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Abstract: A series of tetrahydro-ß-carbolines substituted with an alkyl or acyl side chain was synthe-
sized and screened for its antifungal activity against plant pathogenic fungi (Bipolaris oryzae, Curvularia
lunata, Fusarium semitectum, and Fusarium fujikuroi). The structure activity relationship revealed that
the substituent at the piperidine nitrogen plays an important role for increasing antifungal activities.
In this series, 2-octyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole (3g) displayed potent antifungal
activities with a minimum inhibitory concentration of 0.1 µg/mL, including good inhibitory activity
to the radial growth of fungus at a concentration of 100 µg/mL compared to amphotericin B.

Keywords: tetrahydro-β-carbolines (THβCs); plant pathogenic fungi; radial growth; N-substituted
THβCs

1. Introduction

Plant pathogenic fungi are a major cause of plant diseases and pose enormous prob-
lems for agriculture worldwide. To control and curb their spread, many natural and
synthetic pesticides have been applied as preventive and therapeutic usages and are crucial
for the reliable production of crops. However, a long-standing use of fungicides can lead
to the plant pathogens resistance. The prime focus of the agriculture sector is to develop
potent fungicides to combat plant pathogenic fungi, which are growing at an alarming
pace with a limited choice of available fungicides. Hence, modification of fungicides to
improve the antifungal potential is a pressing need in modern agriculture.

Naturally occurring compounds have always played an important role in drug discov-
ery. In particular, the β-carboline based moiety represents the core structure of several phar-
maceutical activities [1–12], such as anticancer [3,4,13], antimicrobial [5], antimalarial [7],
antiviral [9], and antifungal activities [14–20]. Many bioactive β-carboline-based com-
pounds have been found to be important sources of drugs and drug leads, and most of them
have been isolated from marine invertebrates, such as the marine sponge [5–8,10,21–23],
tunicate [4,24,25], gorgonian [26] and alga [27]. For example, as shown in Figure 1, Eudis-
tomins and their analogs were isolated from several species of marine organisms, mainly
the active Caribbean colonial tunicate, and possessed a wide range of biological activi-
ties [28–32]. Ingenines, β-carboline alkaloids with a saturated/unsaturated tricyclic ring
system, were isolated from the Indonesian marine sponge Acanthostrongylophora ingens
and exhibited promising candidates for potent cytotoxic agents [13,33,34]. 6-Chloro-9-(3-(4-
chlorophenoxy)propyl)-2,3,4,9-tetrahydro-1H-pyrido [3,4-b]indole TFA displayed in vitro
and in vivo antifungal activity of Cryptococcus neoformans by induction of cell growth at
the G2 phase on the Cdc25c/CDK1/cyclin B pathway [18]. Moreover, THβC with an
eight-carbon linear chain at the C1 position, (1R,3S)-methyl 1-octyl-2,3,4,9-tetrahydro-
1H-pyrido[3,4-b]indole-3-carboxylate, showed in vitro antifungal activity against Candida
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glabrata with disruption of the membranes of fungal cells by increased asymmetry and
decomposition of the cell surface [20]. Thus, the pharmaceutically important β-carboline-
based natural products are advantageous for medicinal and organic research, while 1,3 dis-
ubstituted THβCs are reported to be synthetically and biologically interesting analogs [35].
Currently, Tadalafil, the hydantoin fused at the nitrogen and C3 of THβC with a substituent
at C1 is clinically used to treatment erectile dysfunction under the brand name Cialis [36]
and is also used for pulmonary arterial hypertension treatment under the brand name
Adcirca [37]. In our on-going search for novel compounds as inhibitors of plant pathogenic
fungi, we are interested in C1 substituted THβCs as the skeleton, which is a common
feature in many natural and synthetic compounds. Furthermore, investigations have in-
dicated that nitrogen substituted with a longer alkyl or acyl side chain was an essential
framework in various antifungal agents [38–43].
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Figure 1. Chemical structures of the bioactive β-carboline analogues.

Thus, in this study, a series of N-substituted THβCs with an alkyl or acyl sub-
stituent together with C1 and/or C3 substituted THβCs was designed and synthesized
from tryptamine and various aldehydes via the Pictet-Spengler reaction. N-substitutions
of THβCs were prepared to evaluate their inhibition of four plant pathogenic fungi
(Bipolaris oryzae, Curvularia lunata, Fusarium semitectum, and Fusarium fujikuroi).

2. Results and Discussion
2.1. Chemistry

The incorporation of aromatic substituents at the C1 position was reported to improve
the activity, and the presence of the carbonyl group at the C3 position was also found to be
important for the enhancement of activity [1,11,21,27,35]. Thus, we designed the prepara-
tion of the substituted THβCs via the efficient Pictet-Spengler reaction with tryptamine
(1a), L-tryptophan methyl ester (1b), and appropriate aldehydes in acid media (Scheme 1).
The THβCs (2a–2h) were obtained in poor to moderate yields. The steric hindrance and the
presence of the electron-donating group at ortho position on the aromatic ring reduced the
electrophilicity of aldehydes [44] and affected the yield of the THβC ring, while the less hin-
dered electron donating group induced the cyclization to the THβC skeleton. The methyl
ester substituent also increased the cyclization process. Next, the N2-substituted-THβC
bearing an alkyl or acyl side chain (3a–3k) was prepared from an acyl halide or alkyl halide
in the presence of NEt3 as a base. N-alkylated and N-acylated products were achieved
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in moderated to high yields with the exception of 2-furoyl substituent (3e). The brown
oil of compound (3e) was obtained in low yield due to the difficulty of purification. All
synthesized compounds were characterized via MS, 1H-NMR, and 13C-NMR. All obtained
THβCs were the racemic mixture at C1 and were used for antifungal evaluation.
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2.2. Antifungal Activity

All THβC derivatives were evaluated for their antifungal activity against four phy-
topathogenic fungi of rice, Bipolaris oryzae, Curvularia lunata, Fusarium semitectum, and
Fusarium fujikuroi, using the results presented in Table 1. Amphotericin B and solvent were
used as a positive and negative control, respectively. Most of the tested compounds showed
activities for inhibition of B. oryzae and C. Lunata, while most of N-substitued THβCs were
active against all tested fungi. The aromatic substituents at C1 of THßCs (2b–2f) showed
a moderate activity against B. oryzae and C. lunata (zone of inhibition = 0.10–0.60 cm),
whereas C1, C3-disubstituted THßCs (2h) showed a slight increase in inhibitory activity
compared to that of C1-substituted THßC (2b). The substituent at N2 of THßCs (3a–3k)
was investigated. The linear acyl chains varying in length from 2 to 8 carbons (C2–C8),
compounds (3a–3c), possessed no inhibitory activity. In contrast, the aromatic acyl groups
(3d–3e) and alkyl chain substituents (3f–3i) led to increased activity with a zone of inhi-
bition value of 0.10–0.60 cm. Thus, this preliminary in vitro antifungal activity indicated
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that substituent at N2 position with aromatic acyl groups and alkyl chains was found to
be helpful for the board spectrum antifungal activity. Therefore, the minimum inhibitory
concentration (MIC) was determined for N-substituted THßCs (3a–3k). The MIC values of
compounds (3d–3i) were 28–520 µg/mL against B. oryzae and C. lunata. Interestingly, the
N-octyl derivative (3g) showed the highest activity against B. oryzae (MIC = 28 µg/mL),
whereas the C1-phenyl and N-octyl derivative (3k) was less active than (3g) against B.
oryzae, C. lunata, and F. semitectum. It can be indicated that racemic mixture of phenyl
substituent at C1 was not favorable for the fungicidal activity and N-substituted THßCs
play an essential role in antifungal activity. However, further studies of the enantiopure
form of the C1 and N-substituted THβCs were under investigation.

Table 1. In vitro zones of inhibition (cm) and minimum inhibitory concentrations (µg/mL) of the THßC derivatives on
phytopathogenic fungi.

Compounds

B. oryzae F. fujikuroi F. semitectum C. lutana

Zone of
Inhibition MIC 1 Zone of

Inhibition MIC Zone of
Inhibition MIC Zone of

Inhibition MIC

2a 0.00 NT 2 0.00 NT 0.00 NT 0.00 NT
2b 0.00 NT 0.00 NT 0.00 NT 0.10 ± 0.0 NT
2c 0.10 ± 0.1 NT 0.00 NT 0.00 NT 0.00 NT
2d 0.60 ± 0.1 NT 0.00 NT 0.00 NT 0.00 NT
2e 0.25 ± 0.3 NT 0.00 NT 0.00 NT 0.40 ± 0.0 NT
2f 0.40 ± 0.0 NT 0.10 ± 0.0 NT 0.00 NT 0.20 ± 0.0 NT
2g 0.00 NT 0.00 NT 0.00 NT 0.00 NT
2h 0.15 ± 0.1 NT 0.00 NT 0.00 NT 0.20 ± 0.1 NT
3a 0.00 NT 0.00 NT 0.10 ± 0.0 870 ± 0.0 0.00 NT
3b 0.00 NT 0.00 NT 0.00 NT 0.00 NT
3c 0.00 NT 0.00 NT 0.00 NT 0.00 NT
3d 0.30 ± 0.1 200 ± 0.1 0.1 ± 0.0 >512 0.20 ± 0.0 >512 0.30 ± 0.0 >512
3e 0.60 ± 0.0 400 ± 0.0 0.20 ± 0.1 >512 0.25 ± 0.1 >512 0.25 ± 0.2 250 ± 0.0
3f 0.10 ± 0.0 110 ± 0.0 0.00 NT 0.00 NT 0.00 NT
3g 0.10 ± 0.0 28 ± 0.0 0.1 ± 0.0 >512 0.1 ± 0.1 >512 0.15 ± 0.1 200 ± 0.0
3h 0.10 ± 0.0 220 ± 0.1 0.00 NT 0.00 NT 0.00 NT
3i 0.00 NT 0.00 NT 0.00 NT 0.10 ± 0.0 250 ± 0.0
3j 0.00 NT 0.00 NT 0.20 ± 0.1 >512 0.00 NT
3k 0.35 ± 0.1 210 ± 0.0 0.00 NT 0.20 ± 0.0 1700 ± 0.0 0.10 ± 0.0 270 ± 0.0

Amphotericin
B 0.21 ± 0.1 0.78 ± 0.0 0.00 >512 0.13 ± 0.1 >512 0.15 ± 0.1 0.33 ± 0.1

1 MICs were determined at the lowest concentration for complete inhibition of fungal growth. Results are the average of three duplicates
after 7 days of incubation at 30 ◦C ± 2 ◦C. 2 NT; not tested.

Inhibitory activity of the N-octyl derivative (3g) was studied against a diameter
of a colony of phytopathogenic fungi at concentration ranges of 0, 100, 250, 500, and
1000 µg/mL. The results in Table 2 and Figure 2 show that compound (3g) at concentration
of 100 µg/mL inhibited the fungal growth by 68.2%, 37.4%, and 40% of B. oryzae, F. Fu-
jukuroi, and C. lutana, respectively. However, at this concentraton, compound (3g) could
not inhibit the growth of F. Semitectum. Although, N-octyl substituted THβC displayed
less active than the antifungal drug Amphotericin B. The chemical modification of N-alkyl
THßCs will provide the novel chemical scaffolds for further structural optimization of
phytopathogenic fungi in the future.
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Table 2. Inhibition activity of 2-octyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole (3g) against a diameter of a colony of
phytopathogenic fungi.

Compound Concentration
(µg/mL)

Diameter of Colony (cm) of Tested Fungi

B. oryzae F. fujikuroi F. semitectum C. lutana

None (control) - 7.77 ± 0.15 5.48 ± 0.08 5.17 ± 0.23 5.00 ± 0.27

3g 1000 NG 1 (100%) NG (100%) NG (100%) NG (100%)
500 0.85 ± 0.05 (89.1%) 1.30 ± 0.35 (76.3%) 0.90 ± 0.07 (82.6%) 0.90 ± 0.12 (82.0%)
250 1.43 ± 0.11 (81.7%) 2.23 ± 0.08 (59.4%) 3.08 ± 0.04 (40.6%) 1.98 ± 0.11 (60.5%)
100 2.48 ± 0.13 (68.2%) 3.43 ± 0.04 (37.4%) 5.90 ± 0.21 (−14.0%) 3.00 ± 0.07 (40%)

Amphotericin B 0.6 3.30 ± 0.14 (57.6%) 5.68 ± 0.04 (−3.7%) 2.45 ± 0.17 (52.7%) 4.03 ± 0.08 (19.5%)
1 NG; no growth.
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3. Materials and Methods
3.1. Chemistry
3.1.1. General Information

The melting points were determined on an SMP2 model melting point apparatus
and were uncorrected. The 1H and 13C spectra were recorded in a Bruker AVANCE
300 MHz nuclear magnetic resonance spectrometer with CDCl3, CD3OD, and (CD3)2SO
as the solvent and TMS as the internal standard. The chemical shifts were presented in
parts per million (ppm, δ), the coupling constants (J) were reported in hertz (Hz), and the
signals were described as singlet (s), doublet (d), triplet (t), quartet (q), quintet (qui), broad
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singlet (br s), doublet of doublet (dd), doublet of triplet (dt), triplet of doublet (td), doublet
of doublet of doublet (ddd), doublet of doublet of triplet (ddt), triplet of doublet of doublet
(tdd), and multiplet (m). HR-MS was performed using Bruker Daltonics. All compounds
were monitored using a TLC silica gel 60 F254 aluminum sheet. Column chromatography
was performed using silica gel 60 (0.063–0.200 mm) and visualized under UV light at 254
and 365 nm. All chemicals were purchased from commercial suppliers.

3.1.2. General Procedure for the Synthesis of 1-substituted-tetrahydro-β-carbolines (2a–2h)

Tryptamine (1a) or tryptophan methyl ester (1b) was dissolved in AcOH: dry CH2Cl2
(5:10 mL) in a round-bottom flask. Then, aldehyde (1.2 eq) was slowly added to the solution,
and the solution was refluxed for 1–2 h. After completion, the reaction mixture was cooled
to room temperature and basified to pH 9–10 using NH4OH. Afterwards, the solution was
extracted with CH2Cl2, and the organic layer was dried over anh. Na2SO4 and evaporated
under reduced pressure. The crude product was purified using column chromatography
(silica gel, 15% MeOH:CH2Cl2).

2,3,4,9-Tetrahydro-1H-pyrido[3,4-b]indole (2a). The title compound was synthesized
from (1a) (268 mg, 1.7 mmol) and para-formaldehyde (60 mg, 2.0 mmol) to afford (2a) (153
mg, 53%) as a yellow solid. m.p. 185.9–187.5 ◦C (lit. 109–221 ◦C) [15,45]; 1H-NMR (300
MHz, CDCl3) δ 2.75 (t, J = 5.7 Hz, 2H), 3.18 (t, J = 5.7 Hz, 2H), 4.01 (s, 2H), 7.09 (dt, J = 1.1,
7.1 Hz, 1H), 7.14 (dt, J = 1.3, 7.1 Hz, 1H), 7.29 (d, J = 7.2 Hz, 1H), 7.48 (d, J = 7.2 Hz, 1H),
7.86 (br s, 1H); 13C-NMR (125 MHz, CDCl3) [46] δ 22.5 (CH2), 43.2 (CH2), 43.9 (CH2), 108.7
(C), 110.7 (CH), 117.9 (CH), 119.4 (CH), 121.5 (CH), 127.6 (C), 132.7 (C), 135.6 (C).

1-Phenyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole (2b). The title compound was
synthesized from (1a) (321 mg, 2.0 mmol) and benzaldehyde (0.24 mL, 2.4 mmol) to afford
(2b) (124 mg, 25%) as a yellow solid. m.p. 162.9–164.7 ◦C (lit. 160–161 ◦C) [47]; 1H-NMR
(300 MHz, CDCl3) δ 1.97 (br s, 1H), 2.78–3.00 (m, 1H), 3.07–3.18 (m, 1H), 3.37 (dt, J = 3.9,
12.5 Hz, 1H), 5.17 (s, 1H), 7.10 (dt, J = 1.9, 6.9 Hz, 1H), 7.14 (dt, J = 1.9, 6.9 Hz, 1H), 7.17–7.23
(m, 1H), 7.27–7.37 (m, 5H), 7.52–7.56 (m, 1H); 13C-NMR (75 MHz, CDCl3) δ 22.5 (CH2), 42.9
(CH2), 58.1 (CH), 110.2 (C), 110.8 (CH), 118.3 (CH), 119.4 (CH), 121.8(CH), 127.4 (C), 128.2
(CH), 128.5 (2CH), 128.8 (2CH), 134.4 (C), 135.9 (C), 141.7 (C).

1-(2,5-Dimethoxyphenyl)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole (2c). The title com-
pound was synthesized from (1a) (494 mg, 3.1 mmol) and 2,5-dimethoxybenzaldehyde
(615 mg, 3.7 mmol) to afford (2c) (86 mg, 9% yield) as a yellow solid. m.p. 132.2–133.6 ◦C;
1H-NMR (300 MHz, CDCl3) δ 2.87–2.92 (m, 2H), 3.15–3.25 (m, 1H), 3.29–3.39 (m, 1H), 3.67
(s, 3H), 3.84 (s, 3H), 5.65 (s, 1H), 6.68 (d, J = 2.9 Hz, 1H), 6.80–6.93 (m, 2H), 7.10 (dt, J =
1.4, 7.1 Hz, 1H), 7.14 (dt, J = 1.4, 7.0 Hz, 1H), 7.22–7.24 (m, 1H), 7.52 (d, J = 7.0 Hz, 1H),
7.83 (br s, NH); 13C-NMR (75 MHz, CDCl3) δ 21.1 (CH2), 21.4 (CH2), 41.0 (CH2), 51.3 (CH),
55.8 (CH3), 56.1 (CH3), 109.6 (C), 110.9 (CH), 111.9 (CH), 113.9 (CH), 116.1 (CH), 118.3
(CH), 119.5 (CH), 121.9 (CH), 127.0 (C), 128.5 (C), 136.0 (C), 151.5 (C), 153.7(C), 175.9 (C);
HREI-MS: calcd for C19H20N2O2 [M]+: 308.1525, found: 308.1527.

1-(3-Methoxyphenyl)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole (2d). The title com-
pound was synthesized from (1a) (303 mg, 1.9 mmol) and 3-methoxybenzaldehyde (0.20
mL, 2.3 mmol) to afford (2d) (385 mg, 73% yield) as an orange solid. m.p. 150.8–153.8 ◦C
(lit. 154–156 ◦C) [48]; 1H-NMR (300 MHz, CDCl3) δ 2.82–3.04 (m, 2H), 3.10–3.22 (m, 1H),
3.32–3.43 (m, 1H), 3.75 (s, 3H), 5.32 (s, 1H), 6.84–6.91 (d, J = 3.9 Hz, 3H), 7.11 (dt, J = 1.5,
7.0 Hz, 1H), 7.16 (dt, J = 1.5, 7.0 Hz, 1H), 7.22 (d, J = 2.0 Hz, 1H), 7.23–7.29 (m, 1H), 7.53
(dd, J = 2.0, 7.0 Hz, 1H), 7.80 (br s, NH); 13C-NMR (75 MHz, CDCl3) δ 21.3 (CH2), 41.7
(CH2), 55.3 (CH3), 57.2 (CH), 109.8 (C), 111.0 (CH), 111.5 (CH), 114.2 (CH), 118.3 (CH), 119.6
(CH), 121.0 (CH), 122.1 (CH), 127.0 (C), 129.9 (CH), 132.3 (C), 136.1 (C), 140.9 (C), 160.1 (C);
HRESI-MS: calcd for C18H18N2O [M+H]+: 279.1492, found: 279.1486.

1-(2-Methoxyphenyl)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole (2e). The title com-
pound was synthesized from (1a) (141 mg, 0.9 mmol) and 2-methoxybenzaldehyde (144 mg,
1.1 mmol) to afford (2e) (22 mg, 9% yield) as an orange solid. m.p. 97.8–99.3 ◦C (lit. 95–
96 ◦C) [49]; 1H-NMR (300 MHz, CDCl3) δ 2.28 (br s, 1H), 2.81 (d, J = 4.9 Hz, 2H), 3.00–3.11
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(m, 1H), 3.16–3.28 (m, 1H), 3.85 (s, 3H), 5.57 (s, 1H), 6.83 (t, J = 7.4 Hz, 1H), 6.92 (d, J = 8.2
Hz, 1H), 6.98 (dd, J = 1.4, 7.5 Hz, 1H), 7.06–7.18 (m, 3H), 7.26 (dd, J = 1.5, 15.6 Hz, 1H),
7.50 (d, J = 3.7 Hz, 1H), 7.94 (s, NH); 13C-NMR (75 MHz, CDCl3) δ 22.4 (CH2), 41.7 (CH2),
50.9 (CH3), 55.5 (CH), 110.2 (C), 110.7 (CH), 110.8 (CH), 118.0 (CH), 119.2 (CH), 120.6 (CH),
121.4 (CH), 127.3 (C), 129.0 (CH), 129.2 (CH), 129.7 (C), 134.1 (C), 135.8 (C), 157.2 (C).

1-Phenethyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole (2f). The title compound was
synthesized from (1a) (489 mg, 3.1 mmol) and 3-phenylpropanal (491 mg, 3.7 mmol) to
afford (2f) (396 mg, 47% yield) as an orange oil. 1H-NMR (300 MHz, CDCl3) δ 1.89–2.04
(m, 1H), 2.05–2.20 (m, 1H), 2.68–2.76 (m, 2H), 2.76–2.92 (m, 2H), 2.96–3.08 (m, 1H), 3.33 (td,
J = 4.7, 12.8 Hz, 1H), 4.06 (d, J = 5.2 Hz, 1H), 7.07 (dt, J = 1.3, 7.1 Hz, 1H), 7.12 (dt, J = 1.3,
7.0 Hz, 1H), 7.16–7.33 (m, 6H), 7.47 (d, J = 7.0 Hz, 1H), 7.74 (br s, NH); 13C-NMR (75 MHz,
CDCl3) δ 22.7 (CH2), 29.7 (CH2), 36.7 (CH2), 42.4 (CH2), 52.2 (CH), 109.1 (C), 110.7 (CH),
118.0 (CH), 119.0 (CH), 121.5 (CH), 126.0 (CH), 127.5 (C), 128.4 (2CH), 128.5 (2CH), 135.6
(C), 135.9 (C), 141.9 (C). HRESI-MS: calcd for C19H20N2 [M+H]+: 277.1700, found: 277.1706.

Methyl 2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole-3-carboxylate (2g). The title com-
pound was synthesized from (1b) (271 mg, 1.2 mmol) and para-formaldehyde (45 mg,
1.5 mmol) to afford (2g) (197 mg, 69% yield) as a yellow solid. m.p. 171.8–173.6 ◦C (lit.
187.2–188.8 ◦C) [50]; 1H-NMR (300 MHz, CDCl3) δ 2.05 (br s, NH), 2.89 (tdd, J = 1.5, 4.2,
15.2 Hz, 1H), 3.14 (tdd, J = 1.5, 4.2, 15.2 Hz, 1H), 3.79 (s, 3H), 3.81–3.85 (m, 1H), 4.08–4.30 (m,
2H), 7.10 (dt, J = 1.3, 7.0 Hz, 1H), 7.15 (dt, J = 1.3, 7.0 Hz, 1H), 7.30 (d, J = 8.0 Hz, 1H), 7.48
(d, J = 7.4 Hz, 1H), 7.87 (br s, NH); 13C-NMR (75 MHz, CDCl3) δ 24.2 (CH2), 40.7 (CH2),
51.1 (CH3), 54.7 (CH), 105.5 (C), 109.8 (CH), 116.6 (CH), 118.2 (CH), 120.5 (CH), 126.0 (C),
130.6 (C), 135.0 (C), 172.7 (C).

Mixture of methyl 1-phenyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole-3-carboxylate
(2h). The title compound was synthesized from (1b) (199 mg, 9.1 mmol) and benzaldehyde
(0.11 mL, 1.1 mmol) to afford (2h) (224 mg, 80% yield) as a brown oil. 1H-NMR (300 MHz,
CDCl3) δ (cis isomer) 3.11 (ddt, J = 1.2, 6.9, 8.1 Hz, 1H), 3.26 (ddt, J = 1.0, 5.3, 8.0 Hz, 1H),
3.69 (s, 3H), 3.94 (t, J = 6.6 Hz, 1H), 5.23 (s, 1H), 7.04–7.10 (m, 2H), 7.11–7.19 (m, 1H),
7.20–7.27 (m, 4H), 7.49–7.94 (m, 1H), 7.65–7.76 (m, 1H); 13C-NMR (75 MHz, CDCl3) δ (cis
isomer) 25.7 (CH2), 52.1 (CH3), 56.8 (CH), 58.6 (CH), 108.7 (C), 110.9 (CH), 118.1 (CH), 119.4
(CH), 121.8 (CH), 127.0 (C), 128.0 (CH), 128.4 (CH), 128.6 (2CH), 128.7 (CH), 134.6 (C), 136.1
(C), 140.7 (C), 173.2 (C); 1H-NMR (300 MHz, CDCl3) δ (trans isomer) 3.01 (ddd, J = 2.6, 7.7,
15.1 Hz, 1H), 3.23 (ddd, J = 1.9, 4.3, 15.1 Hz, 1H), 3.69 (s, 3H), 3.94 (t, J = 6.6 Hz, 1H), 5.11 (s,
1H), 7.04–7.10 (m, 2H), 7.11–7.19 (m, 1H), 7.27–7.45 (m, 4H), 7.49–7.94 (m, 1H), 7.82–7.97
(m, 1H); 13C-NMR (75 MHz, CDCl3) δ (trans isomer) 24.7 (CH2), 52.1 (CH3), 52.3 (CH), 54.8
(CH), 108.3 (C), 110.9 (CH), 118.1 (CH), 119.5 (CH), 121.8 (CH), 126.9 (C), 128.0 (CH), 128.4
(CH), 128.6 (2CH), 128.7 (CH), 133.1 (C), 136.1 (C), 141.9 (C), 174.0 (C).

3.1.3. General Procedure for Preparation of
2-substituted-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole (3a–3i)

2,3,4,9-Tetrahydro-1H-pyrido[3,4-b]indole (2a) (1 eq) was dissolved in CH2Cl2 (1 mL/
mmol), and then NEt3 (3 eq) was added to the solution. An acid halide or acyl halide was
slowly added to the solution mixture. After stirring at room temperature for 24 h, the
product was extracted with CH2Cl2, and the organic layer was dried over anh. Na2SO4
and evaporated under reduced pressure. The crude product was purified using column
chromatography (silica gel, 5% MeOH:CH2Cl2).

2-Acetyl-1,2,3,4-tetrahydro-ß-carboline (3a). The title compound was synthesized
from (2a) (150 mg, 0.90 mmol) and acetyl bromide (0.13 mL, 1.8 mmol) to afford (3a) (79 mg,
42% yield) as a yellow solid. m.p. 217.2–218.3 ◦C (lit. 237–238 ◦C) [51]; 1H-NMR (300 MHz,
MeOD) δ rotamers 1/3 (from the duplicated triplet signal (1H) at 3.83 and 3.92 ppm);
1H-NMR (300 MHz, MeOD) δ (major rotamer) 2.23 (s, 3H), 2.84 (t, J = 5.7 Hz, 2H), 3.83 (t,
J = 5.7 Hz, 2H), 4.75 (s, 2H), 6.98 (t, J = 7.6 Hz, 1H), 7.02–7.10 (m, 1H), 7.29 (dd, J = 4.0, 7.9
Hz, 1H), 7.40 (d, J = 7.6 Hz, 1H); δ (distinct peaks for minor rotamer) 2.20 (s, 3H), 2.76 (t,
J = 5.7 Hz, 2H), 3.92 (t, J = 5.7 Hz, 2H), 4.72 (s, 2H); 13C-NMR (75 MHz, MeOD) δ (major
rotamers) 21.4 (CH3), 22.7 (CH2), 41.4 (CH2), 46.1 (CH2), 108.2 (C), 111.9 (CH), 118.5 (CH),
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119.8 (CH), 122.2 (CH), 128.2 (C), 131.4 (C), 138.0 (C), 172.4 (C); δ (distinct peaks for minor
rotamer) 21.9 (CH3), 21.9 (CH2), 45.4 (CH2), 109.1 (C), 118.6 (CH), 119.9 (CH), 122.4 (CH),
130.8 (CH), 172.5 (C).

1-(3,4-Dihydro-1H-pyrido[3,4-b]indol-2(9H)-yl)propan-1-one (3b). The title compound
was synthesized from (2a) (150 mg, 0.9 mmol) and propionyl chloride (0.05 mL, 0.5 mmol) to
afford (3b) (155 mg, 78% yield) as a brown solid. m.p. 203.7–204.1 ◦C (lit. 204–206 ◦C) [52];
rotamers 1/4 (from the duplicated triplet signal (1H) at 3.79 and 3.97 ppm); 1H-NMR (300
MHz, CDCl3) (major rotamer) δ 1.24 (t, J = 7.5 Hz, 3H), 2.51 (q, J = 7.5 Hz, 2H), 2.86 (t,
J = 5.6 Hz, 2H), 3.79 (t, J = 5.6 Hz, 2H), 4.82 (s, 2H), 7.09 (dt, J = 0.9, 7.6 Hz, 1H), 7.15 (dt,
J = 1.5, 7.6 Hz, 1H), 7.33 (d, J = 7.7 Hz, 1H), 7.46 (d, J = 7.5 Hz, 1H), 8.35 (br s, 0.6H); δ
(distinct peaks for minor rotamer) 2.43 (q, J = 7.5 Hz, 2H), 2.81 (t, J = 5.6 Hz, 2H), 3.97 (t,
J = 5.6 Hz, 2H), 4.66 (s, 2H), 7.95 (br s, 0.4H); 13C-NMR (75 MHz, CDCl3) (major rotamer)
δ 9.6 (CH3), 22.0 (CH2), 26.8 (CH2), 40.5 (CH2), 43.8 (CH2), 107.8 (C), 111.0 (CH), 117.8
(CH), 119.5 (CH), 121.7 (CH), 126.8 (C), 130.6 (C), 136.2 (C), 173.2 (C); δ (distinct peaks for
minor rotamer) 40.1 (CH2), 43.0 (CH2); HRESI-MS: calcd for C14H16N2O [M+H]+: 229.1335,
found: 229.1335.

1-(3,4-Dihydro-1H-pyrido[3,4-b]indol-2(9H)-yl)octan-1-one (3c). The title compound
was synthesized from (2a) (108 mg, 0.6 mmol) and octanoyl chloride (0.21 mL, 1.2 mmol) to
afford (3c) (125 mg, 41% yield) as a yellow solid; m.p. 149.9–150.0 ◦C; rotamers 1/3 (from
the duplicated triplet signal (1H) at 3.80 and 3.97 ppm); 1H-NMR (300 MHz, CDCl3) (major
rotamer) δ 0.87 (t, J = 1.5 Hz, 3H), 1.20–1.50 (m, 10H), 2.48 (t, J = 7.5 Hz, 2H), 2.86 (t, J =
5.4 Hz, 2H), 3.80 (t, J = 5.7 Hz, 2H), 4.82 (s, 2H), 7.09 (t, J = 7.1 Hz, 1H), 7.16 (t, J = 7.1 Hz,
1H), 7.33 (d, J = 7.1 Hz, 1H), 7.46 (d, J = 7.1 Hz, 1H), 8.40 (br s, NH); δ (distinct peaks for
minor rotamer) 2.41 (t, J = 7.5 Hz, 2H), 2.82 (t, J = 5.4 Hz, 2H), 3.97 (t, J = 5.7 Hz, 2H), 4.67 (s,
2H), 7.94 (br s, NH); 13C-NMR (75 MHz, CDCl3) (major rotamer) δ 14.1 (CH3), 22.1 (CH2),
25.5 (CH2), 29.2 (CH2), 29.5 (2CH2), 31.7 (CH2), 33.7 (CH2), 40.5 (CH2), 44.0 (CH2), 111.0
(CH), 117.8 (CH), 119.5 (CH), 121.7 (CH), 127.0 (C), 129.0 (C), 130.7 (C), 136.2 (C), 172.5 (C);
δ (distinct peaks for minor rotamer) 22.6 (CH2), 43.6 (CH2), 118.3 (CH), 119.8 (CH), 122.1
(CH); HRESI-MS: calcd for C19H26N2O [M+H]+: 299.2118, found: 299.2116.

(3,4-Dihydro-1H-pyrido[3,4-b]indol-2(9H)-yl)(phenyl)methanone (3d). The title com-
pound was synthesized from (2a) (121 mg, 0.7 mmol) and benzoyl chloride (0.16 mL,
1.4 mmol) to afford (3d) (93 mg, 61% yield) as a yellow oil; rotamers 1/4 (from the dupli-
cated singlet signal (1H) at 4.46 and 4.89 ppm); 1H-NMR (300 MHz, CDCl3) (major rotamer)
δ 2.88 (s, 2H), 3.66 (s, 2H), 4.89 (s, 2H), 7.00–7.13 (m, 2H), 7.18 (d, J = 5.8 Hz, 1H), 7.31–7.61
(s, 6H), 8.95 (br s, NH); δ (distinct peaks for minor rotamer) 4.07 (s, 2H), 4.46 (s, 2H), 8.34 (br
s, NH); 13C-NMR (75 MHz, CDCl3) (major rotamer) δ 22.1 (CH2), 41.1 (CH2), 46.1 (CH2),
107.8 (C), 111.1 (CH), 117.8 (CH), 119.6 (CH), 121.8 (CH), 126.8 (C), 126.9 (2CH), 128.6
(2CH), 130.0 (C), 130.0 (CH), 136.0 (C), 136.3 (C), 171.6 (C); HR-ESI-MS [53] C18H16N2O
[M]: 276.1263.

(3,4-Dihydro-1H-pyrido[3,4-b]indol-2(9H)-yl)(furan-2-yl)methanone (3e). The title
compound was synthesized from (2a) (93 mg, 0.5 mmol) and 2-furoyl chloride (0.11 mL,
1.1 mmol) to afford (3e) (18.7 mg, 13% yield) as a brown oil; 1H-NMR (300 MHz, CDCl3) δ
2.95 (s, 2H), 4.09 (br s, 2H), 4.92 (s, 2H), 6.51 (dd, J = 1.7, 3.4 Hz, 1H), 7.07 (d, J = 3.5 Hz,
1H), 7.09 (dt, J = 1.3, 7.2 Hz, 1H), 7.15 (dt, J = 1.3, 7.4 Hz, 1H), 7.31 (d, J = 7.2 Hz, 1H), 7.48
(d, J = 7.2 Hz, 1H), 7.54 (s, 1H), 8.40 (br, NH); 13C-NMR (75 MHz, CDCl3) δ 20.4 (CH2),
40.2 (CH2), 43.5 (CH2), 109.2(CH), 109.6 (CH), 112.7 (C), 114.7 (CH), 116.0 (CH), 117.9 (CH),
120.1 (CH), 125.7 (C), 128.1 (C), 135.8 (C), 142.3 (CH), 146.1 (C), 158.4 (C); HRESI-MS: calcd
for C16H14N2O2 [M+H]+: 267.1128, found: 267.1128.

2-Pentyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole (3f). The title compound was syn-
thesized from (2a) (115 mg, 0.7 mmol) and 1-bromopentane (0.25 mL, 2.0 mmol) to afford
(3f) (93 mg, 57% yield) as a yellow solid. m.p. 110.9–112.6 ◦C (lit. 119–120 ◦C) [54]; 1H-NMR
(300 MHz, CDCl3) δ 0.92 (t, J = 6.8 Hz, 3H), 1.30–1.50 (m, 4H), 1.55–1.67 (m, 2H), 2.56–2.63
(m, 2H), 2.75–2.92 (m, 4H), 3.69 (s, 2H), 7.07 (dt, J = 1.4, 7.0 Hz, 1H), 7.12 (dt, J = 1.4, 7.0 Hz,
1H), 7.26–7.33 (m, 1H), 7.46 (d, J = 7.2 Hz, 1H), 7.69 (br s, NH); 13C-NMR (75 MHz, CDCl3)
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δ 12.1 (CH3), 19.4 (CH2), 20.7 (CH2), 25.3 (CH2), 27.8 (CH2), 48.6 (CH2), 49.2 (CH2), 56.0
(CH2), 106.7 (C), 108.6 (CH), 116.0 (CH), 117.3 (CH), 119.3 (CH), 130.0 (C), 134.1 (C).

2-Octyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole (3g). The title compound was syn-
thesized from (2a) (171 mg, 1.0 mmol) and 1-bromooctane (0.34 mL, 3.0 mmol) to afford
(3g) (119 mg, 42% yield) as a yellow solid; m.p. 105.3–106.7 ◦C; 1H-NMR (300 MHz, CDCl3)
δ 0.89 (t, J = 6.6 Hz, 3H), 1.23–1.37 (m, 10H), 1.61, (qui, J = 7.5 Hz, 2H), 2.50–2.60 (m, 2H),
2.79–2.90 (m, 4H), 3.67 (s, 2H), 7.06 (t, J = 7.1 Hz, 1H), 7.13 (t, J = 7.1 Hz, 1H), 7.28 (dd, J = 1.4,
6.5 Hz, 1H), 7.46 (dd, J = 1.4, 6.5 Hz, 1H), 7.79 (br s, NH); 13C-NMR (75 MHz, CDCl3) 14.1
(CH3), 21.3 (CH2), 22.7 (CH2), 27.5 (CH2), 27.6 (CH2), 29.3 (CH2), 29.6 (CH2), 31.9 (CH2),
50.5 (CH2), 51.1 (CH2), 57.9 (CH2), 108.6 (C), 110.6 (CH), 117.9 (CH), 119.3 (CH), 121.3 (CH),
127.3 (CH), 131.9 (C), 136.1 (C); HRESI-MS: calcd for C19H28N2 [M+H]+: 285.2325, found:
285.2320.

(E)-2-(But-2-en-1-yl)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole (3h). The title com-
pound was synthesized from (2a) (310 mg, 1.8 mmol) and crotyl chloride (0.26 mL, 2.7
mmol) to afford (3h) (98 mg, 24% yield) as an orange solid; m.p. 82.8–84.2 ◦C; 1H-NMR
(300 MHz, CDCl3) δ 1.72 (d, J = 5.0 Hz, 3H), 2.83–2.90 (m, 4H), 3.15 (d, J = 5.0 Hz, 2H), 3.59
(s, 2H), 5.53–5.74 (m, 2H), 7.06 (dt, J = 1.4, 7.0 Hz, 1H), 7.11 (dt, J = 1.4, 7.0 Hz, 1H), 7.24
(d, J = 6.8 Hz, 1H), 7.45 (d, J = 6.8 Hz, 1H), 8.02 (br s, NH); 13C-NMR (75 MHz, CDCl3) δ
17.8 (CH3), 21.1 (CH2), 49.9 (CH2), 50.5 (CH2), 59.8 (CH2), 108.3 (C), 110.7 (CH), 117.9 (CH),
119.3 (CH), 121.3 (CH), 126.8 (C), 127.2 (C), 127.5 (CH), 127.7 (CH), 129.6 (CH), 131.7 (C),
136.1 (C); HRESI-MS: calcd for C15H18N2 [M+H]+: 227.1543, found: 227.1543.

2-Benzyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole (3i). The title compound was syn-
thesized from (2a) (50 mg, 0.29 mmol) and benzyl chloride (0.05 mL, 0.44 mmol) to afford
(3i) (22 mg, 29% yield) as a yellow oil; 1H-NMR (300 MHz, CDCl3) δ 2.83 (t, J = 5.2 Hz, 2H),
2.93 (t, J = 5.2 Hz, 2H), 3.66 (s, 2H), 3.78 (s, 2H), 7.07 (dt, J = 1.3, 7.1 Hz, 1H), 7.12 (dt, J = 1.3,
7.1 Hz, 1H), 7.27–7.44 (m, 6H), 7.47 (d, J = 6.0 Hz, 1H), 7.66 (br s, NH); 13C-NMR (75 MHz,
CDCl3) δ 21.1 (CH2), 50.2 (CH2), 50.9 (CH2), 61.9 (CH2), 108.4 (C), 110.7 (CH), 117.9 (CH),
119.4 (CH), 121.4 (CH), 127.3 (CH), 128.4 (2CH), 129.2 (2CH), 131.7 (C), 136.0 (C), 138.2 (C).

3.1.4. General Procedure for the Preparation of
2-substituted-1-phenyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole (3j–3k)

1-Phenyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole (2b) (1 eq) was dissolved in CH2Cl2
(1 mL/mmol), and NEt3 (3 eq) was added to the solution. Then, an acid halide or acyl
halide was slowly added while stirring at room temperature for 24 h. Next, the product was
extracted with CH2Cl2, and the organic layer was dried over anh. Na2SO4 and evaporated
under reduced pressure. The crude product was purified using column chromatography
(silica gel, 5% MeOH:CH2Cl2).

1-(1-Phenyl-3,4-dihydro-1H-pyrido[3,4-b]indol-2(9H)-yl)ethanone (3j). The title com-
pound was synthesized from (2b) (117 mg, 0.47 mmol) and acetyl bromide (0.10 mL,
1.4 mmol) to afford (3j) (73 mg, 53% yield) as a brown solid; m.p. 236.6–237.8 ◦C (lit.
266 ◦C) [55]; 1H-NMR (300 MHz, CDCl3) δ 2.19 (s, 3H), 2.80–3.05 (m, 2H), 3.40–3.60 (m,
1H), 3.89 (dd, J = 2.6, 12.9 Hz, 1H), 7.02 (s, 1H), 7.13 (dt, J = 1.1, 7.1 Hz, 1H), 7.20 (dt, J = 1.1,
7.1 Hz, 1H), 7.28–7.40 (m, 5H), 7.54 (d, J = 7.1 Hz, 2H), 7.94 (br s, NH); 13C-NMR (100 MHz,
CDCl3) δ 21.8 (CH2), 22.1 (CH3), 40.6 (CH2), 51.6 (CH), 109.9 (C), 111.1 (CH), 118.1 (CH),
119.6 (CH), 122.2 (CH), 126.6 (CH), 128.1 (C), 128.5 (2CH), 128.8 (2CH), 131.7 (C), 136.2 (C),
139.9 (C), 169.1 (C); HRESI-MS: calcd for C19H18N2O [M+H]+: 291.1492, found: 291.1499.

2-Octyl-1-phenyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole (3k). The title compound
was synthesized from (2b) (87 mg, 0.35 mmol) and 1-bromooctane (0.19 mL, 1.1 mmol)
to afford (3k) (126 mg, 93% yield) as a brown solid; m.p. 88.9–90.5 ◦C; 1H-NMR (300
MHz, CDCl3) δ 0.86 (m, 3H), 1.10–1.34 (m, 11H), 1.53 (t, J = 6.8 Hz, 1H), 2.30–2.42 (m, 1H),
2.54–2.66 (m, 1H), 2.73 (dq, J = 4.3, 9.2 Hz, 1H), 2.89 (dt, J = 1.2, 3.9 Hz, 1H), 2.92–3.05
(m, 1H), 3.27–3.36 (m, 1H), 4.63 (s, 1H), 7.00–7.11 (m, 2H), 7.12–7.17 (m, 1H), 7.28–7.43 (m,
5H), 7.46–7.55 (m, 1H); 13C-NMR (100 MHz, CDCl3) δ 14.2 (CH3), 21.1 (CH2), 26.8 (CH2),
28.8 (CH2), 29.1 (CH2), 29.3 (CH2), 29.4 (CH2), 31.8 (CH2), 46.3 (CH2), 53.9 (CH2), 62.7
(CH), 108.9 (C), 110.6 (CH), 118.5 (CH), 119.4 (CH), 121.6 (CH), 127.1 (C), 128.1 (CH), 128.6
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(2CH), 129.3 (2CH), 134.6 (C), 136.3 (C), 140.9 (C); HRESI-MS: calcd for C25H32N2 [M+H]+:
361.2638, found: 361.2640.

3.2. Antifungal Activity Assay

The in vitro antifungal activity of all tetrahydro-ß-carboline derivatives was evaluated
on the phytopathogenic fungi of rice (Oryza sativa) against four fungi: Bipolaris oryzae,
Curvularia lunata, Fusarium semitectum, and Fusarium fujikuroi. The tested fungi were
cultured on potato dextrose agar (PDA) and incubated at 25 ± 2 ◦C for 7 days [56].

3.2.1. Agar Well Diffusion Method

The well diffusion test was performed using Sabouraud dextrose agar. The solution
of the synthesized compounds was dissolved in methanol and acetone for (3b, 3c) to a
final concentration of 20 mg/mL. The solvent of the tetrahydro-ß-carboline derivatives
was used as the negative control, while Amphotericin B served as the positive control. The
Sabouraud dextrose agar was poured into a Petri dish (9 cm in diameter) and allowed to
cool. Each agar was cut out to 4 mm in diameter, and 50 µL of the test sample was placed
in each well. The fungi were incubated at 30 ± 2 ◦C for 7 days. After the incubation period,
the diameters of the fungal colonies were measured. All compounds and controls were
performed in two duplicates. The mean and standard deviation were calculated.

3.2.2. Minimum Inhibitory Concentration Test

MIC assays were determined using the broth microdilution method of the National
Committee for Clinical Laboratory Standards (NCCLS 2002) [57]. Primarily, the phy-
topathogenic fungi were grown on PDA at 28 ◦C for 7 days to produce conidia. The
fungal colonies were covered with 5 mL of normal saline, and the suspensions were made
using a fine brush. The conidia were counted in a hematocytometer, which ranged from
2 × 106 to 4 × 106 spore/mL. Stock solutions of 20 mg/mL were dissolved in methanol
and acetone for (3b, 3c). Serial dilutions of the stock solutions were performed using
Sabouraud dextrose broth glucose phenol red, with the final concentration range from
2.000 to 0.001953 mg/mL. A 100 µL aliquot of the stock solutions was transferred to each
of the first wells, then 100 µL/well of each suspension was dispensed into a 96-well plate.
The microdilution plates were incubated at 30 ± 2 ◦C for 7 days of incubation. All tests
were performed in three replicates. The MICs were read and interpreted, and the endpoint
determination reading was performed visually based on a comparison of the growth in
the wells containing the stock solutions with that of the growth control. Amphotericin B
was used as the standard control, while methanol and acetone were used as the negative
control.

3.2.3. Test for Inhibitory Activity against Fungal Radial Growth

Four concentrations of tetrahydro-ß-carboline (3g), 0, 100, 250, 500, and 1000 µg/mL,
were tested for antifungal activity on the radial growth of the fungi on a PDA medium. The
stock solutions were put in the center of a Petri dish and then added with 20 mL of melted
PDA medium. The volume of the compound was added to a Petri dish and was adjusted
according to the concentration tested. The Petri dishes were slightly shaken for a smooth
distribution of the tested compound into the PDA medium. Amphotericin B (250 µg/mL)
was used as the standard control. Additionally, plates without the compound were used as
the negative control. A mycelia plug (5 mm diam.) of the fungi was taken from the edge
of a 7-day old culture and placed in the center of the PDA. The cultures were incubated
at 25 ± 2 ◦C for 7 days. The diameter of the fungal colony was measured and recorded
on day 8 of inoculation and incubation. The inhibitory activity to the radial growth was
determined according to the following formula:

IR(%) =
DC − DT

DC
× 100 (1)
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IR = inhibitory activity against radial growth in percent.
DC = diameter of fungal colony without compounds (control).
DT = diameter of fungal colony treated with compound.

4. Conclusions

In summary, a series of tetrahydro-ß-carbolines (2a–2h) was synthesized from tryptam
ine (1a) or tryptophan methyl ester (1b) and various aldehydes for 1–2 h via Pictet-Spengler
condensation (9–80% yields), followed by N-alkylation or N-acylation with alkyl halides
or acyl halides, respectively, to afford 1,2-substituted THßCs (3a–3k) (13–93% yields). The
synthesized compounds were tested against the plant pathogenic fungi Bipolaris oryzae,
Curvularia lunata, Fusarium semitectum, and Fusarium fujikuroi, and the results showed that
the substituent at the N2 position is essential for antifungal activity. The alkyl substituent
at N2 increased the inhibitory activity, especially that of the N-octyl derivative (3g), which
showed the highest antifungal activity with an MIC value range of 28–200 µg/mL. Addi-
tionally, compound (3g) displayed good inhibitory activity to the radial growth of tested
fungi at a concentration of 100 µg/mL. Accordingly, this active compound (3g) showed
broad range of antifungal activities against four plant pathogenic fungi in this study and
N-alkyl THßCs could provide useful information for further development of novel THßCs
fungicides.
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