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Childhood obesity is a major public health issue. Here we investigated whether differential DNA methylation was
associated with childhood obesity. We studied DNA methylation profiles in whole blood from 78 obese children (mean
BMI Z-score: 2.6) and 71 age- and sex-matched controls (mean BMI Z-score: 0.1). DNA samples from obese and control
groups were pooled and analyzed using the Infinium HumanMethylation450 BeadChip array. Comparison of the
methylation profiles between obese and control subjects revealed 129 differentially methylated CpG (DMCpG) loci
associated with 80 unique genes that had a greater than 10% difference in methylation (P-value < 0.05). The top
pathways enriched among the DMCpGs included developmental processes, immune system regulation, regulation of
cell signaling, and small GTPase-mediated signal transduction. The associations between the methylation of selected
DMCpGs with childhood obesity were validated using sodium bisulfite pyrosequencing across loci within the FYN,
PIWIL4, and TAOK3 genes in individual subjects. Three CpG loci within FYN were hypermethylated in obese individuals
(all P < 0.01), while obesity was associated with lower methylation of CpG loci within PIWIL4 (P D 0.003) and TAOK3
(P D 0.001). After building logistic regression models, we determined that a 1% increase in methylation in TAOK3,
multiplicatively decreased the odds of being obese by 0.91 (95% CI: 0.86 – 0.97), and an increase of 1% methylation in
FYN CpG3, multiplicatively increased the odds of being obese by 1.03 (95% CI: 0.99 – 1.07). In conclusion, these findings
provide evidence that childhood obesity is associated with specific DNA methylation changes in whole blood, which
may have utility as biomarkers of obesity risk.

Introduction

The prevalence of childhood obesity worldwide has increased
over the past decade. An estimated 43 million preschool children
were overweight or obese in 2010, a 60% increase since 1990.1

Childhood obesity is linked to both short- and long-term health
issues.2,3 Obese children have a higher risk of obesity in later life
as well as of co-morbidities, such as atherosclerosis, type-2 diabe-
tes, hypertension, and some forms of cancer.4-6 The rapid rise in
prevalence of obesity over such a short time frame cannot be
explained solely by fixed genetic factors but suggests that environ-
mental factors, such as diet and the level of physical activity, are
likely to play a major role.7 There is now a substantial body of
evidence from both animal and human studies linking

environmental factors particularly in early life to later adiposity
and the risk of metabolic disease.8 For instance, in animal studies,
variations in maternal diet have been linked to alterations in
metabolism and body composition in the offspring,9 while in
humans, famine exposure during pregnancy,10 maternal obe-
sity,11 or gestational diabetes,12 were associated with an increased
risk of obesity in the adult offspring.

The mechanisms by which early environmental factors may
influence phenotype and disease risk have been suggested to
involve the altered epigenetic regulation of genes.13 Epigenetic
processes, such as DNA methylation, induce heritable changes in
gene expression without a change in nucleotide sequence. Epige-
netic regulation is central to the control of gene expression,
genomic imprinting, X chromosome inactivation, and cell
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specification. There is growing evidence that environmental fac-
tors can alter the epigenome and that such alterations are
involved in the development and progression of non-communi-
cable diseases. Epigenetic traits associated with type-2 diabetes,14

adiposity,15,16 cardiovascular disease,17 stress responses,18 and
specific solid tumors,19 have also been identified in peripheral tis-
sues, and such epigenetic marks may have utility as biomarkers to
identify individuals at increased risk of disease.15,16 However, to
date, there has been no systematic genome-wide screen to investi-
gate whether childhood obesity is associated with differences in
DNA methylation in peripheral blood. Identification of methyla-
tion differences in peripheral blood associated with severe child-
hood obesity may provide insights into the systemic changes
associated with obesity in children and identify potential epige-
netic biomarkers of childhood obesity. Here, we used the Illu-
mina Infinium HumanMethylation450 BeadChip arrays (450K)
in a case-control study using pooled DNA from obese children
and age- and sex-matched controls to identify sites of differential
methylation. We then sought to validate these sites using pyrose-
quencing in an extended number of individual subjects to investi-
gate if variations in methylation status at identified CpG sites
were associated with child’s adiposity.

Results

Study participants
For the Infinium HumanMethylation450K BeadChip analysis,

we used pooled DNA samples from 54 children (25 male) with
severe obesity (median age: 12.6 years, age- and sex-adjusted BMI
Z-score: 2.58) and from 54 controls (25 male) (median age:
12.4 years, age- and sex-adjusted BMI Z-score: 0.13) (Table S1).
Validation of individual CpG loci selected from the 450K array
was carried out by pyrosequencing on individual samples from
an extended group of 78 obesity cases (40 male) and 71 controls
(36 male); median ages of the obesity cases and the controls were
12.6 and 12.9 years, respectively, while median age- and sex-
adjusted BMI Z-scores were 2.61 and 0.08, respectively (Table 1).

Identification of differentially methylated CpG loci
associated with childhood obesity

A total of 1879 CpGs (associated with 1119 unique genes)
were differentially methylated (P < 0.05) between the obese and
control subject pools with a difference in methylation of more
than 5% (Table S2). Of these, 129 CpGs (associated with 81
unique genes) had a greater than 10% difference in methylation
between the case and control groups and were denoted differen-
tially methylated CpGs (DMCpGs) (Table 2). As cellular het-
erogeneity can influence methylation profiles and drive some of
the methylation differences detectable across individual blood
samples,20 blood cellular content was estimated in all the pooled
samples using a previously reported signature.21 Cellular compo-
sition was similar in the pooled obese and control samples
(Table S3). Of the 1879 CpGs, 776 significantly covaried with
cell type (Table S2), while 22 of the 129 DMCpGs with a 10%
difference in methylation between the case and control groups
significantly co-varied with one cell type (B-cells) (Table 2).

Among the DMCpGs independent of cellular composition,
50 showed hypomethylation and 57 showed hypermethylation
in obese subjects, compared to the control group. CpGs located
within O(6)-methylguanine-DNA methyltransferase (MGMT),
TAO kinase 3 (TAOK3), piwi-like RNA-mediated gene silencing 4
(PIWIL4), mir-125b, and aurora Kinase A (AURKA) genes were
hypomethylated in the obese pool, while sites located within
spondin2 (SPON2), ras related protein Rab1A (RAB1A), and
FYN oncogene related to SRC (FYN) were hypermethylated in the
obese pool. The genomic distribution of DMCpGs in compari-
son to all the probes located on the 450K BeadChip array with
respect to gene structure or CpG islands is shown in Figure 1.
There was no significant enrichment of DMCpGs within spe-
cific gene regions (Fig. 1A); however, in relation to CpG con-
tent and distance to CpG islands, there was an enrichment of
hypomethylated DMCpGs within open seas (P D 0.005), while
there were fewer hypermethylated DMCpGs within CpG islands
(P D 0.009) (Fig. 1B).

Validation of differentially methylated regions by
pyrosequencing

Validation of individual CpG loci within FYN, PIWIL4,
and TAOK3, selected from the 450K array, was carried out by
pyrosequencing individual samples from an extended group of
78 obesity cases (40 male) and 71 controls (36 male); these
samples included the 54 obese and 54 lean subjects analyzed
by the 450K array. These DMCpGs were selected according to
the following criteria: i) contiguous CpGs that were differen-
tially methylated with respect to obesity; ii) independent of cel-
lular composition; and iii) having a difference of methylation
of above 10%, with both hypo- and hyper-methylated CpGs
being assessed. Pyrosequencing analysis of the DMCpGs in
individual subject samples confirmed both the statistical signifi-
cance and direction of the associations between methylation
levels and childhood obesity. FYN (Cg26846943- CpG1) was
hypermethylated in obese individuals [median: 12.2% (inter-
quartile range: 10.0–25.7%)] compared to controls [10.8%
(9.2–18.2%)] (PD0.012) (Table 3, Fig. 2A). For FYN, the

Table 1. Cohort characteristics of severe obesity cases and controls

Severe Obesity Cases Controls

Subjects used for Validation
Number 78 71
Sex M:40 F:38 M:36 F:35
Age at Visit (years) 12.55 (9.4 to 13.73) 12.9 (10.7 to 14.10)
BMI Z-score 2.61 (2.33 to 2.79) 0.08 (¡0.4 to 0.59)
Fasting Insulin 20 (8 to 27) 6 (3 to 10)
Fasting Glucose 4.6 (4.4 to 5.0) 4.7 (4.3 to 5.0)
SBP 118 (108 to 130) 101 (97 to 109)
DBP 64 (61 to 72) 60 (57 to 63)
Cholesterol 4.5 (3.6 to 5.2) 4.1 (3.6 to 4.7)
LDL 2.60 (2.15 t 3.25) 2.20 (1.85 to 2.98)
HDL 1.05 (0.8 to 1.32) 1.45 (1.20 to 1.60)
Triglycerides 1.2 (0.8 to 2.0) 0.6 (0.4 to 0.8)

For age, BMI Z-score (CDC growth charts),52 and fasting insulin levels, the
median and interquartile ranges are given
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Table 2. Differentially methylated CpGs (DMCpGs) with a greater than 10% difference in methylation and a P-value< 0.05 for the difference between severe
obesity cases and controls, as identified by the Human Methylation450 BeadChip array

Gene
Name

Probe CHR Genomic P-value Control Obese

Co-ordinate

Hypomethylated DMCpGs

LRIG1* cg26131019 3 66550740 4.96E-05 0.244 0.0723
OIT3* cg24769348 10 74692580 0.0002 0.4437 0.3271
MGMT cg09993319 10 131529400 0.0003 0.7305 0.5051
PIWIL4 cg 16436762 11 94307970 0.0004 0.5275 0.4228

cg04456492 7 20010780 0.0007 0.802 0.6206
PCBD1 cg05601623 10 72647650 0.001 0.228 0.1008

cg23892028 6 27256340 0.0015 0.4042 0.2748
FER1L5* cg20312012 2 97331030 0.0016 0.5836 0.4771
AMBRA1* cg20090290 11 46543700 0.0016 0.4844 0.3821
A1CF cg16531903 10 52645850 0.002 0.871 0.7431
ARNT* cg00944785 1 150825400 0.002 0.4981 0.3921
FAM107B cg14152591 10 14587920 0.0021 0.493 0.3628

cg14192979 17 12562530 0.0025 0.4944 0.2951
cg26261358 15 24043140 0.0026 0.4387 0.2601
cg11557901 9 128022400 0.003 0.6408 0.5322
cg26576353 10 126135200 0.0033 0.8465 0.7393

TMCC1* cg12196294 3 129575100 0.0033 0.6321 0.5305
cg22626683 1 172903100 0.0037 0.7357 0.6279

PRG2 cg15971518 11 57159180 0.0043 0.5815 0.393
cg19699682 3 119349800 0.0045 0.552 0.425

B3GNT7 cg00424152 2 232263100 0.0045 0.7712 0.6492
IGF2BP3* cg17209188 7 23387400 0.0048 0.5024 0.4001
TAOK3 cg17627898 12 118782500 0.0049 0.4411 0.3409

cg07879897 17 66201170 0.005 0.2838 0.149
SULF2* cg21130926 20 46415320 0.0054 0.6266 0.4702

cg09196346 13 23499330 0.0054 0.2887 0.135
cg04450797 8 337367 0.0057 0.7987 0.6379

FSCN2 cg05248234 17 79495520 0.0077 0.7439 0.6027
cg11725581 7 6140990 0.0084 0.745 0.6439

AP3S1 cg03637218 5 115209100 0.0087 0.7055 0.593
ZNF827* cg07091220 4 146752100 0.009 0.5674 0.467
NAPSB cg25094735 19 50848020 0.0091 0.6449 0.5334
RIPK2* cg15723028 8 90776470 0.0098 0.5502 0.4427
PDLIM7 cg15225325 5 176921800 0.0101 0.5126 0.3925
SH3PXD2B cg24921943 5 171847600 0.0102 0.5018 0.3943
MIR125B1 cg26916936 11 121970600 0.0116 0.6221 0.5164
MATN2* cg19935471 8 99048260 0.0116 0.6963 0.5957
SLC35E2 cg12213037 1 1666808 0.0122 0.7003 0.5419
C18orf62 cg23936477 18 73139740 0.0126 0.7775 0.6599
PCDHB3 cg23918315 5 140479000 0.0138 0.4064 0.2979
RALGPS1* cg14306650 9 129829100 0.0141 0.705 0.6032

cg27114706 12 92527250 0.0148 0.877 0.7548
DNAJC8 cg03040423 1 28560940 0.0157 0.9116 0.807
MEGF11* cg00682263 15 66188800 0.0163 0.5975 0.4801
LOC652276* cg06035616 16 2653306 0.0209 0.1801 0.0665

RAB36 cg05338731 22 23489040 0.0217 0.4992 0.3863
cg00968488 5 103876200 0.0217 0.6865 0.5749
cg16885113 6 29648510 0.0235 0.8421 0.7381

AURKA cg09712306 20 54949300 0.0248 0.481 0.3621
cg23661721 14 95991370 0.0271 0.5536 0.4314

LOC652276 cg03314158 16 2653280 0.0278 0.1674 0.0465
AGPAT1 cg17213381 6 32139500 0.029 0.8273 0.6971

cg21852792 2 71678460 0.03 0.5511 0.4473
DEAF1 cg03951394 11 660455 0.0316 0.8874 0.7094
SORL1 cg10746778 11 121460800 0.0341 0.5232 0.3801

(Continued on next page)
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Table 2. Differentially methylated CpGs (DMCpGs) with a greater than 10% difference in methylation and a P-value< 0.05 for the difference between severe
obesity cases and controls, as identified by the Human Methylation450 BeadChip array (Continued)

Gene
Name

Probe CHR Genomic P-value Control Obese

Co-ordinate

Hypomethylated DMCpGs
TOP1MT cg00033213 8 144399300 0.0383 0.6014 0.4747

cg06864789 6 139013000 0.0386 0.5387 0.3803
SNORA1* cg09719956 11 93465910 0.0386 0.6563 0.5343

cg05320460 15 63179550 0.039 0.7531 0.6475
cg27245056 10 122356500 0.0396 0.6572 0.5472
cg12799049 1 197811500 0.0401 0.4571 0.3469

CTSS cg26891210 1 150703100 0.0402 0.7015 0.5925
CBX7 cg13306870 22 39527580 0.0408 0.3769 0.2444
LTBP1* cg11918450 2 33359200 0.0425 0.645 0.5413
B4GALT6 cg11986743 18 29205360 0.0447 0.6977 0.5903
OTUD6B* cg19586698 8 92097850 0.0463 0.7898 0.6607
TP53INP2 cg20592836 20 33292130 0.0496 0.5504 0.3536

Hypermethylated DMCpGs

SPON2 cg10852718 4 1167230 7.59E-06 0.734 0.8759
cg24591913 10 47062880 0.0002 0.6864 0.8203

IL32* cg16730716 16 3114986 0.0015 0.8161 0.9198
FYN cg26846943 6 112165100 0.002 0.2063 0.33
TOX2 cg26365090 20 42574360 0.0021 0.1902 0.4129
TNXB cg14188106 6 32063900 0.0021 0.4143 0.5163

cg12342501 2 8530521 0.0021 0.6035 0.7998
cg27596172 8 26727370 0.0034 0.7664 0.8698

UBE4A cg25574849 11 118269800 0.0035 0.2916 0.4022
C7orf50 cg26542892 7 1133730 0.0035 0.6345 0.7703
TMEM71 cg10054641 8 133773100 0.0041 0.3066 0.429

cg08506672 5 3959743 0.0059 0.2318 0.4672
KRTAP27-1 cg05809586 21 31709690 0.0063 0.5095 0.7153

cg03240981 6 26615070 0.0063 0.4289 0.5301
cg00696044 10 63240300 0.0063 0.3894 0.5672

SLC12A8 cg09866143 3 124861500 0.0078 0.565 0.7826
WTIP* cg10771931 19 34972140 0.0083 0.7332 0.8829
SLC25A21 cg00814218 14 37445440 0.0084 0.6818 0.8043
CCDC88C cg23165913 14 91880060 0.0086 0.413 0.5392
CCS cg24851651 11 66362960 0.0087 0.3717 0.701
TRPM4 cg01997599 19 49689670 0.0103 0.4019 0.5334
ABCD3* cg26908356 1 94929490 0.0111 0.4584 0.6008

cg02479782 2 71033150 0.0113 0.3091 0.5286
cg08754654 5 154026400 0.0117 0.2817 0.3824

NAV1 cg04287574 1 201619600 0.0124 0.2851 0.3895
CSMD2 cg21440084 1 34615960 0.0125 0.4898 0.6454

cg10384133 9 45733080 0.0126 0.7488 0.8503
USP36 cg01385356 17 76837380 0.0139 0.2224 0.3224

cg07371521 5 154026400 0.0142 0.2003 0.3382
cg04653913 16 53407750 0.0145 0.588 0.6985
cg18618432 19 34621910 0.0147 0.5521 0.6704

TRAPPC9 cg16191297 8 140926700 0.0156 0.7429 0.8567
cg14580085 2 239553400 0.0172 0.5782 0.6973
cg24643105 11 113928500 0.0189 0.6603 0.7965
cg19373347 1 219634800 0.019 0.4338 0.5557

IL12RB1 cg26642774 19 18170380 0.0191 0.5503 0.7219
cg02389264 16 88757750 0.0191 0.6135 0.7415
cg10510935 1 4059661 0.0209 0.3138 0.4174
cg09916840 16 87248610 0.0214 0.0156 0.1245
cg02100397 19 646890 0.0223 0.4163 0.5673

SH3GL1 cg11592634 19 4370001 0.0224 0.1313 0.3691

(Continued on next page)
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pyrosequencing assay also covered 2 adjacent CpG loci, where
methylation levels were also higher in the obese group: For
FYN CpG2 (GRCh37/hg19 112165053) the mean was 9.5%
(8.2–24.2%) in the obese group vs. 8.7% (7.5–17.4%) in the
control group (PD0.004); for FYN CpG3 (GRCh37/hg19
112165057) the mean was 16.6% (13.6–28.9%) in the
obese group vs. 14.6% (12.3–21.5%) in the control group (P
D 0.031). In contrast, methylation levels of CpG sites related
to PIWIL4 and TAOK3 were lower in the obese group: median
methylation levels for PIWIL4 Cg 6436762 were 26.8% (20.2
– 31.9%) in obese cases and 32.3% (25.1 – 37.9%) in controls
(P D 0.003) (Table 3, Fig. 2B); for TAOK3 Cg17627898,
methylation levels were 23.7% (19.7 – 28.3%) in the obese
group compared to 27.2% (23.0 – 32.0) in the control group
(P D 0.001) (Table 3, Fig. 2C). Genotyping analysis in all
subjects excluded the presence of SNPs at the cytosine of the
DMCpGs within PIWIL4, FYN, and TAOK3.

Logistic models were built using case vs. control status as the
outcome, and methylation of the CpG and gender used as pre-
dictors for each CpG of interest. All models were found to differ
significantly from the null models, with CpG methylation being
a significant predictor of case vs. control status for each model
and P-values of 0.001 for TAOK3, 0.009 for PIWIL4, and 0.011
for FYN3. Nagelkerke R squared (a measure of the variation
explained by each model) was between 7 and 12%. Gender was
not a significant predictor of case vs. control status when CpG
methylation was controled for. These models indicated that for
each 1% increase in methylation of TAOK3, the odds of being a
case increased by a factor of 1.11 for both genders.

A scatterplot matrix of methylation for all CpGs indicated
high correlation between FYN CpGs1, 2, and 3 and also between
the identified CpG loci associated with TAOK3 and PIWIL4,
with Spearman correlation coefficients for highly correlated
CpGs � 0.89 (Fig. S1 and Table S4). It was not possible to
include all CpGs in a regression model as a result of co-linearity
in predictor variables. One CpG from each group of highly cor-
related CpGs was entered into a logistic regression model includ-
ing gender. A logistic regression model with case vs. control
status as outcome and FYN CpG3, TAOK3, and sex as predictor
variables was significantly different from the null model
(P D 0.002) and explained 13.8% of the variance (Nagelkerke
R square D 0.138). An increase in methylation of 1% in TAOK3
multiplicatively decreased the odds of being a case by 0.91 (95%
CI: 0.86 – 0.97) (P D 0.005), all other variables in the equation
being held constant; an increase of 1% methylation in FYN
CpG3 multiplicatively increased the odds of being a case by 1.03
(95% CI: 0.99 – 1.07) (P D 0.114).

Given the high correlation between the methylation status of
TAOK3 and PIWIL4, we run Gapped Local Alignment of Motifs
(GLAM2), which is part of the motif-based sequence analysis suite
MEME(http://meme.nbcr.net/meme),22 to determinewhether there
was any commonality between the sequences surrounding these CpG
sites.No statistically signicant commonmotifwas foundwithin75 bp
ateithersideoftheidentifiedCpGsassociatedwithPIWIL4orTAOK.

Pathway analysis
The extended list of CpGs with P < 0.05 for control vs. obese

and a methylation difference of more than 5%, excluding those

Table 2. Differentially methylated CpGs (DMCpGs) with a greater than 10% difference in methylation and a P-value< 0.05 for the difference between severe
obesity cases and controls, as identified by the Human Methylation450 BeadChip array (Continued)

Gene
Name

Probe CHR Genomic P-value Control Obese

Co-ordinate

Hypomethylated DMCpGs
C10orf110 cg12421087 10 1083304 0.0225 0.6924 0.8347
ANKH cg14843632 5 14870590 0.0236 0.2696 0.3867
ARPC3 cg10738648 12 110888900 0.0238 0.5427 0.7118
IRGM cg22000984 5 150226300 0.0239 0.1801 0.3087
SLC6A5* cg14524936 11 20627600 0.0253 0.3286 0.4456

cg01584086 11 10373720 0.0254 0.1171 0.2833
cg07700233 4 39171230 0.0264 0.3269 0.4351

ATP9B* cg09636756 18 77134250 0.0267 0.7454 0.8943
cg02088292 1 235099200 0.0268 0.2089 0.3511

RAB1A cg00570635 2 65355270 0.0318 0.1747 0.3775
SPDEF cg16527629 6 34524700 0.0324 0.331 0.4785
C14orf119 cg08253809 14 23568020 0.033 0.1935 0.3079
HADHA cg01188578 2 26464060 0.034 0.2665 0.4863

cg18182981 6 1449399 0.037 0.6137 0.7345
MOSC2 cg12466610 1 220950200 0.0394 0.1258 0.3988
FLJ42875 cg08121686 1 2981840 0.0397 0.5734 0.714

cg10588622 2 45397780 0.0421 0.2567 0.3627
SPTBN1 cg01286930 2 54783770 0.0458 0.4365 0.5427

cg07044115 10 123100200 0.0478 0.5947 0.6962
PMF1 cg25465065 1 156198400 0.0486 0.5544 0.7344

cg01118640 14 52816920 0.0494 0.6159 0.7683

The genes tagged by “*”are associated with B lymphocytes, counted by the Houseman method, with P-value< 0.05 in line regression
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CpGs associated with cell type, was significantly enriched for
multiple Gene Onotology (GO) processes involved in develop-
mental processes, immune system regulation, regulation of cell
signaling, and small GTPase-mediated signal transduction
(Table S5). Among the significantly enriched GO molecular
functions were ion binding, phosphotransferase activity, protein
kinase activity, collagen binding, and Ras guanyl nucleotide
exchange factor activity (Table S6).

Discussion

In this study, we identified 1879 CpG sites in peripheral
blood cells with a greater than 5% difference in methylation

between obese and control children, of which 129 CpGs had a
greater than 10% difference in methylation. Both hypo- and
hyper-methylation of CpGs loci in relation to obesity were
observed. Interestingly, most of the differentially methylated
CpGs were found within open seas or intergenic regions, with a
paucity of DMCpGs within CpG islands. This is consistent with
previous findings, which have suggested that DNA methylation
may be more dynamically regulated outside CpG islands. For
instance, tissue-specific DNA methylation often occurs in shores
outside the CpG islands,23 while disease associated DMCpGs
and environmentally induced epigenetic changes, such as those
induced by exercise intervention, have been shown to be enriched
within intergenic regions.24-26 The enrichment of DMCpGs
within the intergenic regions may reflect the location of regula-
tory elements, such as enhancers or insulators, which are fre-
quently located within the intergenic regions.27

The associations between the methylation of specific CpG loci
within PIWIL4, TAOK3, and FYN in peripheral blood and
childhood obesity observed in the genome wide-array were
validated by sodium bisulfite pyrosequencing. Validation by
pyrosequencing showed a signficant association between the
methylation of these CpG loci and obesity with the direction of
association, consistent with that observed by the 450K array.
There was a difference in the magnitude of the methylation
change observed between the case and control groups between
the 2 techniques, but this may reflect the fact that additional sub-
jects were analyzed in the validation step when using pyrose-
quencing and that different methods were used to assess DNA
methylation. A number of previous studies have also reported
small differences in DNA methylation levels measured by 450K
arrays in comparison with pyrosequencing.28,29

DNA methylation patterns are often tissue specific; whether
and how the methylation of such marks in blood may reflect
methylation in other more metabolically relevant tissues is not
known. However, there have been studies that show consistency
in methylation between tissues. For instance, Murphy et al. have
shown that methylation across the DMRs for H19, MEST, and
PEG10 did not differ across a range of conceptual tissues (buccal,
brain, eye, intestine, liver, lung, muscle, and umbilical cord
blood).30 Talens et al. found that, for a number of non-
imprinted genes, DNA methylation levels measured in blood
were equivalent in buccal cells, despite the fact that these cell
types arise from different germ layers (mesoderm and ectoderm,
respectively).31 But whether altered methyaltion of the CpGs
studied here are causally involved in the development of obesity
or simply markers of the disease state is unknown. Interestingly,

Figure 1. Distribution of hypo- and hypermethylated DMCpGs versus all
analyzed CpGs sites on the Infinium HumanMethylation450 BeadChip in
relation to (A) the nearest gene regions; (B) CpG island regions. Chi-
square analysis was performed to test for over- or under-representation
of sequence features among the DMCpGs. * D P-value < 0.05.

Table 3.Methylation differences between obese (n D 79) and controls (nD 71) groups at the CpG loci identified within FYN, IGFBP3, PIWIL4, and TAOK3

CpG Site Median Methylation Cases Median Methylation Controls P-value

FYN CpG 1 (Cg26846943) Chr6:112165062 12.2 (10–25.7) 10.8 ( 9.2 – 18.2) 0.012
FYN CpG 2 Chr6: 112165053 9.5 (8.2–24.2) 8.7 (7.5–17.4) 0.031
FYN CpG 3 Chr6: 112165057 16.6 (13.6–28.9) 14.6 (12.3–21.5) 0.004
PIWIL4 (Cg16436762) Chr11:94307971 26.8 (20.2–931.9 32.3 (25.1–37.9) 0.003
TAOK3 (Cg17627898) Chr12:118782453 23.7 (19.7 – 28.3) 27.2 (23.0 – 32.0) 0.001

Median and interquartile range are shown. FYN 112165062, TAOK3 118782453, PIWIL4 9430797
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FYN has been previously linked to adipocyte development and
function. FYN is a member of the Src family of non-receptor
tyrosine kinases and plays an important role in inflamma-
tion,32,33 adipocyte differentiation,34 energy expenditure,35 and
insulin signaling.36 FYN knockout mice displayed increased glu-
cose clearance and whole body insulin sensitivity associated with
decreased adiposity resulting from increased fatty acid use and
energy expenditure,37 and preferentially laid down adipose tissue
in the subcutaneous, rather than the visceral, compartment and
showed reduced inflammatory cell infiltration.38 FYN knockout
mice also remain fully glucose-tolerant and insulin-sensitive,
even on a high-fat diet. These metabolic characteristics have been
suggested to result from the regulation of LKB1 and AMPK by
FYN in skeletal muscle and adipose tissue.39 The methylation of
the 3 FYN CpG sites measured in this study, which lie in the
50UTR of FYN, were highly correlated, suggesting that these
CpG sites may be similarly regulated. For all 3 sites, higher meth-
ylation was associated with obesity. To date, however, little is
known about the role that the 50 UTR plays in the regulation of
FYN expression or the effect that methylation in this region may
have on transcription.

PIWIL4, which belongs to the Argonaute protein family,
exhibits a ubiquitous expression pattern in human tissues and
recent studies have shown that over-expression of PIWIL4 results
in a 7-fold increase in the dimethylation state of H3K9 at the first
intron of the p16INK4a gene and decreased p16INK4a expression,40

suggesting that PIWIL4 may be a regulator of p16INK4a, a known
regulator of adipocyte proliferation, differentiation, and
senescence.41

TAOK3 activates p38, inhibits cJun NH2-terminal kinase
(JNK) signaling,42 and is a member of the mitogen activated pro-
tein kinase (MAPK) cascade, affecting fundamental cellular sig-
naling pathways. JNK and MAPK signal transduction pathways
are activated by obesity and are required for obesity-induced
insulin resistance.43,44 These effects have been seen in adipose,
muscle, and hypothalamic tissues.44 A mouse study has shown
that JNK expression by macrophages promotes obesity-induced
insulin resistance.45 In humans, indirect evidence of the impor-
tance of this locus comes from a study on a French Canadian
population that identified a genetic region overlapping TAOK3

that was associated with anthropometric and metabolic traits.46

Similarly to the previous 2 loci, TAOK3 has a strong biological
premise for an association with obesity; however, our data pro-
vide the first evidence that methylation of a TAOK3-related CpG
site may be a biomarker of obesity.

Interestingly, the methylation status of identified CpG sites
within PIWIL4 and TAOK3 were negatively associated with obe-
sity and highly correlative with each other, suggesting that the
obese phenotype may be associated with a hypomethylated state.
TAOK3 is involved in cellular development and growth and
recent studies have also implicated PIWIL4 in regulating the
expression of the cell cycle inhibitor p16INK4a, suggesting that
these genes may work within the same network, which may
account for the high correlation observed between the methyla-
tion status of their CpG sites.

Pathway analysis revealed an enrichment of DMCpGs in GO
processes involved in developmental processes, immune system
regulation, regulation of cell signaling, and small GTPase-medi-
ated signal transduction. Enrichment of genes involved in devel-
opmental process concurs with the growing body of literature
showing that obesity has a strong developmental component.47

Alterations in pathways associated with immune function are
consistent with the low grade chronic inflammation characteristic
of the obese state.48 Small GTPases have also been shown to play
a critical role in the inflammatory response as well as cell prolifer-
ation, differentiation, and survival.49 Whether the differential
methylation of CpGs within genes associated with inflammation
and cell signaling is a consequence or cause of the inflammation
associated with obesity is unknown at present. However, these
findings do suggest that altered methylation of such sites may act
to sustain inflammation associated with obesity. Caution is nev-
ertheless required when interpreting the enrichment of inflamma-
tion and immune pathways in whole blood samples.

Other human studies have begun to demonstrate associations
between epigenetic changes and obesity.50-52 Dick et al. (2014)
found that methylation in the first intron of the HIF3A gene
measured in blood strongly correlated with adult BMI and this
result was validated across independent cohorts including obese
subjects.53 Milagro et al. found differences in methylation
between CLOCK and BMAL1 genes in overweight/obese

Figure 2. Percentage methylation differences between obese (nD79) and controls (nD71) at (A) FYN; (B) PIWIL4 (Cg16436); and C) TAOK3. * D P-value
< 0.05, ** D P-value <0.01.
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patients compared to normal weight women.50 Xu et al. showed
a substantial number of differentially methylated CpG sites
between obese and non-obese adolescents (14–20 years old).51

Interestingly, a number of these differentially methylated CpG
sites were found to be associated with genes previously linked to
obesity and Type 2 Diabetes, such as FTO, GCK, HNF1A and
HNF1B, PPARg, PTEN, and TCF7L2. In a separate study,
Wang et al. reported methylation changes in genes associated
with inflammatory response, immune response, cytokine pro-
duction, and antigen binding in obese compared to lean adolos-
cents.52 In our study, we investigated methylation changes
associated with severe obesity in peripheral blood of children
aged 6–14 years, an age group not previously examined. Differ-
ences in the age of the individuals studied, the characteristics
used to define the cases, the use of DNA either from whole
blood, as used here, or purified leucocytes, together with differ-
ences in the techniques used to measure “epigenome-wide”
methylation status, may explain some of the differences in
DMCpGs identified in these different studies. Nevertheless, a
number of the DMCpGs identified in this study in children 6–
14 years old were also identified in the studies by Wang et al.
(TRIM3, HIPK, NOTCH4) 52 and Xu et al. (FTO, PTEN),51

who examined methylation changes associated with obesity in
adolescents, suggesting similar changes in methylation are
observed in relation to obesity in both age groups.

Several limitations of this study need to be recognized. First,
we used a pooling strategy for the 450K array analysis. Methyla-
tion analysis on pooled genomic DNA has previously been
shown to provide an accurrate estimate of DNA methyla-
tion.54,55 and effective means for identifying DNA methylation
changes associated with a diseased phenotype.14,56 when DNA
availibility is limited. However, pooling does prevent insights on
inter-individual methylation differences. Nevertheless, our pool-
ing strategy successfully identify 3 CpG loci that were validated
by pyrosequencing in individual samples, thereby practically
demonstrating that it may be a useful approach to identify robust
changes associated with particular phenotypes. The second limi-
tation to this study was that we used DNA from whole blood,
which represents different cell populations with distinct epige-
netic profiles. To correct for the differences in methylation result-
ing from differences in cellular heterogeneity, the Houseman
correction was used,21 and CpGs related to the different cell pop-
ulations were not taken forward for subsequent validation or
pathway analysis. However, we cannot rule out the possibility
that some of the differences observed in methylation between
case and control groups may result from the presence of cell types
not accounted for within the algorithm. Nevertheless, even if
these changes do represent changes in cellular composition, our
studies suggest that altered methylation of the identified CpG
loci and pathways are markers of childhood obesity. The third
limitation was that we only excluded the possibility of SNPs
within 45 bp of the CpG influencing methylation status of the
CpGs of interest, as methylated quantitative trait loci are over-
whelmingly found in cis and peak enrichment for SNP to CpG
distance is within 45 bp,57 however, there is a possibility that
SNPs further away or in trans may mediate methylation at these

sites. A strength of this study is that all the participants studied
were young, between 9–14 years old, and therefore the results
are less likely to be confounded by obesity comorbidities or medi-
cation use, both of which are very common in adult subjects with
obesity.

In conclusion, we have identified widespread DNA methyla-
tion changes in whole blood associated with childhood obesity,
providing evidence that epigenetic dysregulation is associated
with obesity in children. Although further studies are required to
determine the causality of such changes, the identification of
such alterations may provide novel insights into the development
of obesity and potential biomarkers to identify those individuals
at increased risk of disease.

Materials and Methods

Cohort characteristics
Children seeking treatment for obesity at the tertiary pediatric

hospital Princess Margaret Hospital for Children (PMH) outpa-
tient department in Western Australia were recruited as obese
cases. The criteria for entry were: a age- and sex-adjusted BMI
Z-score greater than 2.5 with 2 additional comorbidities or a
BMI Z-score greater than 3.0. BMI Z-scores were individually
calculated based on the Center for Disease Control and Preven-
tion (CDC) growth charts.58 Age- and sex-matched controls
were taken from the longitudinal Childhood Growth and Devel-
opment (GAD) study of Western Australia, which followed chil-
dren aged 6 to 14 years at recruitment annually for 3 years.59 In
this study, healthy weight controls were recruited from randomly
selected primary schools in the Perth metropolitan area. The
PMH Ethics Committee approved the study. Table 1 shows the
characteristics of all the samples used for pyrosequencing (valida-
tion studies). Table S1 shows the cohort characteristics of the
subjects whose DNA was pooled for the 450K analysis.

Infinium humanMethylation450 beadchip array
DNA was prepared from whole blood cells of 54 case and

54 control subjects using a standard phenol:chloroform extrac-
tion and ethanol precipitation, as described previously.16 Four
pools of DNA from obese subjects were used (Pool 1: Males,
high-fasting insulin, n D 13; Pool 2: Males, low-fasting insu-
lin, n D 12; Pool 3: Females, high-fasting insulin, n D 14;
Pool 4: Females, low-fasting insulin, n D 15). Pools from
age- and sex-matched control groups were: Pool 1 Control,
Males, n D 13; Pool 2 Control, Males, n D 12; Pool 3 Con-
trol, Females, n D 14; Pool 4 Control, Females, n D 15)
(Table 1 and Table S1). Genomic DNA (1 ug) from each of
the 8 pools was bisulphite-converted using Zymo EZ DNA
Methylation-Gold kit (ZymoResearch, Irvine, California,
USA, D5007) and the DNA was analyzed using the Infinium
HumanMethylation450 platform (Illumina, Inc., CA, USA)
by The Genome Center, Barts and London, School of Medi-
cine and Dentistry, John Vane Science Center, Charterhouse
Square, London.
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Infinium HumanMethylation450 BeadChip array data
processing

Signal extraction was performed in GenomeStudioTM Meth-
ylation Module on the intensity files (.idat) produced by the Illu-
mina iSCAN system. Raw b-values were extracted from
GenomeStudio without further data processing (i.e., no back-
ground subtraction or normalization). CpGs with 2 beads or less
for either methylated or unmethylated signal, for any sample, or
with signal detection P-values (calculated from the individual
bead intensities) higher than 0.05, for any sample, were discarded
for all samples. A total of 479,379 CpGs remained for further
analysis. To correct for color imbalance, values were normalized
to values from control probes and background subtracted. After
these intra-sample normalization procedures, M-values (logit
transformation) were calculated. The Type II M-value range was
fitted to the Type I range, as suggested by Dedeurwaerder et al.60

b-values were then calculated. Finally, inter-sample normaliza-
tion was performed by quantile normalization. This procedure
has been described and benchmarked in Pan et al., 2012.61 No
batch or chip effects were possible, as samples were contained
within one array and processed together. We performed one pool
run as a replicate of the cases and another pool run as a replicate
of the controls. Pearson correlation (R) within replicates were
0.9987 and 0.9989 for case and control, respectively. Principal
component analysis showed replicates were clustered together.
Therefore, final b-values were averaged between replicates. The
four pools of obese subjects were compared to the 4 pools of con-
trol subjects, using paired t-tests, pairing the pools by gender and
insulin resistance status, to determine changes associated with
obesity and independent of sex and fasting insulin levels.

Estimation of cell fractions from the methylation data
To assess the potential impact of variation in cell fraction

between samples, we used R package minfi.62 to estimate the
fraction of CD8T-, CD4T-, NK- and B-cells, monocytes, and
granulocytes in the samples. The R package minfi allows for esti-
mating cell fractions in Illumina 450K methylation data from
whole blood (Table S3). This method is based on the methyla-
tion data published for flow-sorted cells,63 and algorithms
derived from the study by Houseman et al.21

Metacore pathway analysis
The Metacore Pathway Analysis software was used to investi-

gate whether the genes mapped to differentially methylated
CpGs were enriched for specific functional relationships.

Pyrosequencing
DMCpGs were validated using sodium bisulfite pyrosequenc-

ing. Genomic DNA was prepared and bisulphite conversion was
carried out using the EZ DNA Methylation-Gold kit (ZymoRe-
search, Irvine, California, USA; D5007). The pyrosequencing
reaction was carried out using primers listed in Table S5.
Modified DNA was amplified using HotStar Taq Plus DNA
polymerase (Qiagen, Germany; 203605). PCR products were
immobilized on streptavidin–sepharose beads (GE Healthcare
UK Ltd., Amersham, Buckinghamshire, UK; GZ17511301),

washed, denatured, and released into annealing buffer containing
the sequencing primers. Pyrosequencing was carried out using
the PyroMark Gold Q96 Reagent kit (Qiagen, Germany;
972824) on a PyroMark Q96 MD machine (Biotage, Uppsala,
Sweden) and the % methylation was calculated using the Pyro Q
CpG software (Biotage). Within-assay precision was between 0.8
and 1.8% and detection limits were 2–5% methylation. SNP
PCR was carried out to exclude the presence of SNPs at the
CpGs of interest using primers listed in Table S7. DNA was
amplified using HotStar Taq Plus DNA polymerase. PCR Prod-
ucts were treated as for pyrosequencing. Genotyping analysis was
carried out using PyroMark MD 1.0 software (Biotage). Geno-
typing analysis in all subjects excluded the presence of SNPs at
the cytosine of all 3 DMCpGs within PIWIL4, FYN, and
TAOK3. Primers and sequencing probes were also designed to
exclude any known SNP.

Statistical Analysis of Pyrosequencing Data
Statistical analysis was carried out using SPSS version 21.0

(IBM). Histograms of all continuous variables were plotted to
check for normality. The distributions of methylation were not
normally distributed and differences in methylation were there-
fore calculated using the non-parametric Mann-Whitney U test.
Logistic regression models were built using case control status as
the outcome for each CpG. Methylation of the particular CpG
and gender were entered into the model as predictors. A separate
model was formulated for each CpG of interest.

Chi-Square Analysis
Analysis was carried out to determine if the distribution of

hypomethylated (or hypermethylated) CpG sites was the same as
the distribution of analyzed probes for each gene location
(TSS200, 30UTR, etc.) and for each gene environment (island,
shore, etc.). This analysis was performed using chi-square good-
ness of fit tests, if appropriate, or exact tests, if 20% or more of
the expected cell frequencies were lower than 5 (4 tests in total).
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