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Abstract: Bees are important plant pollinators in both natural and agricultural ecosystems. Managed
and wild bees have experienced high average annual colony losses, population declines, and local
extinctions in many geographic regions. Multiple factors, including virus infections, impact bee health
and longevity. The majority of bee-infecting viruses are positive-sense single-stranded RNA viruses.
Bee-infecting viruses often cause asymptomatic infections but may also cause paralysis, deformity
or death. The severity of infection is governed by bee host immune responses and influenced by
additional biotic and abiotic factors. Herein, we highlight studies that have contributed to the
current understanding of antiviral defense in bees, including the Western honey bee (Apis mellifera),
the Eastern honey bee (Apis cerana) and bumble bee species (Bombus spp.). Bee antiviral defense
mechanisms include RNA interference (RNAi), endocytosis, melanization, encapsulation, autophagy
and conserved immune pathways including Jak/STAT (Janus kinase/signal transducer and activator
of transcription), JNK (c-Jun N-terminal kinase), MAPK (mitogen-activated protein kinases) and
the NF-κB mediated Toll and Imd (immune deficiency) pathways. Studies in Dipteran insects,
including the model organism Drosophila melanogaster and pathogen-transmitting mosquitos, provide
the framework for understanding bee antiviral defense. However, there are notable differences such
as the more prominent role of a non-sequence specific, dsRNA-triggered, virus limiting response
in honey bees and bumble bees. This virus-limiting response in bees is akin to pathways in a
range of organisms including other invertebrates (i.e., oysters, shrimp and sand flies), as well as
the mammalian interferon response. Current and future research aimed at elucidating bee antiviral
defense mechanisms may lead to development of strategies that mitigate bee losses, while expanding
our understanding of insect antiviral defense and the potential evolutionary relationship between
sociality and immune function.

Keywords: honey bee; virus; bumble bee; insect antiviral defense; RNAi; RNA-triggered antiviral
defense; viral PAMP; dsRNA

1. Introduction

1.1. Bees—Hymenopteran Insects That Play an Important Ecological Role as Plant Pollinators

There are over 4000 bee species in the order Hymenoptera, including those that are social or
solitary, native or introduced, managed or wild [1]. Bees are important pollinators of plant species,
including agricultural crops (e.g., almonds, apples, cherries, squash, tomatoes) and ecologically
important plants. In the United States honey bee pollination is valued at 14.6 billion annually [2]
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and insect pollination worldwide is valued at $175 billion per year [3]. Due to their abundance and
economic importance, most of the research on bee host—virus interactions has focused on honey bees.

Western honey bees (Apis mellifera) are eusocial, cavity nesting bees that are native to Europe,
Africa and the Middle East; they were introduced into North America in the late 1600s [4–6].
The Eastern honey bee (Apis cerana) is a related but distinct species endemic to Asia and detected in
Australia in 2007 [7,8]. Honey bee colonies consist of approximately 35,000 individual bees, including
sterile female workers, a few hundred male bees (called drones) and a single reproductive female queen
bee [9]. Honey bee colonies typically survive multiple years, while the longevity of individual worker
bees depends on their caste (i.e., from six weeks to four months for worker bees, approximately eight
weeks for drones and several years for queen bees [9]). The majority of the approximately 2.5 million
honey bee colonies in the United States (US) are managed by professional beekeepers and are involved
in pollinating the almond crop, which is the largest pollination event in the world [10,11]. Since 2006,
US beekeeping operations have suffered approximately 33% annual losses, which is an increase from
historic levels of approximately 12–15% [10,12–17]. Many biotic and abiotic factors contribute to these
losses, including pathogenic infections, mite infestation levels, agrochemical-exposure, management,
and lack of quality forage and habitat (reviewed in [18–24]). Viruses, including deformed wing virus
(DWV), are one of the factors that contribute to individual bee and colony deaths.

Bumble bees, including Bombus terrestris and Bombus impatiens, are also important agricultural
pollinators of crops such as tomatoes and peppers, as well as blueberries and other ecologically
important plant species [25]. Bumble bees are ground nesting bees that live in small annual colonies
with distinct solitary and social life cycle phases [26]. Unlike honey bees, bumble bees (B. terrestris) rear
one generation per year [27]. This means that the queen survives one year and her reproductive
daughters (gynes) start new colonies in the spring after an overwinter period of torpor (called
diapause) [28,29]. There are numerous species of bumble bees, some of which have suffered high
losses and local extinctions that are partially attributed to habitat destruction and fragmentation,
chemical-exposure, pathogens, and climate change, [26,30–37]. The majority of bumble bee host
pathogen research has focused on microsporidia (i.e., Nosema bombi) and trypanosomatid (i.e., Crithidia
bombi) infections [38–42], though there is a growing body of virus literature, which is featured
herein [43–48]. Recent metagenomic sequencing analysis of bumble bees (i.e., Bombus terrestris, Bombus
cryptarum, and Bombus pascuorum) obtained from several locations in Belgium identified several known
bee infecting viruses (e.g., black queen cell virus (BQCV), Varroa destructor virus-1 VDV-1/DWV-B,
DWV), including potentially different strains as well as numerous new bee-associated viruses including
(+)ssRNA, (−)ssRNA, and dsDNA viruses [49]. Future studies aimed at characterizing the full
genome sequences, virion structure, potential pathogenicity, host-specific antiviral responses, and
inter-taxa transmission of these viruses will greatly expand our understanding of bee virology [49].
Virus infections of social bees, including honey bees and bumble bees, may impact bee health at the
superorganism (i.e., entire colony) and/or individual bee levels. Typically, colony population size is
used as a proxy for colony health, whereas pathogen burden, life span, glandular protein content, and
queen bee fecundity are used as proxies of individual bee health [12,14,16,50–55].

Solitary bees including alfalfa leaf cutter bees (Megachile rotundata), blue orchard or mason bees
(Osmia lignaria), and many other native and wild bee species are important plant pollinators. Some
are generalist pollinators, whereas others are specialist pollinators that primarily interact with one or
just a few plants (reviewed in [56]). Interestingly, numerous studies indicate that agricultural systems
that include both managed and native and wild bee species have improved crop yield [57–60]. Less is
known about the health of these bees but in general habitat destruction, pathogenic infections, lack of
quality forage, and agrochemical exposure are detrimental to bee health and population size (reviewed
in [33]). Therefore, strategies that promote bee health including planting and/or maintaining pollinator
forage, maintaining nesting sites (including bare earth for ground nesting bees), and reduced use of
chemicals, particularly insecticides, will benefit all bee species. Though more research on the impact
of viruses on solitary bees is needed, many studies have shown that these bee species are infected by
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viruses originally discovered in honey bees [61], as well as viruses and other parasites that may be
unique to particular hosts [49]. For example, high throughput sequencing of the metatranscriptomes
of eight wild bee species including five solitary bee species (i.e., Andrena cineraria, Osmia bicornis,
Osmia cornuta, Andrena fulva, and Andrena haemorrhoa) in Belgium resulted in strong support for bee
macula-like 2 virus infection of A. haemorrhoa and detection of several new partial virus genomes
including a nege-like virus and a toti-like virus in A. haemorrhoa and O. cornuta, respectively [49].

A current focus of bee virus research is investigating intra- and inter- genera transmission of
viruses. Though difficult to investigate, phylogenetic analyses of virus genome sequences obtained
from co-foraging bee hosts have indicated that viruses are bidirectionally transmitted between
managed and wild bee species [62–65] (reviewed in [66]). Additional studies are required to determine
the extent of virus replication, as opposed to virus prevalence and pathogenesis across bee taxa.
Inter-genera virus transmission is likely influenced by virus prevalence and abundance in bee
populations, as well as the dynamic composition of bee and forb species in specific geographic regions.
In addition, plant-pollinator networks and in turn pathogen transmission between co-foraging bees,
are influenced by habitat loss and will likely be influenced by climate change [31,37]. Investigating the
co-evolutionary history of specific virus-host pairs, host antiviral immune responses, and viral counter
measures in numerous bee species will greatly enhance our understanding of bee virus ecology.

1.2. Bee Viruses

In this review we will use the term “bee virus”, though insect viruses generally have a broad host
range and “bee viruses” can infect a variety of bee hosts, as well as ants and mites [67–70] (reviewed
in [66]). Because of their role in agriculture, honey bees (Apis mellifera) are the most investigated
bee species and thus the majority of bee-infecting viruses were discovered in honey bee samples.
Most bee viruses are positive-sense single-stranded RNA viruses with approximately 30 nm diameter
icosahedral capsids. These include Dicistroviruses (black queen cell virus (BQCV), Israeli acute
paralysis virus (IAPV)), Iflaviruses (deformed wing virus (DWV), sacbrood virus (SBV), slow bee
paralysis virus (SBPV)) and yet-to-be taxonomically classified viruses including chronic bee paralysis
virus (CBPV) and the Lake Sinai virus (LSV) group (reviewed in [68,70,71]). Recent sequencing efforts
have discovered new bee viruses from additional families (reviewed in [72]) including viruses with
negative-sense RNA genomes and enveloped virions [73]. To date, only one bee-infecting DNA virus,
Apis mellifera filamentous virus (AmFv), has been described [74]. For a more thorough review of bee
virology, see Grozinger and Flenniken [75] and Chen and Siede [70].

Bee viruses are transmitted vertically within species and horizontally, both within species and
between different bee genera [62–64,70]. Horizontal transmission is facilitated by food transfer
(i.e., trophallaxis in social bees) between individual bees within a colony, and between colonies
and bee species via the sharing of floral resources (i.e., nectar and pollen) [9,62,76]. Honey bee viruses
are also transmitted within and between honey bee colonies by the ectoparasitic mite Varroa destructor
(i.e., DWV, IAPV, KBV) [77–85]. Several studies suggest that DWV replication in mites and/or
mite-mediated virus transmission impacts the diversity of viral genomes at both a geographic scale
(i.e., mite induced bottleneck of DWV strains in the Hawaiian Islands [86]) and at the individual bee
level [87,88]. Poor honey bee colony health is associated with high mite infestation coupled with
DWV infection [83,85,89–93] and the seasonal dynamics of mite infestation and DWV abundance are
strongly correlated [12,17,54,85,90,93–95]. The potential role of parasite-mediated virus transmission
is under-explored for other bee species.

Virus infections in bees are primarily asymptomatic or they may result in deformity, paralysis,
and/or death (reviewed in [70,89,96,97]) [98–100]. The extent of viral pathogenesis is influenced by
biotic and abiotic stressors, including the synergistic negative effects of co-infection with multiple
pathogens and/or agrochemical exposure, and governed by co-evolved host-virus interactions [37,101]
(reviewed in [75]). The mechanisms of bee antiviral defense, which are described in greater detail below,
include conserved immune pathways (i.e., Jak/STAT (Janus kinase/signal transducer and activator
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of transcription), JNK (c-Jun N-terminal kinase), MAPK (mitogen-activated protein kinases), NF-κB
(i.e., Dorsal/Relish) mediated Toll and Imd pathways, RNA-trigged responses (i.e., RNA interference
(RNAi) and a non-sequence-specific dsRNA mediated mechanism), autophagy, endocytosis, and
melanization) (reviewed in [102,103]) (Figure 1).
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Figure 1. Honey Bee Immune Pathways—Highlighting Genes Implicated in Antiviral Immune
Responses. The honey bee genome encodes major members of insect immune pathways including:
Jak/STAT (Janus kinase/Signal Transducer and Activator of Transcription); RNAi (RNA interference);
Toll via NF-κB (Nuclear Factor κB/Dorsal); Imd (Immune deficiency) via NF-κB/Relish; JNK (c-Jun
N-terminal kinase); and MAPK (Mitogen-Activated Protein Kinases), as well as orthologues of
genes involved in the heat shock response (Hsp), autophagy, eicosanoid biosynthesis, endocytosis,
melanization, and prophenoloxidase (PPO) response. Bold text indicates genes and proteins
differentially expressed in virus-infected honey bees and/or bumble bees. The first step in immune
activation is host recognition of pathogen-associated molecular patterns (PAMPs) including viral
dsRNA, bacterial peptidoglycans, and fungal β-glucans. In general, the Toll pathway is involved in
defense against Gram(+) bacteria and fungi and the Imd pathway is activated by Gram(−) bacteria,
but specific host-pathogen interactions are unique. This is particularly true for host—virus interactions
since data from fruit-flies, mosquitoes, and honey bees indicate differential activation of immune genes
and pathways. The Jak/STAT pathway is activated via ligand binding to the Domeless receptor; while
Drosophila melanogaster (Dm) express Domeless ligands (unpaired, upd, upd2, and upd3), a honey bee
upd orthologue has not been identified. Following Domeless-ligand binding, Hopscotch Janus kinases
are transphosphorylated, leading to phosphorylation and dimerization of STAT92E-like proteins.
Activated STATs transcriptionally regulate antimicrobial effectors TEP7 (Thioester-containing protein
7), TEPA, TEPB, and the Jak/STAT inhibitor SOCS (Suppressor of Cytokine Signaling). The honey
bee genome also encodes for D-PIAS (Protein Inhibitor of Activated STAT), another inhibitor of the
Jak/STAT pathway. The RNAi-pathway is initiated by DmDicer-2 cleavage of viral dsRNA into 21–22 bp
siRNAs; AmDicer-like shares ~30% aa identity with DmDicer-2. The siRNAs are then loaded into Ago2
(Argonaute-2), the catalytic component of the RISC (RNA Induced Silencing Complex). A single strand
of the siRNA is retained in the RISC and used to specifically target cognate viral genome sequences for
cleavage. In addition, DmDicer-2 serves as a dsRNA sensor that mediates a signal transduction cascade
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resulting in increased expression of DmVago, which suppresses viral replication. AmDicer-like
may serve as a dsRNA sensor, as honey bees have a vago orthologue which is up-regulated
in DWV-infected honey bees, but not Sindbis-GFP-infected honey bees. In B. terrestris, Vago
limits viral infection in fat bodies in a Dicer-dependent manner. Though the mechanism(s) of
non-specific dsRNA-mediated antiviral responses in bees require additional characterization, a putative
serine/threonine cyclin-dependent kinase (MF 116383) is involved in this virus-limiting response
in honey bees. Additionally, several members of the heat shock protein family exhibit increased
expression in Sindbis-GFP infected honey bees (i.e., hsp90, activator of hsp90, 60 kda hsp, 10 kda hsp,
hsp83-like, hsc70-4, and hsf5), while dsRNA alone resulted in increased expression of hsp90. The Toll
pathway is activated by a family of pathogen recognition receptors (PRRs) (e.g., peptidoglycan receptor
proteins (PGRPs) and Gram(−) binding proteins) that bind fungal and bacterial PAMPs. The Toll
pathway is activated in some insect host-virus combinations, although the activation mechanism is
unknown. Following PAMP binding, a serine protease cascade results in cleavage of pro-Spaetzle into
mature Spaetzle. The honey bee genome encodes two putative spaetzle orthologues, which bind the
membrane-anchored Toll receptor. Toll dimerization results in the recruitment of dMyD88, Tube and
Pelle. Pelle is likely involved in degradation of NF-κB inhibitors (e.g., Cactus-1, Cactus-2, Cactus-3),
resulting in the release of transcription factors Dorsal-1A and Dorsal-1B. Nuclear translocation of Dorsal
results in increased expression of antimicrobial peptides (AMPs) and Amel\102. The Imd pathway is
activated by Peptidoglycan recognition protein LC (PGRP-LC) binding to diaminopimelic-containing
peptidoglycan of Gram(−) bacteria, followed by activation of the adaptor protein Immune deficiency
(Imd), Relish phosphorylation by the IKK complex (IkB kinase) and cleavage of Relish by the caspase
Dredd (Death-related ced-3/Nedd2-like). Relish transcriptionally regulates expression of AMPs and
other genes involved in antimicrobial defense. The JNK pathway is also activated by TAK (Transforming
growth factor-activated kinase 1) and TAB2/3 (TAK binding protein 2 and 3), resulting in AMP
expression and/or apoptosis. In Drosophila, binding of vesicular stomatitis virus to the Toll-7 receptor
promotes autophagy, likely by inhibiting the PI3/Akt/Tor (phosphatidylinositol 3-kinase/Protein
kinase B/Target of rapamycin) pathway which suppresses autophagy. The honey bee genome encodes
for one gene in the Toll-7/2 clade, 18-wheeler (Am18w), which shares ~49% aa identity with DmToll-7
and ~45% aa identity with DmToll-2. The role of the Am18w protein in antiviral defense and autophagy
in honey bees is unknown. In insects, Eicosanoid biosynthesis begins with the induction of PLA2
(Phospholipase 2) from signal cascades downstream of viral, fungal, or bacterial PAMP recognition.
Activated PLA2 hydrolyzes arachidonic acid (AA) from cellular phospholipids. Eicosonoid production
likely occurs via oxidation of AA by an unidentified enzyme. Eicosanoids are critical for nodulation
and aid in phagocytosis, micro-aggregation, adhesion, and release of prophenoloxidase (PPO) from
hemocytes. Experimental evidence also suggests endocytosis, melanization and MAPK pathways
are involved in honey bee antiviral defense. Adapted with permission from Brutscher et al., Current
Opinion in Insect Science, 2015 [102].

1.3. Bee Virology

The epidemiology of bee viruses has not been thoroughly investigated, though there have been
several insightful studies including the German Bee Monitoring Project [90], apiary level surveillance
programs carried out by the US Bee Informed Partnership [12] and the Ministry of Agriculture in
Spain [104], honey bee colony health and virus prevalence and abundance studies [12–17,53–55,97,
105–110], and the ongoing Canadian National Honey Bee Health Survey [111]. These and other
longitudinal monitoring studies have been instrumental in beginning to define how honey bee health
relates to the prevalence and abundance of viruses, which varies by season, sampling date, and
geographical location [54,105]. Several studies indicate that at particular times of the year weak
colonies are associated with higher pathogen levels, including IAPV, LSV2, DWV, Nosema ceranae, and
mites [12–16,53–55,90,95,97,106,109,110,112–114], though additional monitoring efforts are required to
determine impacts of virus infection at the colony level.
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To examine the impact of viruses on individual bees, Bailey, Ball, and others used
semi-purified viruses from infected bees/pupae to catalogue the symptoms associated with particular
viruses [70,100,115]. Symptomatic virus infections in honey bees include a “hairless” or “greasy”
phenotype associated with CBPV, wing deformity and shortened or bloated abdomens caused by
DWV, paralysis associated with IAPV and acute bee paralysis virus (ABPV) [116] and complications
with larval development due to SBV and BQCV infections [70]. In addition, asymptomatic or
covert infections may cause more subtle symptoms, such as the precocious foraging behavior and
reduced lifespan associated with DWV-infections [117]. To date, only two infectious bee virus clones,
BQCV [118] and DWV [119] have been described and only the DWV clone is currently available. Bee
cell culture includes the use of primary cells obtained from embryos, larvae, and adults for short-term
studies and a single immortalized cell line [120], which can be difficult to maintain [121]. Therefore,
most bee virus research is carried out using viruses isolated from both naturally and experimentally
infected bees and/or bee pupae [115]. Isolating viruses from naturally infected bees typically includes
several co-purified viruses [115,121,122], though nearly pure virus isolates have been obtained (e.g.,
LSV2 [112]). Likewise, propagation of DWV and IAPV in pupae has resulted in relatively pure virus
preparations [97,123–125]. The lack of infectious clones and robust cell culture models has made
investigating bee viruses challenging but the use of model viruses, including Sindbis-GFP [126,127]
and flock house virus (FHV) [128], and semi-purified virus inocula in individual bee and cultured cell
experiments have provided insight into the mechanisms of antiviral defense [61,121,126–129].

The genomes of several bee species including Apis mellifera [130], Apis cerana [7], Bombus terrestris,
Bombus impatiens [131], and Megachile rotundata have been sequenced and partially annotated [132].
Genomic information facilitates the use of molecular techniques (e.g., high through-put sequencing,
qRT-PCR, cloning, and RNA interference-mediated gene knock-down) to investigate and understand
bee host—virus interactions at both the colony and individual levels.

2. Bee Antiviral Defense

Bee antiviral defense mechanisms include dsRNA-triggered responses, hemocyte-mediated
mechanisms (e.g., endocytosis, melanization and encapsulation), and conserved pathways including
Jak/STAT, JNK, MAPK, and the NF-κB mediated Toll and Imd pathways (reviewed in [102,103])
(Figure 1).

Signal transduction cascades regulate the expression of genes, including those that are likely
involved in limiting honey bee virus infections (reviewed in [102,130]), though very few studies have
characterized the role of potential antiviral effector proteins in bees [85,126,128]. Gene function in
bees is largely based on the roles of orthologous genes in model organisms, including Drosophila
melanogaster [133–139] and mosquitos [140,141]. For example, Drosophila melanogaster encodes three
NF-κB transcription factors (i.e., relish, dif, and dorsal) which are involved in promoting the expression of
specific antimicrobial peptides (AMPs) [136,142]. Honey bees have two major NF-κB like transcription
factors (i.e., dorsal and relish) involved in the Toll and Imd pathways, respectively. Honey bees lack
dif but encode two dorsal homologues (i.e., dorsal-1 and dorsal-2) and there are two isoforms of
dorsal-1 (i.e., 1A and 1B) [143]. Toll and Imd pathway activation increases expression of defensin-1, a
Hymenoptera-specific AMP hymenoptaecin and both pathways govern expression of abaecin [143–145].
The roles of AMPs in host defense are best characterized in the context of bacterial and fungal infections
where these cationic peptides act by disrupting pathogen cell membranes/walls [142,144,146].
The function of AMPs in virus infection is not yet known, though they serve as hallmarks of immune
pathway activation [144,147,148].

There are several reports on the transcriptional level perturbations associated with virus infection
and/or mite infestation of honey bees [87,93,97,125–127,149–152]. Even though these studies vary
in terms of virus, infection route, inoculated versus field-acquired infections, bee age, sample date,
and whether the presence of co-occurring infections were or were not examined, there were some
general trends observed including increased expression of several AMPs (i.e., apidaecin, hymenoptaecin,
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abaecin, lysozyme and defensins), immune genes (e.g., peptidoglycan recognition protein (PGRP)-S2,
TEPs, prophenoloxidase, eater), transcription factors, components of the RNAi machinery (i.e., dicer
and argonaute-2) and differential expression of genes involved in metabolic pathways and cellular
differentiation [87,93,97,125–127,149,151,152]. Several studies determined that protein lethal(2)essential
for life-like, which encodes a protein in the small heat shock protein (Hsp20) family was differentially
expressed in virus-infected bees [126]. The differential expression of this and other Hsp family proteins
in virus-infected bees is intriguing, since the heat shock response is an important antiviral response in
Drosophila melanogaster [153,154] and Anopheles gambiae [155].

Deformed wing virus infection of honey bees (Apis mellifera) is the most thoroughly examined
virus-bee host pair [85,89]. Deformed wing virus infects both honey bee larvae and adults, and high
DWV infection levels of larvae results in wing deformity in adulthood [85,87,117,156,157]. Investigation
of DWV pathogenesis is complicated by the synergistic negative effects of both Varroa destructor
mite parasitization and mite-mediated virus transmission, as well as impairment of the antiviral
NF-κB/Dorsal-1A pathway as a result of exposure to neonicotinoid insecticides (i.e., clothianidin and
imidacloprid) [101]. The complex interactions between host, virus, vector, neonicotinoid exposure
and nutritional status, at both the individual bee and colony levels, were reviewed in this issue of
Viruses by Nazzi and Pennacchio [158]. Together, several studies have demonstrated the key role of
the NF-κB/Dorsal-1A pathway in limiting virus infection, including studies that determined that
reduced expression of dorsal-1A, both experimentally and naturally, favored virus proliferation [93].
Furthermore, the NF-κB/Dorsal-1A pathway regulates the expression of Amel\102, which is an
immune gene likely involved in melanization and encapsulation; Amel\102 expression is reduced
in DWV-infected bees [85,150]. Mite infestation and DWV levels are often correlated, though the
immune response varies [87,93,150,159]. For example, when mite infested bees have low DWV levels
the expression of genes in the Toll pathway are increased, whereas high DWV levels are associated with
differential expression of genes in the JNK pathway [150]. In addition, RNAi is involved in controlling
DWV infection, as evidenced by the production of viral siRNAs in DWV-infected bees [87,160] and
increased cytopathology and DWV abundance in a persistently infected cell line after treatment with a
potent RNAi inhibitor (cricket paralysis virus-1A protein) [121]. Furthermore and as described below,
experimental introduction of DWV-targeting dsRNA reduced DWV abundance and DWV-associated
mortality of both larvae and adult bees [87,161].

Nutritional status and metabolism also influence the outcome of virus infections in honey bees.
Several transcriptome studies of virus-infected bees identified differential expression of genes involved
in metabolic processes and bees fed higher quality diets had lower virus loads [97,125,126,150].
In addition, recent studies demonstrated that KATP channels, which respond to metabolic changes in
the cell (e.g., the relative levels of ATP and ADP) play a role in limiting viral infection [128]. Specifically,
honey bees fed a KATP agonist prior to challenge with FHV survived longer and had reduced virus
levels compared to untreated bees or bees fed a KATP antagonist prior to virus challenge [128]. At least
one study in Drosophila melanogaster links metabolic function to antiviral immunity by suggesting
that KATP channels control FHV infection in an RNAi-dependent manner [162]. Future studies will
determine if changes in metabolic function are a result of the hosts’ antiviral response or an energetic
consequence of virus infections but these results provide a clear link between honey bee metabolism
and antiviral defense. This is striking, given that naturally infected honey bees, even asymptomatic
bees, routinely harbor over one billion virus genome equivalents per individual [105], covert DWV
infections reduce longevity [117], and honey bee immune gene expression, which is associated with
metabolism, varies with season [152].

2.1. Viral dsRNA-Triggered Antiviral Responses in Honey Bees and Bumble Bees, Including Sequence-Specific
RNAi and Non-Sequence-Specific Pathways

During viral replication, most viruses produce long segments of dsRNA (e.g., replication
intermediates of ssRNA viruses and RNA secondary structures in long transcripts of all viruses)
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that are recognized as PAMPs by host dsRNA-binding proteins. Host recognition of viral dsRNA may
result in activation of sequence-specific RNAi and/or other antiviral immune pathways (e.g., Jak/STAT,
Imd, and JNK) (reviewed in [102,134,135,141,163–165]).

2.2. Honey Bee Antiviral RNA Interference

RNAi is a post-transcriptional sequence-specific gene silencing mechanism that is involved in
regulating gene expression in most organisms [166,167]. There are three distinct RNAi pathways
including the microRNA (miRNA), piwi-interacting RNA (piRNA) and short-interfering RNA (siRNA)
pathways (reviewed in [166,168]). The siRNA pathway is an important antiviral defense mechanism
in plants, fungi, nematodes, and arthropods [140,166,168–176]. In brief, cytosolic virally-produced
dsRNA is recognized and cleaved by an endonuclease enzyme Dicer (Dcr) into 21-nucleotide small
interfering RNAs (siRNAs). The siRNAs are then loaded into the RNA-induced silencing complex
(RISC) which contains the protein Argonaute-2 (Ago2). Once loaded into RISC, one of the siRNA
strands remains associated with Ago2 (i.e., the guide strand), while the passenger strand is degraded
by Ago2 and the endonuclease C3PO (component 3 promoter of RISC) [177]. The guide-strand binds
to a complementary target single-stranded RNA, leading to Ago2-mediated cleavage of the target
RNA (reviewed in [166]). The antiviral role of RNAi was first reported in solitary insects including
Drosophila melanogaster infected with FHV, which is a positive-sense single stranded RNA (ssRNA)
virus [178]. Later, flies deficient in ago-2 were shown to be hypersensitive to viral infection [179],
further implicating particular members of the RNAi pathway in antiviral defense. Interestingly, the
systemic spread of a sequence-specific RNAi response to uninfected cells, mediated by a dsRNA
uptake pathway, was shown to be necessary for an effective antiviral immune response [180,181].
Recent Drosophila studies have revealed that hemocytes and transposon-encoded reverse transcriptases
are involved in amplification and systemic spread of siRNA-mediated antiviral defense [182–184].

The role of RNAi in honey bee (Apis mellifera) antiviral defense was demonstrated in
laboratory-based experiments in which bees and/or larvae that were fed virus-specific dsRNA
harbored reduced levels of virus, as compared to controls [127,161,185,186]. Adult bees fed
IAPV-specific dsRNAs had less mortality [186] and lower virus loads [97] post IAPV-infection as
compared to bees fed non-sequence specific dsRNA. Likewise, larvae that were fed DWV-specific
dsRNA prior to inoculation with DWV had a reduced percentage of wing-deformity and lower DWV
virus load than larvae fed non-sequence specific dsRNA (i.e., dsRNA-GFP), although survival was
not impacted [161]. The same study determined that adult bees fed dsRNA-DWV prior to DWV
inoculation had reduced viral loads and increased longevity, compared to DWV-infected bees [161].
Intriguingly, particularly in the context of later studies described below, adult bees fed dsRNA-GFP
prior to DWV inoculation also had increased longevity compared to DWV-infected bees but the
relative abundance of DWV RNA equivalents was similar to DWV-infected bees that were not fed
dsRNA [161]. Together, these laboratory-based studies indicated that siRNAs and/or dsRNAs may be
useful antiviral treatments, though other studies indicated dsRNA had additional biological impacts
on bees [44,47,126,187–190]. A field study in which honey bee colonies were fed both IAPV-specific
dsRNA (Remebee-IAPV®) and IAPV determined that dsRNA-treated colonies in one of two locations
had larger adult bee populations and produced a greater amount of honey, than colonies that were
only fed IAPV, though virus abundance was not assessed [191]. A more recent, colony level study
characterized the siRNAs (21–22 nt) produced in bees obtained from naturally and experimentally
IAPV-infected colonies [160]. Interestingly, the majority of sequenced IAPV-siRNAs corresponded to
the negative sense-strand, whereas the viral siRNAs corresponding to DWV matched both strands [160].
Bee samples from both Colony Collapse Disorder (CCD)-affected and unaffected colonies contained
viral siRNAs, indicating that even in the context of CCD, honey bees mounted an RNAi-mediated
antiviral response [160].

Further support that RNAi plays an important antiviral role in honey bees is that the expression
of dicer-like and ago-2 is higher in virus-infected bees (i.e., IAPV or a model virus Sindbis-GFP), as
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compared to mock-infected bees [125,126]. However, increased expression of the RNAi machinery
was not observed in DWV-infected honey bees [87]. In addition, RNAi-mediated reduction of
honey bee gene expression has become a useful tool to investigate gene function at different honey
bee developmental stages including embryos [192], larvae [193,194], pupae [143,195], and adult
bees [101,126,196–199] and provides further evidence that honey bee RNAi machinery is functional.

2.3. Honey Bee Non-Sequence-Specific dsRNA-Mediated Antiviral Response

While sequence-specific RNAi is an important honey bee antiviral defense mechanism and
experimental gene silencing tool, dsRNA also triggers a general non-sequence-specific antiviral
response (reviewed in [126,172]). Initial observations that dsRNA treatment altered honey bee gene
expression in a sequence independent manner were made in the context of targeted gene knock-down
studies [187,190]. As described previously, dsRNA is a viral PAMP that is likely recognized by dsRNA
recognition proteins, which in turn activate signal transduction cascades that result in an antiviral
transcriptional profile [126,127]. The first study that demonstrated a non-specific dsRNA-mediated
virus-limiting response in honey bees came from laboratory-based experiments in which adult honey
bees were co-injected with Sindbis-GFP and virus-sequence specific dsRNA, non-sequence specific
dsRNA, or poly(I:C) (a synthetic analogue of dsRNA), all of which reduced viral abundance at 72 h
post infection [127]. Perturbations in honey bee gene expression in response to either virus or dsRNA
treatment at 72 h post-inoculation were identified via microarray analyses compared to mock-infected
control [127]. A more comprehensive examination of dsRNA-triggered honey bee antiviral defense
mechanisms utilized transcriptome sequencing (RNASeq) to identify differentially expressed genes
(DEGs) at 24, 48, and 72 h post virus-infection and/or dsRNA administration [126]. This study
determined that the number of DEGs increased over the course of virus infection and that many genes
had unique temporal dynamics. Honey bee genes that were differentially expressed in virus-infected
and/or dsRNA treated bees included hopscotch in the Jak/STAT pathway, toll-10 and tube in the
Toll pathway, pirk and jra in the Imd pathway, antimicrobial peptides (i.e., apidaecin1, hymenoptaecin,
abaecin and defensin), numerous heat shock response genes, dicer and ago-2 and scavenger receptor class c,
which is involved in dsRNA uptake in Drosophila; most DEGs were functionally uncharacterized [126].
The virus-limiting functions of two of the identified honey bee antiviral genes (i.e., dicer, NCBI GeneID
552127) and a probable cyclin-dependent serine/threonine kinase (NCBI GenBank MF116383) was confirmed
in individual bee gene knock-down experiments. Reduced expression of either dicer or MF116383
resulted in greater virus abundance [126]. In Drosophila melanogaster Dicer is involved in both specific
and non-specific dsRNA responses including activating expression of the antiviral gene vago [200],
though the mechanism of Vago-mediated virus reduction in Drosophila is not yet known. In mosquitos,
Vago is a secreted protein that limits virus infection by linking the siRNA and Jak/STAT pathways
through an unknown receptor [135,201,202]. Vago expression is increased in DWV-infected honey
bees [87], though the neither the signal transduction pathway or transcription factor(s) involved have
been identified. Furthermore, vago is not universally up-regulated in response to virus infection in
honey bees (e.g., SINV-GFP, IAPV) [125,126].

Recognition of non-self virally-produced dsRNA is the first step in activation of an antiviral
state in many organisms. Cytosolically-located dsRNA recognition proteins include DExD
(Asp-Glu-x-Asp) box helicases, such as Dicer, Retinoic acid-inducible gene I (RIG-I), and Melanoma
differentiation-associated protein-5 (MDA-5), Protein kinase R, and endosomal Toll-like receptor 3 in
diverse organisms including invertebrates and mammals [44,47,200–206]. Though identification of
the honey bee proteins that detect and respond to dsRNA is ongoing, we hypothesize that further
investigation of this non-sequence specific dsRNA virus limiting response in honey bees will result
in the identification of genes that will have conserved antiviral roles in other invertebrate and
vertebrate organisms.
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2.4. Bumble Bee RNA Interference

Bumble bee and honey bee lineages diverged approximately 90 million years ago [207]. Similar
to honey bees, the bumble bee (B. terrestris) RNAi machinery (i.e., ago-2, dicer-2) exhibits slightly
increased expression in the context of virus infection (i.e., IAPV and SBPV) [44,189]. Increased
expression of key RNAi genes likely explains the observed enhancement of RNAi-mediated host gene
knock-down in IAPV-infected B. terrestris [189]. The RNAi response is not very effective at reducing
IAPV-abundance, as levels in experimentally inoculated bumble bees increased by over 1000-fold in
spite of activation of RNAi [189]. This result could be partially attributed to tissue specific variation of
RNAi efficacy [44,208,209]. However, even experimental reduction of dicer-2 expression in B. terrestris
did not result in increased abundance of IAPV or SBPV [44]. IAPV, which is transmitted orally among
bumble bees, was injected in these studies and injection of IAPV results in a more virulent infection
than oral inoculation [44,189], therefore additional studies are required to determine if the route of
virus-inoculation impacts host-pathogen interactions and the efficacy of systemic RNAi. To further
examine the virus-limiting role of RNAi, bumble bees were infected with cricket paralysis virus (CrPV),
which is a model virus that encodes a viral suppressor of RNAi (VSR) [210] and as expected, the RNAi
response was reduced [189]. This study did not find evidence of IAPV-mediated suppression of RNAi
and the putative IAPV-1A-like VSR protein [97] was not detected by mass spectrometry analysis of
infected bee samples [189].

2.5. Bumble Bee Non-Sequence-Specific dsRNA-Mediated Antiviral Response

Similar to honey bees, viral dsRNA triggers both sequence-specific RNAi and non-sequence
specific virus limiting responses in bumble bees, though the non-sequence specific pathway may be
even more important for bumble bees [44,47,189]. This was demonstrated by a study in which bumble
bees (Bombus terrestris) were fed IAPV only, or IAPV and either virus-sequence specific dsRNA or
non-sequence-specific dsRNA (ns-dsRNA-GFP, 455 bp) for six consecutive days, beginning three days
prior to virus-inoculation [47]. Survival was monitored for 22-days post-infection and revealed that
bumble bees treated with non-sequence specific dsRNA better survived IAPV infection (60%) than
bumble bees treated with virus-specific dsRNA (10%). However, in parallel, independent experiments
that examined the potential effect of IAPV-dsRNA length (293 bp, 443 bp and 586-bp) in addition to
sequence specificity, virus abundance in bumble bee heads was reduced in all dsRNA-treated and
virus-infected bees, as compared to bees that were virus-infected and not treated with dsRNA [47].

In addition to dsRNA-mediated antiviral responses, there are other immune pathways that likely
play important roles in antiviral defense in bumble bees. Targeted analysis of canonical insect immune
gene expression in virus-infected bumble bees unexpectedly indicated that BtSVC-vago (which is also
referred to as Single von Willebrand factor C-domain protein (SVC) vago) expression was reduced
in IAPV-infected bees and not affected in SBPV-infected bees, unlike the observed up-regulation of
this important antiviral gene in Drosophila melanogaster [44]. Experimental reduction of BtSVC-vago
expression did not impact IAPV or SBPV abundance in the abdomen [47], however additional tissue
specific analyses determined that BtSVC-vago reduction resulted in greater IAPV abundance in the
fat body [211]. Similar to regulation of Dmvago by DmDicer-2, BtSVC-vago expression is governed
by BtDicer-2 [211]. Reduction of BtSVC-vago expression did not impact Btdicer-2 or Bthop levels in
fat bodies and thus to date a connection between BtSVC-vago expression and Jak/STAT activation
has not been established [211]. However, reduced expression of Bthop resulted in higher SBPV
load 48 h post-infection, implicating the Jak/STAT pathway in bumble bee antiviral defense [44]
(reviewed in [102]) (Figure 1). To date, the mechanism by which down-regulation of BtSVC-vago
regulates expression of four AMPs (Btabaecin, Btapidaecin, Btdefensin and Bthymenoptaecin) remains to
be elucidated [211].
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3. Conclusions

RNA virus infection results in the production of dsRNA molecules (e.g., virus replicative
intermediates, RNA secondary structure, dsRNA genomes) in host cells. This viral pathogen PAMP is
recognized as non-self by PRRs across diverse taxa, including plants, invertebrates (e.g., oysters, shrimp,
nematodes, ticks, fruit flies, sand flies, mosquitos, wasps, and bees) and mammals [176,212–220].
Recognition of dsRNA by host PRRs induces distinctive antiviral responses across different hosts.
These include virus-specific RNAi in plants, nematodes, and arthropods and non-sequence specific
dsRNA-mediated induction of pathways that result in an “antiviral state” that limits virus replication
(e.g., mammalian interferon response, C. gigas oyster type I interferon-like response, A. mellifera and
B. terrestris virus-limiting responses). The extent to which these pathways are involved varies for each
co-evolved virus—host pair. Overall the role of RNAi is greater in plants, fruit-flies, and mosquitos,
while the role of other immune pathways including Jak/STAT, JNK, Toll, and non-sequence specific
dsRNA-triggered pathways are more important in bees, oysters, and mammals. Importantly, these
generalities are only true for the specific species that have been studied including Arabidopsis thaliana,
Xanthomonas oryzae, D. melanogaster, A. gambiae, A. mellifera, B. terrestris, C. gigas, Mus musculus, Homo
sapiens, and others.

The antiviral response(s) that are most important for any particular host-virus pair cannot be
assumed based on broad organismal classification (e.g., insects, invertebrates, mammals)—each must
be empirically determined. Since all host-virus interactions are inexorably complicated by the history
of conflict and evolution shared (or not shared in the case of model viruses) by the host and a
virus. These unique histories are reflected in the differential transcriptional responses and extent
of parallel activation and/or cross-talk between host immune pathways, as well as identification of
the virus-evolved counter defense mechanisms, including suppressors of RNAi and other immune
pathways [140,221].

The parallels that exist between the antiviral responses, including the general, non-sequence
specific dsRNA-triggered induction of an antiviral state, in organisms separated by large evolutionary
distances including honey bees, bumble bees, sand flies, shrimp, oysters, and mammals, are very
intriguing. Furthermore, it is interesting to hypothesize that in social bees this response may
have evolved to rapidly respond to viruses and limit their transmission in the crowded hive
environment and in the context of behaviors (e.g., trophallaxis) that promote virus transmission
between individuals within the super-organism. Investigation of antiviral defense in some of the
thousands of under-explored bee species, will further our understanding of the general and specific
mechanisms that bees have evolved to combat specific viruses. This short review highlights studies that
have contributed to our current understanding of bee antiviral defense mechanisms. Under-explored,
burgeoning research areas include elucidation of the roles of alternative splicing [127,222], epigenetic
regulation [125,223], and transgenerational immune priming in bee antiviral defense [224,225].
Further examination of antiviral RNAi, including immune memory as a consequence of RNA
virus integration into the bee genome [226] and potential transposon-mediated amplification of
virus-targeting secondary RNAs (as described in Drosophila melanogaster [182–184]) is also important.
Lessons learned from evolutionary distant organisms, including those described in this special issue of
Viruses focused on “Antiviral Defense in Invertebrates”, may help guide these studies.
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