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Abstract
In this paper, we propose and derive a new regression model for response variables defined on the open unit interval. By
reparameterizing the unit generalized half-normal distribution, we get the interpretation of its location parameter as being
a quantile of the distribution. In addition, we can evaluate effects of the explanatory variables in the conditional quantiles
of the response variable as an alternative to the Kumaraswamy quantile regression model. The suitability of our proposal is
demonstrated with two simulated examples and two real applications. For such data sets, the obtained fits of the proposed
regression model are compared with that provided by a Kumaraswamy regression model.

Keywords Kumaraswamy distribution · Likelihood methods · Monte Carlo simulation · R software · Residual analysis · Unit
generalized half-normal distribution.

1 Introduction

Interest in distributions with support on the unit interval has
been increasingly coming into prominence in the literature of
probability and statistics because of their usefulness in almost
all disciplines to model indexes, percentage, proportions,
and rates. The recent COVID-19 pandemic has intensi-
fied this type of modeling (Ribeiro et al. 2021; Mazucheli
et al. 2022b). Such a kind of models has been employed
in applications related to diverse areas linked to computer
vision, deep learning, economics, education, finance, health,
hydrology, mining, psychology, reliability, and risk manage-
ment; see, for example, Kumaraswamy (1980); Van Dorp
and Kotz (2002a, b); Smithson and Verkuilen (2006); Huerta
et al. (2018); Kizilaslan and Nadar (2018); Kohansal (2019);
Martinez-Florez et al. (2020); Mazucheli et al. (2020b); and
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Korkmaz et al. (2021b). Generally, the new unit models have
been proposed via a transformation of well-known models;
see Korkmaz and Chesneau (2021). Therefore, studies on
unit modeling are increasing day by day.

It is well known that standard regressions aim to model
the conditional mean of a dependent (response) variable by
utilizing its relationshipwith independent (explanatory) vari-
ables (covariates or regressors). This relationship may be
linear or nonlinear functionally and it generally relates the
mean of the response variablewith given values of the covari-
ates. Thus, employing a standard regression is suitable if the
response has a non-skewed distribution (symmetric).

If the response is defined on unit interval, the beta regres-
sion (Ferrari and Cribari Neto 2004) is the most used model
to relate the unit response with covariates based on the mean;
see also Figueroa-Zuniga et al. (2022a). Since the beta distri-
bution is set according to itsmean, its unit response regression
was introduced by Ferrari and Cribari Neto (2004). How-
ever, if the unit response is skew distributed, or it has some
outliers, using a beta regression may be unsuitable since
it affects the mean. Similarly, unit mean response regres-
sions were introduced based on the beta rectangular (Bayes
et al. 2012), Birnbaum-Saunders (Mazucheli et al. 2018,
2021), log-Bilal (Altun et al. 2021), log-Lindley (Gómez-
Déniz et al. 2014), log-weighted exponential (Altun 2021),
unit-Burr XII (Korkmaz and Chesneau 2021), unit Lindley
(Mazucheli et al. 2019a, b), unit second degree improved
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Lindley (Altun and Cordeiro 2020), and Vasicek (Mazucheli
et al. 2022a) distributions. For other exponentiated distribu-
tions, see, for example, Akgul (2021).

If the response follows a skewed distribution, or outliers
are present in the data, the usage of robust regression mod-
els is more suitable than a standard regression model. This
is because the responses can be affected by these two sit-
uations making that the inference on the mean is affected
as well, and the results from the model can provide possible
wrong interpretations. As an alternative to themean response
regression, the quantile regression, introduced by Koenker
and Bassett Jr (1978), has been popularly and recently con-
sidered as robust alternative to the mean regressions. The
quantile regression relates the conditional quantiles of the
response to given values of the covariates, instead of explain-
ing its conditional mean. Indeed, a quantile regression is a
more robust model than the ordinary regression and does not
impose any distributional assumption on the error term, so
the quantile regression was derived as a model that is essen-
tially nonparametric. In addition, quantile regressionsmay be
considered as competitors of standard regressions when the
moments of a distribution cannot be obtained in a closed ana-
lytical form. Furthermore, themain advantage of the quantile
regression is its flexibility for modeling data with heteroge-
neous conditional distributions (Bayes et al. 2017).

Note that, if we wish to employ a parametric quantile
regression, the quantile function (QF) of the basis distribu-
tion, from where this regression is obtained, must have a
closed form. To introduce a parametric quantile regression
model based on a probability distribution, we must parame-
terize it based on its QF. As mentioned, this parameterization
can be applied to any distribution that has its QF expressed
in closed form and it is settable according to the model
parameters, even if its mean does not have a closed form.
Some examples of the quantile modeling are based on the
exponentiated arcsecant hyperbolic normal (Korkmaz et al.
2021a), Kumaraswamy (Mitnik and Baek 2013), L-logistic
(Paz et al. 2019), log-extended exponential-geometric (Jodrá
and Jiménez-Gamero 2020), log-symmetric (Saulo et al.
2022), power Johnson SB, (Johnson 1949; Cancho et al.
2020), transmuted unit Rayleigh (Korkmaz et al. 2021b),
unit-Birnbaum–Saunders (Mazucheli et al. 2021; Sanchez
et al. 2021), unit Burr-XII, (Korkmaz and Chesneau 2021),
unit-Chen (Korkmaz et al. 2021c), unit-Weibull (Mazucheli
et al. 2020b; Sanchez et al. 2022), unit-log exponential power
(Korkmaz et al. 2021d), unit-folded normal (Korkmaz et al.
2022b), unit-log-log (Korkmaz and Korkmaz 2022), unit
arcsecant hyperbolic Weibull (Korkmaz et al. 2022a) and
Vasicek (Mazucheli et al. 2022a) distributions. For a com-
plete overview on parametric quantile regression models and
their computational implementation with diverse applica-
tions, see Mazucheli et al. (2022b).

Despite the different proposals related to unit quantile
regressions and thewide use of the normal distribution and its
extensions, to the best of our knowledge, quantile regression
based on the unit generalized half-normal (UGHN) distribu-
tion (Korkmaz 2020) has been no studied until now. Note that
the moments of the UGHN distribution cannot be obtained
in a closed form, but its QF is given in a very manageable
form. In this paper, we parameterize the UGHN distribution
in terms of its QF to evaluate the relationship of covariates
on a quantile using the distribution of the response variable.

The main objective of the paper is to propose, derive, and
apply a UGHN quantile regression model as an alternative
to the existing quantile regression models. Our secondary
objectives are: (i) to estimate the model parameters with the
maximum likelihood (ML) method; (ii) to provide a diag-
nostic tool based on residuals for model checking; (iii) to
conduct Monte Carlo simulation studies to assess the perfor-
mance of our methodology; and (iv) to apply the obtained
results to real-world data.

This paper consists of six sections. In Sect. 2, we intro-
duce and characterize the UGHN distribution in terms of its
QF. The estimation method of parameters for the UGHN dis-
tribution, based on the ML method, is discussed also here.
The UGHN quantile regression model is formulated in Sect.
3. Monte Carlo simulations are conducted in Section 4 for
evaluating the statistical performance of theMLestimators as
well as the coverage probability of the asymptotic confidence
intervals for the parameters in two regression frameworks.
Two applications using the UGHN and Kumaraswamy quan-
tile regression models are proposed in Sect. 5. Finally, Sect.
6 gives the conclusions of this paper and ideas for further
investigation.

2 The unit generalized half-normal
distribution

In this section, we provide some characteristics of the UGHN
distribution and its quantile parameterization.

2.1 Cumulative distribution, probability density,
and quantile functions

The UGHN distribution is obtained from the transformation
Y = exp(−X), where X ∼ GHN(α, θ) denotes a gener-
alized half-normal distributed random variable (Cooray and
Ananda 2008). The corresponding cumulative distribution
(CDF) and probability density (PDF) functions are written,
respectively, as

f (y;α, θ) =
√

2

π

θ

y
[− log (y)

]
(

− log (y)

α

)θ
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×exp

{
−1

2

[
− log (y)

α

]2θ}
,

F(y;α, θ) = 2�

[
−

(
− log (y)

α

)θ
]

, 0 < y < 1, (1)

where α > 0, θ > 0 are the model parameters, and � is
the standard normal CDF. Note that a random variable Y
is UGHN distributed on the unit interval, that is, on (0,1),
if its log transformation, − log(Y ) namely, is GHN(α, θ)

distributed. The distribution with CDF stated in (1) is a
strong competitor of well-known unit distributions such
as the beta, Johnson and Kumaraswamy distributions. In
addition, the quantile function of the UGHN distribution
has a simple expression given by yτ = Q(τ ;α, θ) =
exp{−α

[−�−1(τ/2)
]1/θ }, for 0 < τ < 1, where �−1 is the

inverse standard normal CDF, that is, the standard normal
QF. Hence, if τ is a uniformly distributed random variable
on (0,1), then Yτ is a UGHN distributed random variable.

2.2 Shapes of the UGHN distribution

The first derivatives of the UGHN PDF and hazard rate
function (HRF), defined by h (y;α, β) = f (y;α, β) /[1 −
F (y;α, β)], are

d

dy
f (y;α, θ) = − f (y;α, θ)

ylog (y)
ζ1 (y;α, θ) ,

d

dy
h(y;α, θ) = − h (y;α, θ)

π ylog (y) [1 − F (y;α, θ)]
ζ2 (y;α, θ) ,

respectively, where ζ2 (y;α, θ)= −(π ylog (y)/
√
2)

f (y;α, θ) + (π
√
2/2) [1 − F (y;α, θ)] ζ1 (y;α, θ) and

ζ1 (y;α, θ) = 1 − α + α
[−θ−1 log (y)

]2α + log (y).
Clearly, d f (y;α, θ)/dy and dh(y;α, θ)/dy have the

same signs than ζ1 (y;α, θ) and ζ2(y;α, θ), respectively.
Note that, if ζ1(y;α, θ) is increasing on y, then ζ2(y;α, θ)

also is increasing on y, that is, when ζ1(y;α, θ) has pos-
itive sign. Observe that, analytically, it may be difficult to
identify other signs of these equations. Thus, we sketch the
plots of theUGHNPDFandHRF to see their possible shapes.
Hence, we give some examples of ζ1 (y;α, θ) and ζ2 (y;α, θ)

for fixed values of the parameters α and θ in Fig. 1. From
this figure, we see that the UGHN PDF has U-shaped (bath-
tub), n-shaped (upside-down bathtub), unimodal, increasing,
and decreasing shapes. Furthermore, the UGHN HRF has
U-shaped, n-shaped, and increasing shapes. Figure 2 verifies
these shapes of the model also and deals with the results of
Fig. 1. Such shapes can be seen as distinguishing feature for
the data modeling on the unit interval. Consequently, we can
say that this new model can be more helpful for various data
sets than other bounded models.

2.3 Maximum likelihood estimation

Next, we use the ML method to estimate the UGHN param-
eters. Let Y1, . . . ,Yn be a random sample from the UGHN
distribution with observed values y1, . . . , yn, and the vector
� = (θ, α)� be themodel parameters. Then, the correspond-
ing log-likelihood function for � is stated as

	 = 	 (�)

= n

2
log

(
2

π

)
+ n log (θ) − nθ log (α)

−
n∑

i=1

log (yi ) + (θ − 1)
n∑

i=1

log
[− log (yi )

]

− 1

2α2θ

n∑
i=1

log
[− log (yi )

]2θ
. (2)

Differentiating the function defined in (2) with respect
to the corresponding parameter, the normal equations of the
score vector are reached, with elements expressed in general
as Uθ = ∂	/∂θ and Uα = ∂	/∂α = 0 and specified as

Uθ = n

θ
− n log (α) +

n∑
i=1

log
[− log (yi )

]

− 1

α2θ

n∑
i=1

[− log (yi )
]2θ log

[
− log (yi )

α

]
= 0,

Uα = −nθ

α
+ θ

α2θ+1

n∑
i=1

[− log (yi )
]2θ = 0. (3)

TheML estimators, θ̂ and α̂ namely, are obtained from above
the equations stated in (3) as

α̂ = α̂ (θ) =
(
1

n

n∑
i=1

[− log (yi )
] 2θ

) 1
2θ

.

Thus, α̂ can be calculated as a function of θ̂ , say α̂ (θ). Sub-
stituting α̂ in the expression given in (2), the corresponding
profile log-likelihood function based on θ is generated as

	 (θ) = n

2
log

(
2

π

)
+ n log (θ)

−n

2
log

[
1

n

n∑
i=1

[− log (yi )
] 2θ

]
−

n∑
i=1

log (yi )

+ (θ − 1)
n∑

i=1

log
[− log (yi )

] − n

2
. (4)
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Fig. 1 Plots of the possible signs of the functions ζ1 (x, α, β) and ζ2 (x, α, β) for the indicated values of parameters
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Fig. 2 Plots of the possible regions of the PDF (left) and HRF (right) for the indicated values of parameters

Hence, equating the formula given in (4) to zero, we obtain

∂	 (θ)

∂θ
= n

θ
+

n∑
i=1

log
[− log (yi )

] −
n

(
n∑

i=1

[− log (yi )
]2θ log [− log (yi )

])

n∑
i=1

[− log (yi )
]2θ =0.

(5)

Note that numerical methods, such as the Newton–Raphson
algorithm are required to find the solution of the nonlinear
system defined in (5).

The corresponding inverse Fisher expected information
matrix is established as

I−1 (θ, α) =
⎡
⎢⎣

E
(
− ∂2	

∂θ2

)
E

(
− ∂2	

∂θ∂α

)

E
(
− ∂2	

∂α∂θ

)
E

(
− ∂2	

∂α2

)
⎤
⎥⎦

−1

|θ=θ̂ ,α=α̂

=
[

Var
(
θ̂
)

Cov
(
θ̂ , α̂

)
Cov

(̂
α, θ̂

)
Var (̂α)

]
. (6)

The elements of the matrix given in (6) are available from
authors upon request. Notice that the most of the statisti-
cal properties such as moments, stochastic orderings, order
statistics, and estimation procedures of the UGHN distribu-
tion have been obtained by Korkmaz (2020).

Assuming usual regularity conditions (Davidson 2003, pp.
118–119), observe that

�̂ ∼̇N2(�, (I(�))−1), (7)

whereI(�) is the expected informationmatrix defined in (6).
Notice that approximate confidence intervals may be reached
employing the expression given in (7),while for obtaining the
information matrix stated in (6), we can utilize the observed
Fisher information matrix formulated as

J (�) = −∂2	(�)/∂� ∂��, (8)
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with the elements given in (8) calculated from results above
presented, evaluated at � = �̂. To test the hypotheses
H0:� = �0 versus H1:� �= �0, we may utilize the Wald
and likelihood ratio tests. Their test statistics based on the
observed information matrix are, respectively, expressed as

W = (�̂ − �0)
�J (�̂)(�̂ − �0),

L = −2
(
	(�0) − 	(�̂)

)
. (9)

If n → ∞, such statistics converge to a random vari-
able following a χ2 distribution, with r being its degrees
of freedom, denoted by χ2

r , and r is the number of parame-
ters under H0. This hypothesis is rejected, at a significance
level κ , if any of the statistics calculated using (9) is greater
than χ2

r ,1−κ , which denotes the 100(1 − κ)th quantile of the
χ2
r distribution.

2.4 The quantile UGHN distribution

Since theUGHNQFcontains the standard normalQF,we can
calculate this last one employing any mathematical program.
Hence, theUGHNPDFandCDFmaybeparameterizedusing
its QF.

To propose a quantile regression model based on the
UGHN distribution, it must be parameterized in terms of
the 100 τ th quantile, μ = Q(τ ;α, θ) namely, such that α is
written as

α = k−1(μ) = − log (μ)
[
−�−1

(τ

2

)]− 1
θ
.

Then, the PDF and CDF of the reparameterized UGHN dis-
tribution are, respectively, given by

f (y; θ, μ, τ) =
√

2

π

θ�−1
(

τ
2

)
log (y)

[
log (y)

log (μ)

]θ

× exp

{
−1

2

[
�−1

(τ

2

)]2 [
log (y)

log (μ)

]2θ}
,

(10)

F(y; θ, μ, τ) = 2�

[
�−1

(τ

2

) [
log (y)

log (μ)

]θ
]

,

0 < y < 1, θ > 0, μ ∈ (0, 1), τ ∈ (0, 1),

(11)

where θ, μ are the shape and quantile parameters, and τ is
known, which is denoted by Y ∼ UGHN(α, μ, τ).

Figure 3 displays graphical plots of the UGHN PDF for
different values of μ, α and τ . We consider the first decile
(τ = 0.10), the first quartile (τ = 0.25), the median (τ =
0.50), the third quartile (τ = 0.75), and the ninth decile
(τ = 0.90). From this figure,we see that this PDFhas bathtub
and unimodal shapes. Other possible shapes of the PDF can

be obtained with different parameters settings. Now, we are
ready to introduce a quantile regression based on the UGHN
distribution.

3 The UGHN quantile regressionmodel

In this section, we provide a quantile regression model based
on the UGHN distribution.

3.1 Model formulation

Since the moments of the UGHN distribution have no ana-
lytic expressions, it is difficult to relate the mean response
and covariates. After defining the quantile UGHN distribu-
tion, we can formulate a quantile regression based on the
UGHN distribution with its PDF given in (10).

Let y1, . . . , yn be observations of Y ∼ UGHN(θ, μi , τ ),
for i ∈ {1, . . . , n}, where μi and θ are unknown parameters,
and τ is known. Hence, the proposed quantile regression
model is defined by means of

g(μi ) = xiδ�,

where δ = (
δ0, δ1, . . . , δp

)� and xi = (1, xi1, . . . , xip)�
are the regression coefficient vector and the i th vector of
values of the covariates. Note that g is the link functionwhich
connects the covariates and response variable. We obtain a
median quantile regression for unit response variable, that is,
τ = 0.5. Since the UGHN distribution is a probability model
supported on (0,1), the logit-link function is used and defined
as

g(μi ) = log

(
μi

1 − μi

)
, i ∈ {1, . . . , n}.

Observe that the probit and log-log link functions can be
employed to connect conditional quantiles of the response
variable as well.

3.2 MLmethod for the regression coefficients

Now, we estimate the unknown parameters of the UGHN
quantile regression model via theMLmethod.With this aim,
we consider the logit link function stated as

g(μi ) = log

(
μi

1 − μi

)
= xiδ�. (12)

From the expression defined in (12), we obtain the relation-
ship given by

μi = exp
(
xiδ�)

1 + exp
(
xiδ�) . (13)
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Fig. 3 Plots of the PDF of the
quantile UGHN distribution for
the indicated values of μ, α and
τ

Let Y1, . . . ,Yn be a sample of size n from Y ∼
UGHN(θ, μi , τ ), with observed values denoted by y1, . . . ,
yn , where μi is given in (13), for i ∈ {1, . . . , n}. Then, using
the PDF stated in (10), the associated log-likelihood function
is established as

	 (�) = n log

(
2

π

)
+ n log (θ) + n log

[
−�−1

(τ

2

)]

+θ

n∑
i=1

log

[
log (yi )

log (μi )

]
−

n∑
i=1

log
[−log (yi )

]

−1

2

[
�−1

(τ

2

)]2 n∑
i=1

[
log (yi )

log (μi )

]2θ
, (14)

where now � = (θ, δ)� is the unknown parameter vector.
The ML estimators of �, say ̂� = (θ̂ ,̂δ)�, is obtained by
maximizing 	(�) with respect to �. Following usual rou-
tine, the first derivatives of 	(�) for estimating the model
parameters are given by

∂	 (�)

∂θ
= n

θ
+

n∑
i=1

log

[
log (yi )

log (μi )

]
−

[
�−1

(τ

2

)]2

×
n∑

i=1

[
log (yi )

log (μi )

]2θ
log

[
log (yi )

log (μi )

]
, (15)

∂	 (�)

∂δr
= −θ

n∑
i=1

1

μi logμi

∂μi

∂δr
+ θ

[
�−1

(τ

2

)]2

×
n∑

i=1

[
log (yi )

log (μi )

]2θ 1

μi logμi

∂μi

∂δr
, (16)

where ∂μi/∂δr = μi (1 − μi ) xir , with i ∈ {1, . . . , n} and
r ∈ {1, . . . , p}. Since the equations stated in (15) and (16)
contain nonlinear functions according to model parameters,
they must be solved by numerical methods. For example,
we may employ the optim function of the R software to
maximize the function defined in (14) directly. We note that,
when τ = 0.5, the corresponding solutions to the equations
are equivalent to modeling the conditional median.
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Similarly to the case of no covariates, based on usual reg-
ularity conditions, the asymptotic distribution of (�̂ − �)

is multivariate normal, that is, (�̂ − �)∼̇Np+1(0, I−1),
where, as mentioned, I−1 is the inverse expected infor-
mation matrix. In practice, as also mentioned, one utilizes
the (p + 1) × (p + 1) observed information matrix J
instead of I. The elements of this observed information
matrix are calculated numerically by any mathematical soft-
ware. The optim function of R also provides asymptotic
standard errors (SEs) of the estimators numerically. Then,
approximate 100(1 − κ)% confidence intervals for � may
be determined by θ̂r ± zκ/2s(θ̂r ), where zκ/2 is the upper
100(κ/2)th percentile of the standard normal distribution and
s(θ̂r ) is the estimated SE of the estimator of θr , which may
be obtained from the r th diagonal element of J −1.

3.3 Model checking

After model fitting, we must evaluate whether the regression
model is suitable to data or not. In this context, the resid-
ual analysis plays a relevant role for the model checking or
validation. In order to make this, we focus on the Cox-Snell
residual (Cox and Snell 1968) that is defined for observation
i by

η̂i = − log
[
1 − F(yi ; θ̂ , μ̂i , τ )

]
, i ∈ {1, . . . , n},

where F(yi ; θ̂ , μ̂i , τ ) is the estimated CDF of the quantile
UGHN distribution given in (11) and μ̂i is defined in (13).
If the model fits to the data accordingly, the residual η̂i is
an observation of an exponentially distributed random vari-
able with scale parameter equal to one. Then, the Cox-Snell
residual may be checked by the empirical quantile versus
theoretical quantile (QQ) plot with simulated envelopes pro-
posed by Atkinson (1981). If the model is fitted properly to
the data, then no more than υ × 100% of the observations
are expected to appear outside the envelope bands.

4 Simulation study

In this section, we present the results of theMonte Carlo sim-
ulationswhich are helpful to assess some statistical properties
of theML estimators, as the bias and rootmean-squared error
(RMSE), of the parameters of the UGHN quantile regression
model. Also, we study the coverage probability (CP) of the
95% confidence interval (CP95%) based on asymptotic nor-
mality of the ML estimators.

4.1 Setting for the simulation

We consider sample sizes n ∈ {20, 50, 100, 200, 300}; τ ∈
{0.10, 0.25, 0.50, 0.75, 0.90}; and θ ∈ {0.5, 1.0, 2.0} on two
regression frameworks formulated as:

(i) logit(μi ) = δ0 + δ1zi1 for δ0 = 1.0, δ1 = 2.0 and
zi1 ∼ N(0, 1).

(ii) logit(μi ) = δ0 + δ1zi1 + δ2zi2 for δ0 = 1.0, δ1 = 1.0,
δ2 = 2.0, zi1 ∼ N(0, 1) and zi2 ∼ N(0, 1).

For each (n, τ, θ) and the two regression frameworks
stated in (i) and (ii) above, with the covariates remain-
ing constant throughout the simulations, M = 5, 000
Monte Carlo replicates were simulated employing the SAS
Data-Step, while parameter estimates were obtained by
the quasi-Newton method in PROC SAS/NLMIXED (SAS
Institute Inc. 2018). The values of the response variable,
given the values of n, τ , θ and the covariates, are generated
as

yi = exp

{
−αi

[
−�−1

(ui
2

)]1/θ}
,

where ui is an observation of U ∼ U(0, 1) and

αi = k−1(μi ) = − log (μi )
[
−�−1

(τ

2

)]− 1
θ
.

The empirical bias, RMSE, and CP are calculated, respec-
tively, by

Bias (̂�) = 1

M

M∑
i=1

(̂�i − �),

RMSE(̂�) =
[
1

M

B∑
i=1

(̂�i − �)2]
] 1

2

,

CP95% (̂�) = 1

M

M∑
i=1

1
[̂
� ± 1.96 × SE(̂�)

]
,

where � = α, δ0, δ1 or δ2, 1 is the indicator function, and
SE(̂�) is the corresponding estimated SE.

4.2 Results of the simulation

Tables 1, 2, and 3, as well as Tables 4, 5 and 6, present the
results for the first and second regression models, respec-
tively. Such tables report a small bias when estimating θ and
δ for all settings considered in this study. In addition, the
estimated RMSE is small and quickly approaches to zero
as n, the sample size, increases. Larger values of the bias
and RMSE are detected as the quantiles are distant from
τ = 0.5, either from the left or right, that is, the values
τ ∈ {0.1, 0.25, 0.75, 0.9}. Moreover, for all scenarios, the
CPs tend to the nominal confidence coefficient, that is, 95%,
as n increases. Observe that the empirical results based on
the Monte Carlo simulations for large sample are coherent
with the asymptotic theoretical results presented at the end
of Subsect. 3.2 and just before the diagnostic analysis.
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Table 1 Empirical bias, RMSE,
and 95% CP (true values:
δ0 = 1.0, δ1 = 2.0, and
α = 0.5) with simulated data

τ n Bias RMSE CP95%

δ0 δ1 α δ0 δ1 α δ0 δ1 α

0.10 20 0.1356 0.0645 0.0632 0.4922 0.5945 0.1348 0.8685 0.8969 0.9423

50 0.0540 0.0247 0.0229 0.2854 0.3217 0.0685 0.9211 0.9302 0.9463

100 0.0261 0.0113 0.0109 0.1990 0.2177 0.0447 0.9329 0.9390 0.9488

200 0.0130 0.0069 0.0050 0.1391 0.1499 0.0302 0.9415 0.9442 0.9501

300 0.0082 0.0051 0.0033 0.1128 0.1200 0.0242 0.9456 0.9459 0.9534

0.25 20 0.0655 0.0812 0.0639 0.4844 0.6018 0.1353 0.8974 0.8956 0.9412

50 0.0262 0.0308 0.0230 0.2870 0.3233 0.0683 0.9333 0.9311 0.9464

100 0.0125 0.0142 0.0110 0.2012 0.2182 0.0447 0.9419 0.9394 0.9494

200 0.0068 0.0082 0.0050 0.1417 0.1502 0.0302 0.9452 0.9428 0.9510

300 0.0041 0.0060 0.0033 0.1148 0.1201 0.0242 0.9471 0.9475 0.9539

0.50 20 −0.0538 0.1191 0.0643 0.6050 0.6348 0.1353 0.9183 0.8928 0.9403

50 −0.0199 0.0436 0.0230 0.3623 0.3315 0.0676 0.9386 0.9313 0.9457

100 −0.0099 0.0202 0.0110 0.2536 0.2220 0.0442 0.9470 0.9403 0.9497

200 −0.0033 0.0109 0.0050 0.1790 0.1525 0.0299 0.9453 0.9422 0.9512

300 −0.0027 0.0078 0.0033 0.1448 0.1217 0.0239 0.9495 0.9463 0.9527

0.75 20 −0.2473 0.1988 0.0634 0.9477 0.7371 0.1336 0.9223 0.8914 0.9334

50 −0.0910 0.0680 0.0224 0.5423 0.3557 0.0657 0.9390 0.9310 0.9443

100 −0.0438 0.0312 0.0107 0.3741 0.2330 0.0430 0.9466 0.9402 0.9482

200 −0.0187 0.0159 0.0049 0.2616 0.1590 0.0290 0.9501 0.9425 0.9503

300 −0.0132 0.0112 0.0033 0.2117 0.1265 0.0233 0.9506 0.9474 0.9523

0.90 20 −0.5733 0.3282 0.0667 1.5580 0.9942 0.1313 0.9233 0.8888 0.9038

50 −0.2482 0.0921 0.0286 0.8230 0.4139 0.0659 0.9358 0.9263 0.9307

100 −0.1567 0.0291 0.0179 0.5572 0.2536 0.0440 0.9385 0.9432 0.9361

200 −0.1061 0.0047 0.0125 0.3890 0.1713 0.0304 0.9408 0.9428 0.9344

300 −0.0999 −0.0001 0.0114 0.3211 0.1377 0.0251 0.9330 0.9414 0.9279

5 Applications with real-world data

In this section, we present two real analyses to show potential
applications of the proposed quantile regression model. We
compare this model with the Kumaraswamy quantile regres-
sion. The data sets are provided in Appendix.

5.1 Kumaraswamy regressionmodel

For the purpose of comparison, in addition to the UGHN
quantile regression model, we also consider the
Kumaraswamy quantile regression model. The
Kumaraswamy regression model introduced has PDF and
CDF given, respectively, by

f (y; θ, μ, τ) = θ log (1 − τ)

log
(
1 − μθ

) yθ−1 (
1 − yθ

) log(1−τ)

log(1−μθ )
−1

, y ∈ (0, 1),

F(y; θ, μ, τ) = 1 − (
1 − yθ

) log(1−τ)

log(1−μθ ) , y ∈ (0, 1),

where μ ∈ (0, 1) is the quantile parameter and θ > 0, with
τ ∈ (0, 1) being a known value.

5.2 The stack loss data

This data set, extracted from https://support.sas.com/rnd/
app/stat/examples/, corresponds to the operation of a plant
where ammonia is oxidized to nitric acid (Brownlee 1965;Yu
andMoyeed 2001). The oxidation is measured on 21 consec-
utive days and the response variable,StackLoss namely, is
the percentage of ammonia lost (times 10), and there are three
explanatory variables: AirFlow, which measures the air
flow to the plant; WaterTemp, which measures the cooling
water inlet temperature; and AcidConc, which measures
the acid concentration. The regression structure assumed for
μi is given by

logit(μi ) = δ0 + δ1AirFlowi + δ2WaterTempi

+δ3AcidConci , i ∈ {1, . . . , 21}.

Tables 7 and 8, respectively, display theML estimates and
their standard errors (SEs), and model selection criteria for
the UGHN and Kumaraswamy quantile regressions models.
Each of the likelihood-based statistics for themodel selection
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Table 2 Empirical bias,
RMSE, and 95% CP (true
values: δ0 = 1.0, δ1 = 2.0, and
α = 1.0) with simulated data

τ n Bias RMSE CP95%

δ0 δ1 α δ0 δ1 α δ0 δ1 α

0.10 20 0.0767 0.0220 0.1256 0.2472 0.2859 0.2691 0.8694 0.9017 0.9422

50 0.0300 0.0093 0.0456 0.1431 0.1590 0.1369 0.9217 0.9327 0.9464

100 0.0145 0.0043 0.0218 0.0996 0.1082 0.0895 0.9349 0.9396 0.9490

200 0.0072 0.0028 0.0100 0.0696 0.0747 0.0604 0.9415 0.9442 0.9501

300 0.0046 0.0021 0.0066 0.0564 0.0599 0.0483 0.9455 0.9464 0.9535

0.25 20 0.0421 0.0300 0.1271 0.2409 0.2882 0.2700 0.8974 0.9003 0.9414

50 0.0162 0.0124 0.0460 0.1433 0.1595 0.1366 0.9310 0.9327 0.9463

100 0.0077 0.0057 0.0220 0.1005 0.1084 0.0894 0.9404 0.9402 0.9492

200 0.0041 0.0034 0.0101 0.0708 0.0748 0.0603 0.9449 0.9432 0.9511

300 0.0025 0.0026 0.0067 0.0574 0.0599 0.0483 0.9468 0.9477 0.9539

0.50 20 −0.0135 0.0449 0.1279 0.2931 0.2971 0.2698 0.9131 0.8964 0.9408

50 −0.0058 0.0178 0.0461 0.1793 0.1624 0.1352 0.9364 0.9323 0.9458

100 −0.0030 0.0083 0.0221 0.1262 0.1099 0.0885 0.9455 0.9404 0.9496

200 −0.0008 0.0046 0.0101 0.0893 0.0758 0.0598 0.9449 0.9422 0.9512

300 −0.0008 0.0033 0.0067 0.0723 0.0606 0.0479 0.9489 0.9465 0.9527

0.75 20 −0.0965 0.0710 0.1265 0.4383 0.3214 0.2662 0.9078 0.8913 0.9384

50 −0.0383 0.0268 0.0453 0.2644 0.1707 0.1316 0.9325 0.9296 0.9458

100 −0.0188 0.0125 0.0217 0.1849 0.1144 0.0862 0.9416 0.9396 0.9488

200 −0.0079 0.0065 0.0099 0.1301 0.0787 0.0581 0.9485 0.9420 0.9501

300 −0.0056 0.0046 0.0066 0.1054 0.0628 0.0466 0.9491 0.9471 0.9527

0.90 20 −0.2003 0.1099 0.1206 0.6537 0.3713 0.2555 0.9005 0.8920 0.9258

50 −0.0778 0.0394 0.0430 0.3799 0.1861 0.1250 0.9294 0.9286 0.9436

100 −0.0378 0.0183 0.0205 0.2626 0.1225 0.0817 0.9393 0.9412 0.9452

200 −0.0166 0.0091 0.0094 0.1832 0.0838 0.0550 0.9479 0.9443 0.9511

300 −0.0116 0.0064 0.0063 0.1485 0.0667 0.0442 0.9500 0.9479 0.9525

criteria is given as follows. The negative value of the log-
likelihood is defined as

Neg2LogLike = −2 log(L).

The Akaike information criterion (Akaike 1974) is stated as

AIC = −2 log(L) + 2p.

The Schwarz Bayesian information criterion (Schwarz et al.
1978) is expressed as

BIC = −2 log(L) + p log(n).

The Hannan and Quinn information criterion (Hannan and
Quinn 1979) is formulated by

HQIC = −2 log(L) + 2p log[log(n)],

where n is the sample size, p is the number of parameters,
and L is the maximized likelihood function.

For all quantile levels, the log-likelihood values of the
UGHNquantile regressionmodel are greater than those of the
Kumaraswamy quantile regression model with all the small-
est likelihood-based statistics. The largest log-likelihood
value of the UGHN quantile regression is found when the
quantile regressionmodel is based on τ = 0.10. For all τ , the
AirFlow and WaterTemp covariates are obtained as sta-
tistically significant at the usual significance levels whereas
the AcidConc covariate is statistically not significant. In
addition, the coefficients δ1 and δ2 are obtained as with pos-
itive sign for all τ . Hence, when the measurements of the
AirFlow and WaterTemp covariates increase, the per-
centage of the ammonia lost (Stackloss) increases also.
The AcidConc is not significant for the related percentage.

To support these inferences, themodel’s fit plays an impor-
tant role.With this aim,we constructQQplotswith simulated
envelopes for the Cox-Snell residuals in Figure 4. This figure
indicates a good fit of the UGHN quantile regression model
to the Stackloss data set.
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Table 3 Empirical bias, RMSE
and 95% CP (true values:
δ0 = 1.0, δ1 = 2.0 and α = 2.0)
with simulated data

τ n Bias RMSE CP95%

δ0 δ1 α δ0 δ1 α δ0 δ1 α

0.10 20 0.0405 0.0086 0.2505 0.1247 0.1411 0.5375 0.8723 0.9041 0.9426

50 0.0158 0.0039 0.0910 0.0718 0.0791 0.2738 0.9224 0.9326 0.9465

100 0.0076 0.0018 0.0436 0.0499 0.0540 0.1789 0.9364 0.9398 0.9489

200 0.0038 0.0012 0.0200 0.0348 0.0373 0.1208 0.9417 0.9443 0.9500

300 0.0024 0.0010 0.0132 0.0282 0.0299 0.0967 0.9467 0.9469 0.9536

0.25 20 0.0233 0.0125 0.2535 0.1209 0.1419 0.5396 0.8972 0.9040 0.9416

50 0.0089 0.0054 0.0920 0.0718 0.0793 0.2733 0.9307 0.9335 0.9463

100 0.0042 0.0025 0.0440 0.0503 0.0541 0.1788 0.9404 0.9398 0.9494

200 0.0022 0.0015 0.0202 0.0354 0.0373 0.1207 0.9441 0.9435 0.9511

300 0.0014 0.0012 0.0134 0.0287 0.0299 0.0966 0.9466 0.9477 0.9539

0.50 20 −0.0038 0.0192 0.2555 0.1457 0.1452 0.5394 0.9116 0.8990 0.9407

50 −0.0019 0.0079 0.0924 0.0894 0.0806 0.2706 0.9348 0.9329 0.9458

100 −0.0011 0.0037 0.0443 0.0630 0.0548 0.1772 0.9453 0.9396 0.9492

200 −0.0002 0.0021 0.0203 0.0446 0.0378 0.1196 0.9450 0.9421 0.9510

300 −0.0002 0.0015 0.0135 0.0361 0.0302 0.0958 0.9478 0.9468 0.9525

0.75 20 −0.0430 0.0297 0.2534 0.2147 0.1538 0.5325 0.9025 0.8917 0.9392

50 −0.0175 0.0117 0.0912 0.1312 0.0841 0.2635 0.9296 0.9290 0.9463

100 −0.0087 0.0055 0.0437 0.0921 0.0568 0.1725 0.9397 0.9397 0.9486

200 −0.0036 0.0029 0.0200 0.0650 0.0392 0.1163 0.9482 0.9417 0.9503

300 −0.0026 0.0021 0.0134 0.0526 0.0313 0.0932 0.9495 0.9471 0.9530

0.90 20 −0.0905 0.0437 0.2438 0.3144 0.1697 0.5139 0.8937 0.8877 0.9328

50 −0.0364 0.0167 0.0875 0.1874 0.0904 0.2509 0.9247 0.9262 0.9451

100 −0.0178 0.0079 0.0418 0.1304 0.0605 0.1638 0.9368 0.9390 0.9459

200 −0.0078 0.0040 0.0192 0.0913 0.0416 0.1101 0.9463 0.9443 0.9512

300 −0.0054 0.0028 0.0129 0.0741 0.0332 0.0884 0.9495 0.9479 0.9526

5.3 Educational attainment of the OECD countries
data set

We consider a second data set related to education values
of OECD countries. The measurement unit of the data set
is calculated as a percentage. We relate linearly the educa-
tional attainment values (EAV) of the OECD countries and
better life indexes of such countries as covariates employing a
quantile regression structure. These data have been analyzed
by Altun (2021) and the covariates are related to labor mar-
ket insecurity (LMI) and homicide rate (HR). The regression
structure assumed for μi is formulated as

logit(μi ) = δ0 + δ1LMIi + δ2HRi , i ∈ {1, . . . , 37}.

Tables 9 and 10, respectively, report theML estimates and
their associated SEs, as well as model selection criteria for
the UGHN and Kumaraswamy quantile regressions. For all
quantile levels, all regression coefficients are statistically sig-
nificant. Therefore, the LMI and HR covariates have affected
the response variable EAV in a statistically significant form

at the usual levels. This affection has been seen as opposite
sign, that is, as LMI and HR increase, the EAV decreases.

The log-likelihood values of the UGHN quantile regres-
sion are once again greater than those of the Kumaraswamy
quantile regression with all the smallest likelihood-based
statistics. The largest log-likelihood value of the UGHN
quantile regression model was detected when the regression
is based on the quantile τ = 0.10. This inference is also
supported by the QQ plots for the Cox-Snell residuals with
simulated envelopes shown in Figure 5.

6 Concluding remarks

In this paper, we have proposed and derived a new quantile
regression model based on the unit generalized half-normal
distribution. In the proposed regression, the covariates were
related to the quantile of the response variable by the logit link
function. Different aspects of estimation, inference, based on
the maximum likelihood method, and diagnostics, using the
Cox-Snell residual, were considered.
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Table 4 Empirical bias, RMSE and 95% CP (true values: δ0 = 1.0, δ1 = 1.0, δ2 = 2.0 and α = 0.5) with simulated data

τ n Bias RMSE CP95%

δ0 δ1 δ2 α δ0 δ1 δ2 α δ0 δ1 δ2 α

0.10 20 0.1866 0.0322 0.0875 0.0874 0.5605 0.5910 0.6659 0.1570 0.8368 0.8882 0.8754 0.9276

50 0.0727 0.0159 0.0353 0.0308 0.3052 0.3029 0.3345 0.0730 0.9090 0.9218 0.9254 0.9428

100 0.0368 0.0101 0.0166 0.0151 0.2081 0.1994 0.2223 0.0472 0.9266 0.9350 0.9342 0.9442

200 0.0162 0.0051 0.0115 0.0075 0.1441 0.1332 0.1501 0.0311 0.9370 0.9464 0.9410 0.9482

300 0.0091 0.0028 0.0098 0.0049 0.1174 0.1078 0.1234 0.0249 0.9404 0.9472 0.9430 0.9476

0.25 20 0.0829 0.0444 0.1122 0.0883 0.5349 0.5967 0.6766 0.1579 0.8782 0.8846 0.8764 0.9264

50 0.0309 0.0205 0.0446 0.0311 0.3026 0.3046 0.3375 0.0733 0.9268 0.9224 0.9214 0.9420

100 0.0158 0.0123 0.0210 0.0152 0.2088 0.2002 0.2231 0.0474 0.9380 0.9336 0.9330 0.9438

200 0.0056 0.0061 0.0136 0.0075 0.1451 0.1335 0.1502 0.0312 0.9442 0.9456 0.9424 0.9486

300 0.0020 0.0035 0.0112 0.0050 0.1184 0.1080 0.1234 0.0249 0.9458 0.9468 0.9436 0.9484

0.50 20 −0.0889 0.0703 0.1633 0.0884 0.6516 0.6185 0.7155 0.1575 0.9074 0.8850 0.8722 0.9228

50 −0.0363 0.0291 0.0622 0.0310 0.3780 0.3093 0.3486 0.0729 0.9346 0.9216 0.9220 0.9380

100 −0.0176 0.0163 0.0293 0.0151 0.2634 0.2025 0.2277 0.0471 0.9398 0.9334 0.9330 0.9416

200 −0.0112 0.0081 0.0176 0.0074 0.1825 0.1344 0.1523 0.0309 0.9468 0.9454 0.9434 0.9450

300 −0.0092 0.0048 0.0139 0.0049 0.1486 0.1087 0.1248 0.0247 0.9472 0.9454 0.9432 0.9472

0.75 20 −0.3577 0.1197 0.2648 0.0857 1.0317 0.6773 0.8348 0.1531 0.9064 0.8852 0.8686 0.9120

50 −0.1357 0.0445 0.0937 0.0300 0.5711 0.3211 0.3783 0.0709 0.9322 0.9278 0.9202 0.9316

100 −0.0659 0.0233 0.0435 0.0146 0.3918 0.2079 0.2411 0.0457 0.9350 0.9332 0.9326 0.9382

200 −0.0346 0.0113 0.0241 0.0071 0.2680 0.1368 0.1587 0.0299 0.9456 0.9456 0.9450 0.9428

300 −0.0249 0.0069 0.0181 0.0047 0.2167 0.1104 0.1292 0.0239 0.9490 0.9428 0.9444 0.9454

0.90 20 −0.8381 0.2128 0.4365 0.0926 1.7858 0.8510 1.1579 0.1547 0.8946 0.8816 0.8638 0.8587

50 −0.3661 0.0623 0.1311 0.0400 0.9019 0.3515 0.4496 0.0742 0.9159 0.9234 0.9148 0.9035

100 −0.2274 0.0267 0.0550 0.0252 0.6011 0.2212 0.2700 0.0485 0.9218 0.9310 0.9306 0.9080

200 −0.1637 0.0046 0.0204 0.0182 0.4096 0.1441 0.1705 0.0332 0.9297 0.9400 0.9502 0.9114

300 −0.1391 −0.0053 0.0142 0.0156 0.3311 0.1162 0.1346 0.0273 0.9333 0.9360 0.9480 0.9027

Table 5 Empirical bias, RMSE and 95% CP (true values: δ0 = 1.0, δ1 = 1.0, δ2 = 2.0 and α = 1.0) with simulated data

τ n Bias RMSE CP95%

δ0 δ1 δ2 α δ0 δ1 δ2 α δ0 δ1 δ2 α

0.10 20 0.1082 0.0100 0.0309 0.1726 0.2794 0.2797 0.3106 0.3121 0.8404 0.8910 0.8832 0.9294

50 0.0409 0.0060 0.0139 0.0613 0.1531 0.1492 0.1642 0.1457 0.9100 0.9238 0.9272 0.9422

100 0.0205 0.0041 0.0066 0.0300 0.1043 0.0989 0.1102 0.0945 0.9268 0.9348 0.9354 0.9442

200 0.0091 0.0021 0.0049 0.0149 0.0721 0.0663 0.0747 0.0623 0.9370 0.9466 0.9424 0.9480

300 0.0052 0.0011 0.0044 0.0098 0.0587 0.0537 0.0615 0.0497 0.9404 0.9468 0.9426 0.9478

0.25 20 0.0573 0.0159 0.0424 0.1742 0.2623 0.2815 0.3138 0.3137 0.8778 0.8896 0.8836 0.9266

50 0.0203 0.0082 0.0183 0.0619 0.1507 0.1497 0.1651 0.1465 0.9260 0.9238 0.9254 0.9422

100 0.0101 0.0052 0.0088 0.0304 0.1042 0.0992 0.1104 0.0947 0.9378 0.9344 0.9330 0.9438

200 0.0038 0.0027 0.0060 0.0150 0.0725 0.0664 0.0747 0.0624 0.9446 0.9468 0.9428 0.9488

300 0.0017 0.0015 0.0051 0.0099 0.0591 0.0538 0.0615 0.0498 0.9460 0.9464 0.9428 0.9484

0.50 20 −0.0223 0.0262 0.0628 0.1741 0.3075 0.2864 0.3246 0.3128 0.8998 0.8880 0.8814 0.9244

50 −0.0119 0.0119 0.0259 0.0620 0.1855 0.1510 0.1689 0.1458 0.9296 0.9224 0.9224 0.9400

100 −0.0061 0.0070 0.0124 0.0303 0.1305 0.1000 0.1121 0.0941 0.9376 0.9338 0.9336 0.9418

200 −0.0044 0.0036 0.0078 0.0149 0.0908 0.0668 0.0756 0.0618 0.9438 0.9458 0.9430 0.9452

300 −0.0038 0.0021 0.0063 0.0099 0.0740 0.0541 0.0621 0.0493 0.9478 0.9450 0.9422 0.9476
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Table 5 continued

τ n Bias RMSE CP95%

δ0 δ1 δ2 α δ0 δ1 δ2 α δ0 δ1 δ2 α

0.75 20 −0.1358 0.0428 0.0963 0.1688 0.4613 0.2975 0.3524 0.3044 0.8946 0.8880 0.8716 0.9182

50 −0.0572 0.0177 0.0378 0.0602 0.2745 0.1543 0.1785 0.1417 0.9240 0.9260 0.9204 0.9346

100 −0.0286 0.0097 0.0180 0.0294 0.1923 0.1019 0.1172 0.0913 0.9298 0.9348 0.9342 0.9394

200 −0.0155 0.0049 0.0105 0.0144 0.1328 0.0678 0.0783 0.0599 0.9440 0.9460 0.9458 0.9434

300 −0.0113 0.0030 0.0081 0.0095 0.1078 0.0548 0.0641 0.0478 0.9474 0.9440 0.9430 0.9456

0.90 20 −0.2678 0.0657 0.1421 0.1555 0.6911 0.3187 0.4038 0.2838 0.8800 0.8924 0.8684 0.9034

50 −0.1085 0.0251 0.0530 0.0558 0.3958 0.1601 0.1958 0.1335 0.9206 0.9280 0.9198 0.9276

100 −0.0536 0.0131 0.0250 0.0270 0.2723 0.1052 0.1263 0.0854 0.9298 0.9364 0.9318 0.9360

200 −0.0275 0.0065 0.0137 0.0131 0.1864 0.0694 0.0833 0.0560 0.9440 0.9474 0.9466 0.9448

300 −0.0194 0.0040 0.0102 0.0087 0.1508 0.0560 0.0678 0.0447 0.9456 0.9440 0.9434 0.9436

Table 6 Empirical bias, RMSE and 95% CP (true values: δ0 = 1.0, δ1 = 1.0, δ2 = 2.0 and α = 2.0) with simulated data

τ n Bias RMSE CP95%

δ0 δ1 δ2 α δ0 δ1 δ2 α δ0 δ1 δ2 α

0.10 20 0.0575 0.0036 0.0124 0.3431 0.1411 0.1377 0.1520 0.6220 0.8448 0.8932 0.8882 0.9294

50 0.0216 0.0025 0.0060 0.1222 0.0769 0.0742 0.0815 0.2912 0.9110 0.9244 0.9278 0.9424

100 0.0108 0.0018 0.0029 0.0600 0.0523 0.0493 0.0549 0.1889 0.9274 0.9352 0.9368 0.9442

200 0.0048 0.0010 0.0023 0.0299 0.0361 0.0331 0.0373 0.1245 0.9372 0.9470 0.9430 0.9478

300 0.0028 0.0005 0.0021 0.0197 0.0294 0.0268 0.0307 0.0994 0.9410 0.9464 0.9430 0.9480

0.25 20 0.0321 0.0065 0.0181 0.3465 0.1316 0.1382 0.1530 0.6257 0.8796 0.8926 0.8870 0.9268

50 0.0113 0.0036 0.0082 0.1237 0.0754 0.0744 0.0818 0.2929 0.9258 0.9244 0.9258 0.9428

100 0.0056 0.0024 0.0040 0.0607 0.0522 0.0494 0.0549 0.1895 0.9388 0.9352 0.9340 0.9440

200 0.0021 0.0012 0.0028 0.0301 0.0362 0.0332 0.0373 0.1247 0.9448 0.9464 0.9430 0.9486

300 0.0010 0.0007 0.0024 0.0199 0.0296 0.0269 0.0307 0.0995 0.9458 0.9458 0.9434 0.9488

0.50 20 −0.0066 0.0112 0.0273 0.3467 0.1519 0.1397 0.1568 0.6242 0.8974 0.8910 0.8828 0.9246

50 −0.0045 0.0053 0.0117 0.1239 0.0923 0.0749 0.0834 0.2917 0.9264 0.9228 0.9230 0.9408

100 −0.0024 0.0032 0.0057 0.0607 0.0651 0.0498 0.0557 0.1883 0.9370 0.9350 0.9344 0.9418

200 −0.0019 0.0017 0.0037 0.0299 0.0453 0.0333 0.0377 0.1237 0.9438 0.9466 0.9434 0.9452

300 −0.0017 0.0010 0.0030 0.0198 0.0370 0.0270 0.0310 0.0987 0.9478 0.9452 0.9416 0.9474

0.75 20 −0.0603 0.0180 0.0410 0.3375 0.2240 0.1431 0.1663 0.6096 0.8890 0.8908 0.8734 0.9208

50 −0.0264 0.0078 0.0169 0.1208 0.1356 0.0761 0.0874 0.2839 0.9194 0.9242 0.9196 0.9360

100 −0.0133 0.0044 0.0082 0.0590 0.0956 0.0506 0.0580 0.1827 0.9280 0.9360 0.9344 0.9392

200 −0.0073 0.0022 0.0049 0.0289 0.0662 0.0338 0.0390 0.1198 0.9442 0.9462 0.9454 0.9442

300 −0.0054 0.0014 0.0038 0.0192 0.0538 0.0273 0.0319 0.0956 0.9470 0.9448 0.9434 0.9458

0.90 20 −0.1207 0.0264 0.0579 0.3133 0.3295 0.1488 0.1830 0.5711 0.8692 0.8894 0.8662 0.9118

50 −0.0508 0.0108 0.0230 0.1128 0.1940 0.0782 0.0942 0.2677 0.9132 0.9274 0.9174 0.9312

100 −0.0254 0.0058 0.0110 0.0548 0.1349 0.0520 0.0619 0.1711 0.9282 0.9368 0.9308 0.9378

200 −0.0132 0.0029 0.0062 0.0266 0.0927 0.0345 0.0413 0.1122 0.9438 0.9466 0.9450 0.9454

300 −0.0093 0.0018 0.0047 0.0178 0.0752 0.0279 0.0337 0.0896 0.9452 0.9434 0.9420 0.9438
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Table 7 ML estimates with
SEs in parentheses for the
indicated distribution and
parameter with Stackloss data

τ Distribution δ̂0 δ̂1 δ̂2 δ̂3 θ̂

0.10 UGHN −6.4533 0.0333 0.1169 0.0010 12.3569

(0.5090) (0.0044) (0.0135) (0.0064) (2.4559)

Kumaraswamy −6.2346 0.0467 0.0726 −0.0013 6.5158

(0.8529) (0.0118) (0.0183) (0.0109) (1.0431)

0.25 UGHN −6.2927 0.0328 0.1148 0.0008 12.3503

(0.4978) (0.0043) (0.0133) (0.0063) (2.4538)

Kumaraswamy −6.1955 0.0495 0.0735 −0.0018 6.5809

(0.8582) (0.0121) (0.0186) (0.0110) (1.0547)

0.50 UGHN −6.0612 0.0320 0.1119 0.0005 12.3404

(0.4853) (0.0041) (0.0130) (0.0061) (2.4506)

Kumaraswamy −6.1865 0.0523 0.0744 −0.0022 6.6447

(0.8638) (0.0123) (0.0189) (0.0110) (1.0648)

0.75 UGHN −5.7531 0.0309 0.1080 0.0002 12.3266

(0.4749) (0.0039) (0.0127) (0.0059) (2.4456)

Kumaraswamy −6.1990 0.0550 0.0753 −0.0026 6.7000

(0.8684) (0.0124) (0.0191) (0.0110) (1.0721)

0.90 UGHN −5.3944 0.0298 0.1036 −0.0002 12.3106

(0.4707) (0.0038) (0.0123) (0.0056) (2.4383)

Kumaraswamy −6.2206 0.0572 0.0760 −0.0030 6.7437

(0.8719) (0.0125) (0.0194) (0.0110) (1.0764)

Table 8 Likelihood-based
statistics for the indicated
distribution and criteria with
Stackloss data

τ Distribution Neg2LogLike AIC BIC HQIC

0.10 UGHN −100.4086 −90.4086 −85.1860 −89.2751

Kumaraswamy −93.9218 −83.9218 −78.6992 −82.7884

0.25 UGHN −100.3941 −90.3941 −85.1715 −89.2607

Kumaraswamy −94.4329 −84.4329 −79.2103 −83.2995

0.50 UGHN −100.3678 −90.3678 −85.1451 −89.2343

Kumaraswamy −94.9782 −84.9782 −79.7556 −83.8447

0.75 UGHN −100.3212 −90.3212 −85.0986 −89.1878

Kumaraswamy −95.4819 −85.4819 −80.2593 −84.3485

0.90 UGHN −100.2487 −90.2487 −85.0261 −89.1153

Kumaraswamy −95.8952 −85.8952 −80.6726 −84.7618

We have conducted Monte Carlo simulations for the pro-
posed quantile regression model to evaluate the performance
of the estimators under some settings. We have found that
the model parameters are well estimated in terms of bias
and root mean-squared error. Also, observe that the coverage
probabilities tend to the nominal confidence coefficient as
the sample size increases.

Two real data sets based on a chemical problem and the
better life index of the countries have been analyzed with
the proposed andKumaraswamy quantile regressionmodels.
The results have indicated that the proposed quantile regres-
sion showed an excellent agreement with the two real-world
data sets, being it an alternative to other competing models
available in the literature on the topic. A comparisonwas per-

formed according to information criteria and goodness-of-fit,
showing their adequacy.

Our analyses have revealed that the unit generalized half-
normal distribution has great potential for analyzing data
restricted to the unit interval in the presence of covariates.
The data analysis is facilitated by means of R codes, which
were implemented by the authors of this paper and are avail-
able upon request.

Some aspects of future research are related to the incor-
poration of multivariate, functional, temporal, and spatial
structures, as well as errors-in-variables and partial least
squares, in the quantile regression framework and its influ-
ence diagnostics (Huerta et al. 2018; Figueroa-Zuniga et al.
2022b; Liu et al. 2022). In addition, Tobit and Cobb–Douglas
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Fig. 4 QQ plots with envelopes of Cox-Snell residuals for the indicated 100 τ th quantile level of the (first row) UGHN model and (second row)
Kumaraswamy model with Stackloss data

Table 9 ML estimates with
SEs in parentheses for the
indicated distribution and
parameter with education data

τ Distribution δ̂0 δ̂1 δ̂2 θ̂

0.10 UGHN 1.6575 −0.1729 −0.0693 1.4840

(0.1934) (0.0351) (0.0209) (0.1910)

Kumaraswamy 0.7753 −0.0520 −0.0191 6.8157

(0.1714) (0.0088) (0.0158) (1.1916)

0.25 UGHN 1.8881 −0.1613 −0.0656 1.4771

(0.1874) (0.0338) (0.0192) (0.1887)

Kumaraswamy 1.2681 −0.0611 −0.0251 6.8511

(0.1573) (0.0100) (0.0193) (1.2010)

0.50 UGHN 2.2355 −0.1474 −0.0614 1.4662

(0.1937) (0.0325) (0.0176) (0.1851)

Kumaraswamy 1.8452 −0.0726 −0.0346 6.8693

(0.1605) (0.0116) (0.0242) (1.2030)

0.75 UGHN 2.7329 −0.1331 −0.0574 1.4505

(0.2258) (0.0320) (0.0161) (0.1798)

Kumaraswamy 2.4766 −0.0851 −0.0495 6.8545

(0.2001) (0.0134) (0.0291) (1.1882)

0.90 UGHN 3.3689 −0.1214 −0.0545 1.4317

(0.2855) (0.0331) (0.0153) (0.1744)

Kumaraswamy 3.1228 −0.0969 −0.0702 6.8278

(0.2721) (0.0148) (0.0301) (1.1660)
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Table 10 Likelihood-based
statistics for the indicated
distribution and criteria with
education data

τ Distribution Neg2LogLike AIC BIC HQIC

0.10 UGHN −70.8264 −62.8264 −56.2761 −60.4959

Kumaraswamy −63.8678 −55.8678 −49.3175 −53.5372

0.25 UGHN −70.3243 −62.3243 −55.7739 −59.9937

Kumaraswamy −63.9700 −55.9700 −49.4197 −53.6394

0.50 UGHN −69.6207 −61.6207 −55.0704 −59.2902

Kumaraswamy −63.9677 −55.9677 −49.4174 −53.6371

0.75 UGHN −68.7867 −60.7867 −54.2364 −58.4562

Kumaraswamy −63.8325 −55.8325 −49.2821 −53.5019

0.90 UGHN −68.0432 −60.0432 −53.4929 −57.7126

Kumaraswamy −63.6619 −55.6619 −49.1116 −53.3313

Fig. 5 QQ plots with envelopes of Cox-Snell residuals for the indicated 100 τ th quantile level of the (first row) UGHN model and (second row)
Kumaraswamy model) with education data

type frameworks can be considered in the topic of this study
(de la Fuente et al. 2019; Martinez-Florez et al. 2020).
Moreover, censored observations and frailty models could
be investigated in the present context (Leao et al. 2018).
The authors are analyzing these aspects associated with the
present investigation and their findings are expected to be
proposed promptly.
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Appendix: Data sets

First data set

stack loss<-c(42,37,37,28,18,18,19,20,
15,14,14,13,11,12,8,7,8,8,9,15,15)
#percentage

airflow<-c(80,80,75,62,62,62,62,62,58,
58,58,58,58,58,50,50,50,50,50,56,70)

watertemp<-c(27,27,25,24,22,23,24,24,23,
18,18,17,18,19,18,18,19,19,20,20,20)

acidconc<-c(89,88,90,87,87,87,93,93,87,
80,89,88,82,93,89,86,72,79,80,82,91)

Second data set

y <-c(080,85,75,91,65,93,81,89,88,78,86,
72,83,78,80,87,60,94,87,89,79,37,77,77,
82,91,47,92,87,58,83,87,39,81,90,49,95,
43)
#EAV Percentage

x1 <-c(4.3,2.7,4.8,3.9,8.1,1.8,2.3,4,2.
7,5,2,17.4,4.8,2.6,2.1,2.6,8.1,1.5,2.4,
6.8,3.2,4.6,2.1,4.9,2.7,4.3,6.5,6.7,
4,17.3,5.7,1.8,13,2.6,3.8,4.9,3.6,26.5)
#LMI

x2 <-c(1,0.4,1,1.4,4.5,0.8,0.7,3.1,1.4,
0.6,0.4,1,1.2,0.9,0.6,1.7,0.8,0.3,1.1,
6.6,0.6,17.9,0.6,1.3,0.6,0.8,1,0.8,0.6,
0.6,1,0.5,1.7,0.2,4.9, 27.6,11.3,10)
#HR
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