).

Increasing diffuse coupling promotes quasi-critical states.
Armed with this approach, at each simulation time point, inputs
to a given node can be translated into an instantaneous distance
to the receiving nodes’ bifurcation point. In this way, the strength
of each nodes’ attractor can be quantified, and the duration of
excursions across the point where the attractor is no longer
present during simulation can be accurately quantified. Here, the
percentage of nodes that have crossed their local bifurcation is
defined as Pc. As predicted by our hypothesis, increasing the
amount of diffuse network coupling caused a non-linear increase
in Pc (Fig. 2). Based on the network-level activity patterns across
χ, we defined three “working zones”: a stable, subcritical zone (χ <
1.20 × 10−4 mV s; blue in Fig. 2), where Pc= 0; a quasi-critical
zone (1.20 < χ < 1.27 × 10−4 mV s; green in Fig. 2), where 0 < Pc <
100; and a saturated zone (χ > 1.27 × 10−4 mV s; red in Fig. 2),
where Pc= 100 in the second half of the simulation.

Another benefit of neural mass models over more abstract
approaches (such as the Kuramoto or Fitzhugh-Nagumo model);
Breakspear42 is their superior physical interpretability. Each
parameter within the neural mass is, in principal, a measurable
biophysical quantity. We leveraged this feature to identify the
relative firing rate of each neural population in our model. The
three zones in our model were associated with qualitatively
distinct steady-state firing rate attractors for each population
within the corticothalamic neural mass (inset of Fig. 2). Of note,
the subcritical zone was associated with a higher firing rate in the
r thalamic population relative to the s population (i.e., relative
thalamic inhibition), whereas this relationship is inverted in the
saturation zone (i.e., relative thalamic excitation). By construc-
tion, the quasi-critical zone necessarily supports a mix of these
two states, with the balance dictated non-linearly by the value of
Pc (Fig. 2). These results suggest that increasing diffuse coupling
to the cortex had the effect of releasing a subset of excitatory
thalamic s neurons from inhibition, which in turn was reflected
by the crossing of their local bifurcation point (Fig. S3).

We also observed qualitatively distinct effects at the whole-
network level. The average regional correlations within each zone
are displayed as a force-directed graph in Fig. 3a. The subcritical
zone is dominated by local coupling and the saturation zone by

diffuse coupling. Notably, the quasi-critical zone shows a mix of
both these integrated and segregated topological states, and their
coincidence is predicated on heterogeneity within the network.
Somewhat trivially, if this heterogeneity is removed and diffuse
coupling is increased, the entire network will cross the bifurcation
point together with Pc either 0% or 100, which is equivalent to an
isolated neural mass receiving increasing drive. In other words,
confirming our hypothesis, the presence of the quasi-critical
regime was due entirely to the presence of spatial heterogeneity
and increasing the diffuse coupling term, χ.

Based on the previous literature15,17,43, we hypothesized that
the quasi-critical regime should augment the network’s sensitivity
to incoming stimuli. To test this hypothesis, a series of network
simulations were run wherein an excitatory pulse stimulus was
applied separately to each node across several diffuse coupling
values (see Fig. 3b: panels i–iv). For visualization purposes, the
nodes were grouped based on their average distance to
bifurcation in a brief window (40 ms) preceding stimulus. In line
with other critical phenomenon, the response duration and
sensitivity of the network increases with diffuse coupling as the
system as a whole becomes more critical. This is equivalent to the
lower attractor “flattening”, which in turn allows a greater
proportion of individual nodes to transition onto the higher
attractor (Fig. 3c).

In addition to the increased network sensitivity, flexibility is
increased within the quasi-critical zone, with a greater spread of
stimulus-response durations observed (contrast Fig. 3b (i) and
(ii)). This highlights the fact that within the quasi-critical zone,
the dynamic repertoire is extended44 and could provide a
mechanistic description of the hierarchy of timescales inferred
empirically45,46. Together, these results demonstrate that increas-
ing diffuse coupling transitions the network into a sensitive and
complex state, which would likely be further enriched by the
known spatial heterogeneity imbued by the white-matter of the
structural connectome4.

Network signatures of quasi-criticality. When analyzing
empirical neuroimaging data, it is not possible to obtain direct
evidence of a nodes’ gain, nor it is the distance from its own
bifurcation. Instead, the putative signatures of complex, adaptive
system dynamics must be estimated indirectly from empirical
neuroimaging data47. Here, we demonstrate that a number of
these analytic measures show qualitative changes as a function of
χ, and thus together provide empirically accessible signatures of
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complex, adaptive dynamics (Fig. 4). For instance, the mean
participation coefficient, which quantifies the extent of cross-
community integration across the brain network48, was low, yet
regionally variable, in the subcritical zone, rose sharply in the
quasi-critical zone, and reached a ceiling in the saturated zone
(Fig. 4a). This pattern is consistent with previous neuroimaging
work that showed an increase in integration as a function of
cognitive task performance48–51.

Time-series variability (Fig. 4b; black) showed a similar
monotonic increase with χ, though with a more protracted
course than network integration. In contrast, regional diversity
(Fig. 4b; orange) initially increased before dropping and wavering
in the quasi-critical zone, and ultimately increasing to its highest
value in the saturated zone. Interestingly, an increase of time-
series variability within the quasi-critical zone was preceded by
two peaks in regional diversity, which was defined as the variance
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in the upper triangle of the region-wise functional connectivity
matrix. In other words, the promotion of unique functional
architectures across the network occurs within the quasi-critical
zone and these appear distinct from an increase in sustained local
variability.

In previous work, we analyzed human fMRI data to show that
the brain reconfigures into a low-dimensional brain state across a
diverse array of cognitive tasks1,52. Similar patterns were observed
here in the simulated data (Fig. 4c). Specifically, the percentage of
variance explained by the first two principal components of the
firing rate time series peaked in the quasi-critical zone, with the
second principal component rising in explanatory power at a
higher level of χ (Fig. 4c). Interestingly, the peak in the variance
explained by the second principal component coincided with the
peak in integration (corresponding to κ in Fig. 4), and the peak in
variance explained by the first principal component coincided
with the first peak in regional diversity. Together, these results
suggest that the quasi-critical zone is associated with an
integrated, flexible, and relatively low-dimensional network
architecture, which is consistent with recent empirical whole-
brain imaging results1 and has implications for the information
processing capacities of both artificial and biological networks.

Orienting task and rest states from human fMRI data. We were
next interested in whether the complex, adaptive network sig-
natures identified in our neural mass model would translate into
differences in empirical, whole-brain neuroimaging data. Based
on previous work1,48 and the results of our biophysical model, we
hypothesized that the network-wide effects of distinct cognitive
states would be dissociable based on the measures that were
found to be have unique signatures in the quasi-critical zone.
Specifically, we predicted that task performance should be asso-
ciated with increased diffuse network coupling, reflective of
increased ascending arousal neuromodulation41 and increased
thalamic engagement52, thus allowing information from func-
tionally specialized regions, optimally formed in the segregated
state, to be integrated across broad spatiotemporal scales.

To test this hypothesis, we analyzed whole-brain fMRI data
from 100 unrelated subjects from the Human Connectome
Project while they performed a cognitively challenging two-back
task53. Regional BOLD fMRI data were analyzed using the same
techniques that were applied to the simulated data (i.e., those in
Fig. 4), and then paired t tests were used to contrast between
cognitive task engagement and relatively quiescent rest periods.
The results of our analysis demonstrated that, when compared to
the resting state, task performance was associated with an
increase in integration (t= 83.8; p= 1.02 × 10−93; Fig. 5a), a drop
in regional diversity (t= 29.1; p= 2.37 × 10−50; Fig. 5b),
increased time-series variability (t=−31.1; p= 6.83 × 10−53;
Fig. 5c), and less variance explained by the first two principal
components (PC1: t= 5.21; p= 1.04 × 10−6; PC2: t= 9.06; p=
1.23 × 10−14; Fig. 5d).

To orient regional fMRI data onto the corticothalamic model
outputs, we created a novel data-fitting approach. Briefly, a cost
function was defined as the difference between the task and rest
values for each of the complex network signatures used to analyze
systems-wide time-series dynamics (Fig. 5a-d). The algorithm
then searches for an interval of diffuse coupling, Δχ, that
minimizes this cost function—that is it finds the [χ1, χ2] that best
explains the change in all complex network signatures across task
and rest states. Finally, a uniform random walk is performed on
the weightings of each metrics gradient to scale its contribution to
the overall cost function, effectively mitigating against bias for
any one measure in the fitting algorithm. In this way, we were
able to estimate the dynamical fingerprint of the underlying state

in a manner that was robust to differences in the baseline
statistics of each measure.

This approach confirmed that quasi-critical signatures orient rest
states to lower levels of diffuse coupling (χrest~1.22 ± 0.1 × 10−4 V s)
than those of cognitive task states (χtask~1.26 ± 0.1 × 10−4 V s;
Fig. 5e). The χ fit results in a probability distribution (Fig. 5e) since
an estimate is made for each new combination of weightings
generated per iteration of the algorithm (104). The maximum
likelihood of the task estimates was found to be coincident with the
second peak in regional diversity and proximal to peak integration,
suggesting that the brain is balancing flexibility, in the form of high
functional diversity, with increased large-scale communication, in
the form of network integration.

To aid neuroscientific interpretation, a variation of the group-
level model-fitting approach was used to provide an estimate of
Δχ at the regional level. To this end, we performed a virtual
lesioning of the network (albeit without the benefit of the
dimensionality measures, which are calculated across the whole
system), in which each of the measures was recalculated following
the removal of each node (in turn). The algorithm then fits the
resultant Δχ which best captured their respective changes, with
the notable difference that the upper bound of this range was set
to the maximum likelihood of χtask, so as to ensure each nodes
effect was compared to a common baseline (i.e., it finds [χ1,
χtask]). The Δχ fits were diversely distributed across predomi-
nantly frontal and sensory cortex (Fig. 5f), suggesting that diffuse
coupling allowed for integration across multiple distinct specialist
sub-networks in order to complete the cognitive task. Together,
these results confirm the hypothesis that brain activity during the
task is associated with greater quasi-critical brain dynamics than
during rest, and further extend this concept by suggesting a
plausible biological mechanism—namely increased diffuse cou-
pling—for these differences.

Discussion
Here, we used a network of biophysical corticothalamic neural
masses, previously fit to human EEG data35,36, to demonstrate
that quasi-critical brain states can be facilitated by the combi-
nation of spatially heterogeneous inputs and diffuse network
coupling. Gradually increasing diffuse connectivity shifted each
region closer to their individually defined bifurcation, which
maximized flexibility (Fig. 2) while also increasing the sensitivity
of the network to inputs (Fig. 3b) and system-wide topological
integration (Fig. 4a). This constellation of complex network sig-
natures dissociated different cognitive processing modes in
empirical brain imaging data (Fig. 5). Together, these results
establish a plausible neurobiological implementation of criticality
in the brain that is driven by a known neuroanatomical principal.
Crucially, the modulation of this physical mechanism (diffuse
coupling) is demonstrated to augment flexibility in segregated
and integrated operational modes, which in turn are reflected as
changes in several key measures of complex adaptive network
dynamics.

In previous work, it has been shown that cognitive task per-
formance leads to a more integrated48 and low-dimensional1

brain state. Here, we demonstrate a simple neuroanatomical
principle that may underpin these patterns. Specifically, we
showed that, in the presence of the simplest form of spatial
heterogeneity (independent noise to each region), increasing
diffuse coupling across the network led to the exploitation of
multi-stable system dynamics, broadened the systems dynamic
repertoire, supported a hierarchy of input response sensitivity and
timescales, and maximized temporal flexibility. Indeed, the quasi-
critical states that we identified can facilitate functional integra-
tion across large spatial and temporal scales through a diverging

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-19716-7

6 NATURE COMMUNICATIONS |         (2020) 11:6337 | https://doi.org/10.1038/s41467-020-19716-7 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


correlational length, while also retaining the stability of the whole
system. As such, these mechanisms provide a robust starting
point for understanding the evolutionary mechanisms through
which the brain learned to augment its functional repertoire
across a wide range of scales.

The quasi-critical brain states represented here extend previous
ideas on the critical brain hypothesis (14–16,54), but cast them in a
novel, large-scale biophysical brain model. Conceptually, the
quasi-critical zone identified in this work represents a state of the
system where the dynamic repertoire and flexibility are both
maximized. Here, we show that this state can be engaged and
disengaged by modulating the impact of diffuse network con-
nectivity. Importantly, this modeling work includes spatial het-
erogeneities in a minimal form (namely, noise inputs), which
permit quasi-critical states while retaining physiologically plau-
sible neural activity. It is also important to note that the quasi-
critical state is not a single point but a well-defined region in state
space, and thus numerous parameter combinations could be
employed by the neurobiology in order to explore this physical
niche, which agrees with the extended critical region observed in
both human and Caenorhabditis elegans neural networks17.

A strength of the approach utilized here is that it relates
directly to known characteristics of neuroanatomy. Indeed, there
are at least two major systems in the human brain—the ascending
arousal system55 and the diffuse thalamocortical “Matrix” pro-
jections56—that could readily instantiate the diffuse brain signal
modeled in our study in a relatively flexible manner. Each of these
highly inter-connected6,57 systems is characterized by relatively

diffuse patterns of axonal connectivity that innervate the entire
cortical mantle, along with a range of other subcortical, cerebellar,
and brainstem structures55,56. These two systems are also char-
acterized by highly dynamic expression58,59, suggesting that the
relative amount of diffuse coupling may be controlled and shaped
as a function of systemic requirements. Despite their relatively
broad projection patterns, there is also evidence for more targeted
connectivity60 and segregated processing modes61 within these
two systems, which in turn might confer even more precise
control over the highly dynamic, distributed neural coalitions that
define our waking brain state62. In short, realistic heterogeneity
within these systems, such as synaptic, receptor, and cell densities,
will support the formation of quasi-critical states, and hence the
brain may have evolved a way of using quasi-criticality to support
distinct operational modes. This would allow low-dimensional
control over the modes in an energy efficient manner63, i.e.,
functionally partition regions, allocate these to unique features of
a task, and then reintegrate their outputs at a later time1.

The modeling methodology used in this work is distinct from
inversion methods, wherein a generative model is fit to data and
the resulting parameter estimates are used to elucidate a
mechanistic understanding of a phenomenon. Whilst this
approach is often informative, it can also result in the over-fitting
of parameters. As such, insights from these approaches are dif-
ficult to generalize to broader brain states. A complimentary
strategy often employed in statistical physics is to define a model
according to first principles. While abstract, this strategy affords
much greater control over the models’ degrees of freedom, and in
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Fig. 5 Signatures of quasi-criticality across task and rest. fMRI data from 100 unrelated subjects during a two-back task from the Human Connectome
Project were analyzed to determine whether the task and rest states were associated with unique signatures of complex, adaptive brain dynamics. a Mean
Participation was elevated during task performance (paired t test: t= 83.8; p= 1.02 × 10−93). b Regional diversity, defined as the variance in the upper
triangle of the region-wise functional connectivity matrix, was lower during task performance than rest (paired t test: t= 29.1; p= 2.37 × 10−50); c fMRI
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turn makes any identified results more robust to parameter
changes. These two modeling approaches compliment one and
other and represent distinct modes of questioning a phenomenon:
data-driven (why is the system changing in this way?) vs.
hypothesis-driven (i.e., how will the system change if I modify it
in this way?). In this work, we utilized a hybrid strategy: we
exploited previous data-fitting results35,36 to orient the model in a
plausible region of state-space (eyes-closed wakefulness) and then
gradually introduced a new feature (diffuse cortical input) while
keeping all other parameters constant. The model is thus a pre-
dictive framework, in which all of the signatures we identified
(Figs. 3, 4) can be directly attributed to the modulation of diffuse
coupling35.

By orienting our model in a previously defined state, our
outputs can be directly compared with empirical data. However,
the inclusion of a more realistic structural connectome will likely
imbue a functional relevance to each region that was not present
in our model64. Along these lines, previous modeling approaches
have combined neural elements with a back-bone of structural
connectivity10,65 to successfully account for the recurrent sig-
natures of functional connectivity between regions (i.e., resting-
state networks) which are caused by noise fluctuations sampling
an underlying attractor manifold65. These models fall within a
broad class that seeks to determine the role of large-scale coupling
on macroscale brain dynamics. The present model distinguishes
itself from this group by introducing three tiers of connectivity—
intranode connectivity between corticothalamic populations
within the neural mass, local nearest-neighbor cortical con-
nectivity, and diffuse all-to-all uniform cortical connectivity. The
latter is distinct from the “global coupling” seen in other
models10,66, which is a parameter that scales the sparse between-
node connectivity patterns inherent within the structural con-
nectomes used in each model. Despite their differences, these
approaches complement one another by demonstrating in dif-
ferent ways that increasing large-scale connectivity leads to the
formation of a more complex attractor manifold. The present
study enriches this body of work by describing quasi-critical brain
states as a mechanism underpinning a broadened dynamic
repertoire, and shows how a well-described class of neuroanato-
mical connectivity motifs could exploit quasi-criticality and shift
the brain between operational modes unique to task and rest.

Methods
Corticothalamic neural mass. The corticothalamic neural mass model used in this
work contains four distinct populations: an excitatory pyramidal cell, e, and an
inhibitory interneuron, i, population in the cortex; and an excitatory specific relay
nuclei, s, and inhibitory thalamic reticular nuclei, r, population in the thalamus.
The dynamical processes that occur within and between populations in a neural
field model are defined as follows:

For each population, the mean soma potential results from incoming
postsynaptic potentials (PSPs):

Va tð Þ ¼
X
b

Vab tð Þ; ð1Þ

where Vab(t) is the result of a postsynaptic potential of type b onto a neuron of type
a and a, b ∈{e, i, r, s}. The postsynaptic potential response in the dendrite is given
by

DabVab tð Þ ¼ νabϕab t � τabð Þ; ð2Þ
where the influence of incoming spikes to population a from population b is
weighted by a connection strength parameter vab=Nabsab, with the mean number
of connections between the two populations Nab and sab is the mean strength of
response in neuron a to a single spike from neuron b. τab is the average axonal
delay for the transmission of signals, and ϕab is the mean axonal pulse rate from b
to a.

The operator Dab describes the time evolution of Vab in response to synaptic
input,

Dab ¼
1
αβ

d2

dt2
þ 1

α
þ 1
β

� �
d
dt

þ 1; ð3Þ

where β and α are the overall rise and decay response rates to the synaptodendritic
and soma dynamics.

The mean firing rate of a neural population Qa(t) can be approximately related
to its mean membrane potential, Va(t), by

Qa tð Þ ¼ Sa Va tð Þ½ � ¼ Qmax
a

1þ exp � Va tð Þ � θaf g=σ0½ � ; ð4Þ

which define a sigmoidal mapping function Sa with a maximal firing rate Qmax
a , a

mean firing threshold θa, and a standard deviation of this threshold σ0π= ffiffiffi
3

p
.

The mean axonal pulse rate is related to the mean firing rate by

Da tð Þϕa tð Þ ¼ Qa tð Þ; ð5Þ

Da tð Þ ¼ 1
γ2a

∂2

∂t2
þ 2
γa

∂

∂t
þ 1: ð6Þ

Here, γa= va/ra represents the damping rate, where va is the propagation
velocity in axons, and ra is the characteristic axonal length for the population.

Following the approach of previous neural field models, excitatory and
inhibitory synapses in the cortex are assumed proportional to the number of
neurons26,29. This random connectivity approximation results in vee= vie, and
vei= vii which implies Ve= Vi and Qe=Qi. Inhibitory population variables can
then be expressed in terms of excitatory quantities and are thus not neglected.

The fixed-point attractors, or steady states, of the corticothalamic neural mass
are found by setting all time derivatives in the above equations to zero. The steady-
state values ϕ 0ð Þ

e of ϕe is then given by solutions of

Sð�1Þ ϕ 0ð
e

� �� vee þ veið Þϕ 0ð Þ
e

¼ vesS vseϕ
0ð Þ
e þ vsrS vreϕ

0ð Þ
e þ vrs

ves
S�1 ϕ 0ð

e

� �� vee þ veið Þϕ 0ð Þ
e

� �h i
þ vsnϕ

0ð Þ
n

n o
;

ð7Þ

where ϕ 0ð Þ
n is the steady-state component of the input stimulus26,67. Roots of Eq.

(7) are found using the fzero() function from MATLAB.
The connection gains between populations, which represent the additional

activity generated in postsynaptic nuclei per additional unit input activity from
presynaptic nuclei, can be calculated by linearizing Eq. (4) which gives

Gab ¼ ρaνab ð8Þ
where

ρa ¼
dQa

dVa

				
V 0ð Þ
a

¼ ϕ 0ð Þ
a

σ 0
1� ϕ 0ð Þ

a

Qmax
a

" #
ð9Þ

It is an important goal of this work to extend the ideas and phenomena already
present in an existing biophysical model, which has been compared to human data,
instead of a specific model of the phenomena with no bridge towards showing its
implementation in biology.

Numerical simulations. A 12 × 12 network of corticothalamic neural masses were
simulated using the neural field simulation software, nftSim37. The parameters for
each neural mass were identically set to “eyes-closed” estimates given in Table 135,
which results in simulated activity with a 1/f spectrum and a peak in the alpha
frequency band (8–13 Hz) under moderate network coupling. Each simulation was
run for a total of 32 s with 10 s of initial transients removed using an integration
timestep of Δt= 2−13 s.

Network connectivity and heterogeneity. The noise terms are individually
generated for a node from an identical white noise Gaussian distribution with a
mean of 1 (s−1) and an amplitude spectral density of 10−5(arb. units). This serves
as the only spatial heterogeneity in the network. The local coupling to each node is
a nearest neighbor with diagonal nodes additionally scaled by 1=

ffiffiffi
2

p
. A sweep of the

amplitude of these local connections was first performed to determine the location
of the ensemble bifurcation (phase transition) point, and then a slightly smaller
value was used to ensure the system was proximal to this point but far enough away
as to be stable under perturbations from the noise terms. An additional level of
network connectivity, called diffuse coupling and represented by the symbol χ,
prescribes a given nodes connection to the entire network. This is the only coupling
parameter that changes in this work. The corticothalamic neural mass equations
are extended to include network inputs via the excitatory cortical population as
follows:

DeV
i
ee tð Þ ¼ νeeϕ

i
ee tð Þ þ νlocalee Γkϕkee tð Þ þ χ

Xj≠i
8j2N

ϕjee tð Þ; ð10Þ

where the first term on the right-hand side of Eq. (9) defines intranode
connectivity, the second term defines local nearest-neighbor connectivity scaled by
νlocalee (with the diagonal additional scaled by 1=

ffiffiffi
2

p
), and the final term defines all-

to-all uniform connectivity (excluding self-connection) scaled by the diffuse
coupling parameter χ.
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Distance to bifurcation. The network activity incident to each node at a given
time point is purely excitatory and as such can be considered as a constant positive
postsynaptic potential. In line with this, a constant potential is added to the cortical
excitatory population and the steady states of the neural mass are solved
numerically. A sweep of this potential change elucidates a saddle-node bifurcation
which represents the necessary input, as a first-order approximation, required to
drive a node to its locally defined critical boundary. The bifurcation point can then
be used as a reference for interpreting simulation activity post hoc. That is, at each
time point the incident network activity to each node is translated into a distance to
bifurcation time series for that target node, which enables parallel analysis of local
activity and network induced effects.

Using this information, we defined three “working zones”: a stable, subcritical
zone (χ < 1.20 mV s; blue in Fig. 2), where Pc= 0; a quasi-critical zone (1.20 < χ <
1.27 mV s; green in Fig. 2), where 0 < Pc < 100; and a saturated zone (χ > 1.27 mV s;
red in Fig. 2), where Pc= 100 in the second half of the simulation. The average
population-level firing rate and gain within each zone were used to create an “ideal”
corticothalamic population (Fig. 2). The Pearson’s correlation matrix within each
zone was then thresholded (r > 0), binarized and used to create a force-directed
embedding (Fig. 3).

Response to pulse stimulus. A simulation was first run with no applied pulse
stimuli for comparison with stimulus results. Then, N= 144 trails were run where a
pulse stimulus (amplitude= 1 mV; width= 10 ms) was applied to a single node at
t= 10 s. The cortical activity from the no-stimuli simulation is subtracted from all
pulse trails. Since the noise sequence generated is the same for each trial, this allows
a clear mapping of stimuli-induced response. The trials are sorted based on the
target nodes average distance to bifurcation within the 8 time points pre-stimulus.
For visualization purposes, the stimulus-induced response of the targeted node in
each trial is averaged across upper, middle, and lower thirds of the sorted distance
to bifurcation vector, and the time series is low-pass filtered with a passband
frequency of 0.001 Hz. As expected, nodes closest to their bifurcation had the
strongest response, and the longest timescale for decaying back to pre-stimulus
levels of activity.

Network signatures of criticality. The time series of the cortical “e” population
was used to create a weighted, un-thresholded connectivity matrix. A weighted and
signed version of the Louvain modularity algorithm from the Brain Connectivity
Toolbox68 was used to iteratively maximizes the modularity statistic, Q, for dif-
ferent community assignments until the maximum possible score of Q has been
obtained (Eqs. 10 and 11). The modularity estimate for a given network is,
therefore, a quantification of the extent to which the network may be subdivided
into communities with stronger within-module than between-module connections.

QT ¼ 1
νþ

X
ij

wþ
ij � eþij


 �
δMiMj

� 1
νþ þ ν�

X
ij

w�
ij � e�ij


 �
δMiMj

; ð11Þ

where ν is the total weight of the network (sum of all negative and positive
connections), wij is the weighted and signed connection between regions i and j, eij
is the strength of a connection divided by the total weight of the network, and δMiMj

is set to 1 when regions are in the same community and 0 otherwise. “+” and “–”
superscripts denote all positive and negative connections, respectively. In our
experiment, the γ parameter was set to 1.1 (tested within a range of 0.5–2.0 for
consistency across 100 iterations). Given that the community structure of the
system changed substantially as a function of χ, a consensus partition was created

across the whole range using the ‘consensus_und.m’ script from the Brain Con-
nectivity Toolbox.

The participation coefficient quantifies the extent to which a region connects
across all modules. This measure has previously been used to characterize diversely
connected hub regions within cortical brain networks (e.g., see 69). Here, the
Participation Coefficient (B) was calculated for each of the 400 cortical parcels for
each subject, where κisT is the strength of the positive connections of region i to
regions in module s, and κiT is the sum of strengths of all positive connections of
region i. The participation coefficient of a region is therefore close to 1 if its
connections are uniformly distributed among all the modules and 0 if all of its links
are within its own module:

B ¼ 1�
XnM
s¼1

κisT
κiT

� �2

: ð12Þ

Brain state variability was calculated by taking the standard deviation of the
upper triangle of the correlation matrix at each level of χ. Time-series variability
was estimated using the regional mean of the standard deviation of the cortical “e”
population over time. The percentage of explained variance for the top two
principal components was calculated by subjecting demeaned cortical “e”
population time-series at each level of χ to separate principal component analyses.

Whole-brain fMRI analysis. Minimally pre-processed fMRI data were obtained
from 100 unrelated participants (mean age 29.5 years, 55% female) from the HCP
database. For each participant, BOLD data from the left-right encoding session
from the N-back task were acquired using multiband gradient echo-planar ima-
ging, amounting to 4 min 51 s of data (405 individual TRs) per subject. Pre-
processed1,48 but temporally unfiltered data were extracted from 333 cortical
parcels70. The time points associated with each cognitively challenging task-blocks
and the interspersed rest blocks were convolved with a canonical haemodynamic
response function (using the spm_hrf.m function from SPM12).

To estimate functional connectivity between the 333 cortical ROIs, we used the
Multiplication of Temporal Derivatives (M) technique71. M is computed by
calculating the point-wise product of temporal derivative of pairwise time series
(Eq. 12). The resultant score is then averaged over a temporal window, w, in order
to reduce the contamination of high-frequency noise in the time-resolved
connectivity data. A window length of 20 TRs was used in this study, though results
were consistent across a range of w values (10–50 TRs). To ensure relatively
smooth transitions between each task, connectivity analyses were performed on
each individual task separately, and were subsequently concatenated. In addition,
all analyses involving connectivity (or the resultant topological estimates)
incorporated the junction between each task as a nuisance regressor.

Mijt ¼
1
w

Xtþw

t

tit0 ´ tjt0

 �
σ it0 ´ σ it0ð Þ;

ð13Þ

where for each time point, t, the M for the pairwise interaction between region i
and j is defined according to Eq. 1, where t’ is the first temporal derivative (t+ 1 –
t) of the ith or jth time series at time t, σ is the standard deviation of the temporal
derivative time series for region i or j and w is the window length of the simple
moving average. This equation can then be calculated over the course of a time
series to obtain an estimate of time-resolved connectivity between pairs of regions.
Time-resolved values of BT are then calculated on each weighted, signed
connectivity matrix. Values of each measure were compared statistically using a
series of non-parametric permutation tests72 in which the group identity (i.e., rest
vs. task) was randomly shuffled in order to populate a null distribution (5000
iterations).

Gradient fitting the model to whole-brain fMRI data. Firstly, participation,
regional diversity, time-series variability, and variance explained by the first two
principal components are calculated on the whole-brain imaging data and the
model outputs for each value of diffuse coupling. Since the absolute values of these
measures do not form a fair point of comparison with outputs from our simplified
corticothalamic model, we focus on their relative differences across task and rest
(i.e., what interval of diffuse coupling makes the most sense of the metric changes).
Thus, for each measure the difference between rest and task is calculated to form 5
gradients that are fit to the corresponding gradients of the model outputs across
levels of diffuse coupling. This is done by subsampling the model outputs
(Fig. 4a–c)) at progressively coarser steps sizes, calculating the gradient numerically
using diff() function from MATLAB, and then finding the x value (which is a
subsample interval) that minimizes the cost function. The final estimate is the
average across all subsampling scales. Finally, in order to mitigate against bias for
any one metric in the fit, a uniform random walk is performed on the 0–1
weightings of each gradient metric to scale its contribution to the cost function.

Two distinct approaches are used for the whole-brain and regional estimates,
respectively. For the whole-brain estimates, the algorithm is free to change the
upper and lower bounds of the diffuse coupling interval χ1,χ2. For the regional
estimates, we use the maximum likelihood from the task estimate of diffuse
coupling χtask ~ 1.26 ± 0.1 × 10−4 mV s as the upper bound for the search, and thus
only the lower bound is free to change [χ1, χtask]. A virtual lesioning approach is
then used, where each node is removed from the data (only a single node is ever

Table 1 Corticothalamic neural mass parameters.

Parameter Description Value Unit

γe Cortical damping rate 116 s−1

Qmax Maximum firing rate 340 s−1

θ Firing threshold 12.9 mV
σ′ Threshold spread 3.8 mV
ϕn Input noise amplitude spectral density 1 × 10−5 s−1

α Decay rate of cell-body potential 83 s−1

β Rise rate of cell-body potential 769 s−1

Intranode coupling strengths
vee 1.5 mV s
vei −3 mV s
ves 0.57 mV s
vse 3.4 mV s
vsr −1.5 mV s
vsn 3.6 mV s
vre 0.17 mV s
vrs 0.05 mV s
τes+ τse Corticothalamic loop delay 85 ms
νlocalee Local network coupling strength 1.8 × 10−4 mV s
χ Diffuse network coupling strength [1.15−1.35] × 10−4 mV s

Adapted from ref. 35.
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removed at a time) and the algorithm is run to estimate the new diffuse value
(relative to the task estimate). The result is an estimate of the change in diffuse
coupling facilitated by each node in the network.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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