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The parent drugs chloroquine and hydroxychloroquine do not inhibit

human CYP3A activity in vitro
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To the Editor,

Among 796 clinical trials to treat COVID-19, chloroquine
and hydroxychloroquine account for a large fraction with 46
trials for chloroquine and 120 trials for hydroxychloroquine
(https://clinicaltrials.gov/ as of 24 April 2020). Despite the
lack of reliable clinical data, due to their significant
inhibitory effects on viral cell entry and replication [1], both
drugs have been recommended to treat patients diagnosed as
mild, moderate, and severe cases of COVID-19 pneumonia
[2]. However, for critically ill patients, co-medications are
usually required. Unfortunately, there is little information on
potential drug-drug interactions caused by chloroquine and
hydroxychloroquine.

During compassionate treatment of two adult COVID-19
patients with hydroxychloroquine (day 1: 2 x 400 mg, there-
after 2 x 200 mg daily) and clarithromycin (2 x 500 mg daily),
routine therapeutic drug monitoring on days 2 and/or 3 of
treatment showed unexpectedly high clarithromycin concen-
trations (> 10 mg/L around the end of infusion). The patients
were on mechanical ventilation but had no renal failure and
were of normal body weight. Clarithromycin was given for
suspected bacterial superinfection to cover atypical pathogens
of a possible community-acquired pneumonia. The finding
indicates that hydroxychloroquine may inhibit cytochrome
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P450 (CYP)3A, since clarithromycin is primarily metabolized
by CYP3A [3]. In addition, hydroxychloroquine was reported
to inhibit CYP2D6-mediated metabolism of metoprolol
in vivo [4], and chloroquine also decreased CYP2D6 activity
[5]- However, there is no data on a potential inhibition of
CYP3A4 by chloroquine and/or hydroxychloroquine.

Therefore, an in vitro assay to assess inhibition of CYP3A4
by the two drugs was performed using a published method
(see supplementary materials of reference [6]). The formation
of 1’-hydroxymidazolam from midazolam was used as the
CYP3A4 probe reaction, as recommended by the FDA and
EMA [7, 8]. A 250 mg chloroquine phosphate tablet
(Avloclor® 250 mg tablets, Alliance Pharma PLC,
Wiltshire, UK) or a 200 mg hydroxychloroquine sulphate tab-
let (Quensyl® 200 mg tablets, Sanofi-Aventis, Paris, France)
was dissolved by the addition of 2 L of water to obtain the
respective stock solutions. K; values were determined to assess
the effect of chloroquine and hydroxychloroquine on
CYP3A4 by incubating a range of substrate (i.e., 0.2, 0.6,
2,6, 12, 20 uM) and inhibitor concentrations (0, 0.6, 1.25,
2.5, 5,10, 20, 40 uM) with 1.85 pmol/ml CYP3A4 for 8
minutes. The assays were carried out in duplicate. The
resulting metabolite was quantified by LC-MS/MS as de-
scribed [6]. Datasets were analyzed using GraphPad Prism 7
(GraphPad, La Jolla, CA, USA) [9].

K, and V. values for midazolam hydroxylation in the
two inhibition assays were very similar, i.e., 0.72 uM and
20.0 pmol 1'-OH-MDZ/min/pmol CYP3A4 for the chloro-
quine experiment, and 0.69 uM and 19.4 pmol 1-OH-MDZ/
min/pmol CYP3A4 for hydroxychloroquine. For midazolam
concentrations below 2 uM, there was no apparent effect of a
range of concentrations of chloroquine and
hydroxychloroquine on CYP3A4 activity (Fig. 1). At higher
midazolam concentrations, enzyme activity showed a trend to
increase with higher concentrations of both chloroquine and
hydroxychloroquine. While the mechanism for this observa-
tion is unknown, clearly there was no inhibitory effect. The
goodness of fit indicated that the nonlinear competitive

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s00228-020-02928-7&domain=pdf
http://orcid.org/0000-0001-7087-5871
http://creativecommons.org/licenses/by/4.0/
mailto:uwe.fuhr@uk-koeln.de

1482

Eur J Clin Pharmacol (2020) 76:1481-1482

Fig. 1 Dixon plot ofin vitro assay
for inhibition of CYP3A4 by
chloroquine (a) and 03
hydroxychloroquine (b). v,
enzyme activity rate. 1'-OH-

b)

MDZ, 1'-OH-midazolam. Lines
indicate the fits according to the
competitive inhibition model

obtained from the entire dataset
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inhibition model described the data reasonably well, and also
respective K; values (i.e., 9.18 x 10°> uM for chloroquine and
1.14 x 10 uM for hydroxychloroquine) approaching infinity
clearly showed that both drugs did not cause inhibitory action
on CYP3A4.

The current in vitro assay demonstrated that chloroquine
and hydroxychloroquine do not inhibit CYP3A4 activity, ex-
cluding the possibility that the parent drugs cause the observed
high clarithromycin exposure by this mechanism. However,
we cannot exclude whether metabolites of these drugs may
inhibit CYP3A. The reason for high clarithromycin concen-
trations when co-administered with hydroxychloroquine
should be further explored.
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