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Inspired by the mechanism of imaging and adaptation to luminosity in insect compound eyes (ICE), we propose an ICE-based
adaptive reconstruction method (ARM-ICE), which can adjust the sampling vision field of image according to the environment
light intensity. The target scene can be compressive, sampled independently with multichannel through ARM-ICE. Meanwhile,
ARM-ICE can regulate the visual field of sampling to control imaging according to the environment light intensity. Based on the
compressed sensing joint sparse model (JSM-1), we establish an information processing system of ARM-ICE. The simulation of a
four-channel ARM-ICE system shows that the new method improves the peak signal-to-noise ratio (PSNR) and resolution of the
reconstructed target scene under two different cases of light intensity. Furthermore, there is no distinct block effect in the result,

and the edge of the reconstructed image is smoother than that obtained by the other two reconstruction methods in this work.

1. Introduction

The classical reconstruction methods include the near-
est neighbor algorithm, bilinear interpolation, and bicu-
bic interpolation algorithm [1, 2]. According to existing
research, the reconstruction accuracy of bilinear interpola-
tion is higher than that of the nearest neighbor algorithm,
and the former can get better image reconstruction results.
However, the reconstructed image by bilinear interpolation
appears saw-tooth and blurring sometimes [3]. Although
the reconstruction results of bicubic interpolation are better
than the others, they always lose efficiency and take much
more time. As a compromise, bilinear interpolation is
often used for research. These algorithms can improve the
reconstruction quality of the original image to some extent.
However, only the correlation between the local and global
pixels is considered in these algorithms. Interpolation-based
reconstruction methods do improve the effect of image
reconstruction, but they destroy the high-frequency detailed
information of the original image [4, 5].

Some studies have found that insects have a relatively
broad living environment, for instance, the mantis shrimp

can live between 50m and 100m depth underwater. In
such living environment, the light condition changes dra-
matically, due to the combined effect of sunlight and water
media. To adapt to the changing environment, this species,
whose ommatidia structure is fixed, must regulate the light
acceptance angle adaptively [6, 7]. Through the joint action
of the lens and the rhabdome, the mantis shrimp has
different degrees of overlapping images in the whole region
of the ommatidia. The ommatidia get the different optical
information depending on the different lighting conditions.
Under the light and the dim environment conditions, the
mantis shrimp can regulate the length of rhabdome and
lens through relaxing or contracting the myofilament. Based
on the biological mechanism above, the ommatidia visual
field can be narrowed or expanded to get a relatively stable
number of incoming photons and a better spatial resolution.
Ultimately, the imaging system can reach balance between
the visual field and the resolution [8], as shown in Figure 1.
According to Schiff’s [9] research, the imaging angle and
visual field of the mantis shrimp ommatidia both change
while the light intensity condition changes. For instance, the
ommatidia visual field is 5° under dim-adapted pattern, but
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FIGURE 1: Light-dim adaptive regulatory mechanism of ommatidia.
(a) Structure adaptation in ommatidia visual system. (b) Adapta-
tion in the view-field of ommatidia and compound eyes.

the corresponding visual field will be only 2° under bright-
adapted pattern, and some other species also have similar
characteristics [10—14].

Recently, the compressed sensing theory provides a new
approach for computer vision [15-17], image acquisition
[18, 19], and reconstruction [20-22]. This method can get
the reconstruction results as effectively as the traditional
imaging systems do, or even higher quality (in resolution,
SNR, etc.), with fewer sensors, lower sampling rate, less data
volume, and lower power consumption [23-27]. According
to the compressed sensing theory, the compressive sampling
can be executed effectively if there is a corresponding sparse
representation space. Currently, the compressed sensing
theory and application of the independent-channel signal
have been developed in-depth, such as single-pixel camera
imaging [28].

By the combined insect compound eye imaging mecha-
nism with compressed sensing joint sparse model (JSM-1)
model [29-32], we use the spatial correlation of multiple
sampled signals to get the compressive sampling and recon-
struction. Inspired by the light-dim self-adaptive regulatory
mechanism of insect compound eyes (ICE), this paper pro-
poses an ICE-based adaptive reconstruction method (ARM-
ICE). The new method can execute multiple compressive
sampling on the target scene. According to the environment
light intensity, it can regulate the sampling visual field
to control imaging. The simulation results show that, in
contrast to the image-by-image reconstruction and bilinear
interpolation algorithm, the new method can reconstruct
the target scene image under two kinds of light intensity
conditions with higher-peak signal-to-noise ratio (PSNR).
The new method also improves the resolution and detailed
information of reconstruction.
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In the first section, we describe the imaging control
mechanism of insect compound eyes, compressed sensing
theory, and current research of bionic compound eyes
imaging system. Section 2 demonstrates the ARM-ICE imag-
ing system pattern from three aspects: visual field self-
adaptive adjusting, sampling, and reconstruction. Section 3
completes the ARM-ICE system simulation under the dim
and light conditions and then analyzes the imaging results
and the comparison of relevant parameters. In Section 4, we
conclude with possible topics for future work.

2. Compressed Sensing-Based Arm-Ice
Imaging System Pattern

Figure 2 shows an ARM-ICE imaging system pattern. The
purple lines represent the light environment visual field,
while the blue lines represent the dim environment visual
field. The target scene is imaged, respectively, by the
compound eye lens array. The isolation layer is composed
by multichannel opening shade blocks, which can be con-
trolled. And each port of shade blocks is connected to
a corresponding little lens of compound eye lenses. This
structure sets a number of independent controllable light-
sensitive cells. Each port of isolation layer opens at different
time. The feedback signal controls them to regulate the
relative position to make the light from target scene to the
n light-sensitive cells. The corresponding area is sparsely
sampled in the digital micromirror device. Measurement
data can be obtained in the imaging plane. Ultimately, the
processor reconstructs the target scene according to the k-
sparse property of data sensed on the wavelet basis ¥ and the
uncorrelated measurement matrix ©.

2.1. Arm-ICE Visual Field Self-Adaptive Regulation. Accord-
ing to the biological research, in the insect compound eyes
system under different light intensities, the angle of imaging
and the visual field change accordingly [33-37]. Inspired
by this self-adaptive ability, this paper mimics the insect
compound eye system on its imaging control mechanism
based on light intensity sensitivity, to expand or narrow the
scope of visual field and overlapping field by regulating the
position of the lenses.

According to the results of biological research, the
relationship between light intensity, imaging pore size, and
other factors can be described as (1), hereby to regulate the
lenses position to achieve the overlap visual field [12]

0.530

Umax

Apr = \/lnch — %ln[Np +0§], (1)

where Apy indicates the visual field range, vmax indicates
the maximum detectable spatial frequency, which can be
regarded as a constant, ¢ is the mean contrast of the scene,
N, indicates the number of the photons captured by an input
port, and o3 shows the total variance for environmental light
intensity.

From (1), the visual field can be calculated according
to the vmax set while the light intensity changes. Based on
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F1GuRe 2: ARM-ICE imaging system pattern.

the biological principle above, the visual field range can be
regulated according to the environment light intensity.

2.2. Compressive Sampling. The digital micromirror device
(DMD) senses the optical information from the lenses array,
and then makes sparse sampling. The principle is inner
product the optical signal from the lenses array perception
X(m) and DMD measurement basis vector ¢(m), and make
the result as the output voltage (v)m of the DMD device at
the moment m. The output voltage v(m) of the photodiode
can be expressed as the inner product of the desired image x
with a measurement basis vector [26, 28, 29]:

v(m) oc (X(m), (m)) + Opc, (2)

where the value of @(m) is related to the position of DMD
micro-mirror; when the micromirror turns +10°, ¢;(m) = 1;
when the micromirror turns —10°, ¢;(m) = 0. Opc is the
direct current offset, which can be measured by setting all
mirrors to —10°.

Based on the principle of measurement matrix of a single
DMD device, we can use the DMD device array to get sparse
signals of image system. The compound eye lenses and the
isolation layer constitute # light-sensitive independent cells,
each of which is controlled by the isolation layer to open at
different time. The array jointly senses the target scene data
X,‘:

Xi = Xic + Xis, (3)

where X; ¢ expresses the common information of the percep-
tion data and X;s expresses the specific information of each
lens. Vector Xy = (X1,X>,... ,XN)T indicates the perception
data from # light-sensitive units. The perception data can be

regarded as k-sparse on wavelets basis ¥ due to the spatial
correlation:

Xy = V0, (4)

where 0 = (Ao,yo,yl,...,y],l)T is the sparse vector coeffi-
cient, consisting of the high-frequency subset yo, y1,..., y7-1
(yk is subset at scale ] — k) and the low-frequency subset A
of wavelet transform. After light-sensitive lenses obtain Xy,
k-sparse signal Xy is used to generate M measurement data
of the image plane from the M X N measurement matrix ®
on the DMD device:

Yy = (Y, Y., Ya) ' = ©Xy, (5)

where matrix @ is a 0-1 matrix, which consists of the output
voltage v(m) of the DMD device in (2) at the moment m.
Equation (5) can also be described as follows:

Y, D, 0 X1
Y, D, X5

N - c (6)
YM 0 (DM XN

2.3. Joint Reconstrucion. According to the multichannel
captured data, which are k-sparse on wavelet basis and
the inconsistency of the measurement matrix ® with the
wavelet basis ¥, the processor runs the decoding algorithm
to reconstruct the target scene:

min [|0]ly, subject to Yy = OWYO. (7)

The optimized sparse solution 0* can be gotten by
solving the issue of optimizing /y norm. The reconstruction
of captured data from each lens can be indicated as follows:
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FiGure 3: ARM-ICE imaging results and comparison under strong light: (a) target scene, whose brightness value is 144.8527 Nits; (b) ARM-
ICE reconstructed image, whose PSNR is 41.9113 dB; (c) result of bilinear interpolation reconstruction, whose PSNR is 34.9112 dB; (d)

result of image-by-image reconstruction, whose PSNR is 27.8246 dB.

- s o o T . . .
XN = (X1, X2,...,XN) = WO*. An important issue during
the reconstruction process is how to calculate the wavelet
basis W. Assume the set of captured data Xy is already
known, and A\; = Xy. Each light-sensitive sensor captures
the target scene from different views, so its obtained data
can be divided into two parts: the common part A; p and the
particular part A;p. T indicates the lifting wavelet transform
after J times’ recursion:

Me=1 = Aiep + Ulyr-1),
for k =] to 14 yk-1 = Ao — P(Akp), (8)
TA) = (Ak=1>Yk-1)»

where Ax_; is the low-frequency coefficient set, yx—; is the
high-frequency coefficient set, P is the linear prediction
operator, and U is the linear update operator. Using the
spatial correlation of captured data, Ak, p can be calculated
by Ak,p. yk—1 contains fewer information relatively.

For Ay, after k times’ recursive lifting wavelet transform:
Tk(Ak) = {AO)?O)?Iru')i)\k—l}- (9)

After resetting the wavelet coefficients which are under
threshold value in y;, the sparsely structured y; can be used
to reconstruct the original signal Ax exactly. Assuming that
T~*(e) is a lifting wavelet inverse transform, as the linear
prediction operator and the linear update operator are both
linear operations, thereforeT*(e) and T~*(e) are both linear
transforms. T~ (e) can be expressed as follows:

TﬁK(/"O) ?0, ?1)- e ?k*l) = Xk)

A (10)
Ak = O™ = Ay,

where 6% = (Ao,)%,)?l,...,)?k_l)T. Since A; = Xy, the initial
data )A(N = WO* can be reconstructed exactly.
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FiGUre 4: ARM-ICE imaging results and comparison under low light: (a) target scene, whose brightness value is 103.3661 Nits; (b) ARM-ICE
reconstructed image, whose PSNR 1is 44.4705 dB; (c) result of bilinear interpolation reconstruction, whose PSNR is 36.5021 dB; (d) result of

image-by-image reconstruction, whose PSNR is 29.5852 dB.

3. Four-Channel Arm-ICE Imaging
System Pattern Simulation

According to the ARM-ICE visual field self-adaptive adjust-
ment mechanism under different surrounding light inten-
sities described in Section 2.1, in this section, we simulate
a four-channel ARM-ICE imaging system. When the sur-
rounding light intensity turns strong, the lenses array regu-
lates their relative positions according to (1) automatically.
The simulation results are shown in Figure 3; Figure 3(a)
is the target scene under strong illumination environment,
whose brightness value is 144.8527 Nits. Figure 3(b) is the
joint reconstruction image from photoelectric coupler array,
and its reconstructed PSNR is 41.9113 dB. Figure 3(c) is a
reconstructed image by linear interpolation method, and its
PSNR is 27.8246 dB under the same sampling rate as ARM-
ICE. Figure 3(d) is an image-by-image reconstruction, and
its PSNR is 27.8246 dB under the same sampling rate as
ARM-ICE.

When the surroundings are dim, the compound eye
lenses array contracts to the central area, sacrificing the visual
field to improve the reconstruction resolution of target scene.
The simulation results are shown in Figure 4. Figure 4(a) is
the target scene under the dim conditions whose brightness
value is 103.3661 Nits. Put the brightness values into (1) and
calculate the lenses’ positions at the moment. Figure 4(b) is
the joint reconstruction image from photoelectric coupler
array, and its reconstructed PSNR is 44.4705 dB. Figure 4(c)
is the reconstructed image by linear interpolation method.
PSNR is 36.5021 dB at the same sampling rate. Figure 4(d) is
the reconstruction result of image-by-image, whose PSNR is
29.5852 dB.

From the reconstruction effect, the result of linear
interpolation method is superior to the result reconstructed
by image-by-image. However, there is still obvious block
effect, and lack of smoothness at the edge direction. Cor-
respondingly, the image reconstructed by ARM-ICE has a
significant improvement in resolution. From Figures 3 and 4,
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we can see that there is no distinct block effect in the result
and the edges of the reconstructed image are smoother
compared to the results of the other two reconstruction
methods studied in this work.

Figure 5 is the comparison of PSNR-Sampling rates
under low light and strong light conditions (144.8527 Nits).
The three black lines in the figure show the comparison
results under the strong light condition, in which the black
dotted line shows the result of ARM-ICE, the black diamond
line shows the result of bilinear interpolation, and the black
five-pointed star-shaped line shows the result of image-by-
image reconstruction. It can be concluded from the figure
that the PSNR of ARM-ICE is higher than bilinear inter-
polation and image-by-image reconstruction under different
sampling rates under the strong light condition.

The three red lines in the figure show the comparison
obtained under the low light condition (103.3661 Nits), in
which the red dotted line shows the result of ARM-ICE
reconstruction, the red diamond line shows the result of
bilinear interpolation, and the red five-pointed star-shaped
line shows the result of image-by-image reconstruction. It
can be seen from the figure that when the target scene
is under low light condition, the PSNR of ARM-ICE at
different sampling rates is higher than bilinear interpolation
and image-by-image reconstruction.

4. Conclusion

Inspired by the imaging mechanism and the adaptive regula-
tory regulation mechanism of the insect compound eyes, this
paper proposes a reconstruction method, which regulates
the scale of the sampling area adaptively according to the
surrounding light intensity condition. The imaging system
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pattern of the new method can complete the multichannel
independent sampling in the target scene almost at the same
time. Meanwhile, the scale of the sampling area and the
optical signal redundancy can be regulated adaptively to
achieve the imaging control. Compared with the traditional
methods, the resolution of the reconstructed image by
ARM-ICE method has been significantly improved. The
reconstructed image with the proposed method has three
features: higher resolution, no distinct block effect, and
smooth edge.

Simulation results indicate that the new method makes
the PSNR of the reconstructed image higher under two kinds
of light conditions. However, the reconstruction quality
under low light conditions is improved by the proposed
algorithm at the cost of the scale of the visual field. Therefore,
the key issue in the future work would be how to reconstruct
high-resolution large scenes in low light conditions.
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