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Abstract

Objectives: To illustrate the use of machine learning methods to search for het-

erogeneous effects of a target modifiable risk factor on suicide in observational

studies. The illustration focuses on secondary analysis of a matched case‐control
study of vitamin D deficiency predicting subsequent suicide.

Methods: We describe a variety of machine learning methods to search for pre-

scriptive predictors; that is, predictors of significant variation in the association be-

tween a target risk factor and subsequent suicide. In each case, the purpose is to

evaluate the potential value of selective intervention on the target risk factor to

prevent the outcome based on the provisional assumption that the target risk factor

is causal. The approaches illustrated include risk modeling based on the super

learner ensemble machine learning method, Least Absolute Shrinkage and Selection

Operator (Lasso) penalized regression, and the causal forest algorithm.

Results: The logic of estimating heterogeneous intervention effects is exposited

along with the illustration of some widely used methods for implementing this logic.
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Conclusions: In addition to describing best practices in using the machine learning

methods considered here, we close with a discussion of broader design and analysis

issues in planning an observational study to investigate heterogeneous effects of a

modifiable risk factor.

K E YWORD S

causal forest algorithm, heterogeneity of treatment effects (HTE), lasso penalized regression,
precision medicine, prescriptive predictors, suicide, super learner

1 | INTRODUCTION

In recent years, there has been a growing number of studies aimed at

predicting future health outcomes based on machine learning ana-

lyses applied to electronic medical records. A substantial literature of

this sort has grown up, for example, to predict suicides and suicide

attempts. Several reviews exist regarding this extensive literature

(Reale et al., 2021; Rossom et al., 2021) along with critiques (Belsher

et al., 2019; Bossarte et al., 2021; Kessler et al., 2020).

One of the most important of critiques is that models designed

to improve allocation of expensive preventive interventions for

suicide prediction need more specificity on the most appropriate

target populations for such interventions and the ideal risk hori-

zons for prediction (Kessler et al., 2019). The lack of specificity in

suicide risk models is critical because a model developed to

determine the appropriateness of, for example, involuntary hospi-

talization because of imminent suicide risk would be based on quite

a different target population (i.e., patients presenting at an emer-

gency room) and risk horizon (e.g., suicide over the next 48 h) than

a model developed to target patients for outpatient suicide‐focused
psychotherapy. Yet many machine learning studies of suicide risk

prediction, albeit with notable exceptions (e.g., Reale et al., 2021;

Rossom et al., 2021), present nothing more than models applied to

total populations over diverse risk periods with a lack of clarity

about either the types of interventions the models are designed to

target or the appropriate risk horizons (Barak‐Corren et al., 2017;

Gradus et al., 2020).

A related issue is that machine learning studies designed to

target specific suicide prevention interventions focus largely on high

suicide risk in the target population. It is important to realize, though,

that patients at highest suicide risk might not be the ones most

appropriate for a given intervention. A good example is the VA Re-

covery Engagement And Coordination for Health‐Veterans Enhanced

Treatment (REACH VET) Initiative (VA Office of Public and Inter-

governmental Affairs, 2017). This initiative uses a machine learning

model to target outreach case management interventions to the 0.1%

of users of the Veterans Health Administration system with highest

predicted suicide risk. Would this type of intervention be expected to

prevent suicides among these extremely high‐risk patients, the great

majority of whom are already well‐known to the treatment system?

Or might this type of intervention be more successful in preventing

suicides if it was directed to patients with somewhat lower, but still

elevated, risk? We have no way of answering this question from the

design of the REACH VET implementation.

Research designed to address such questions is important

because different interventions are likely to be optimal for different

patient populations. Research that investigates this heterogeneity of

treatment effects (HTE) is typically referred to as “precision medicine”

research (Fernandes et al., 2017). This is an active area of investi-

gation in psychiatry (Salazar de Pablo et al., 2021), but not yet in

research on interventions for suicide prevention. Absence of suicide‐
focused HTE research is important because, aside from a few widely

accepted universal interventions (Brodsky et al., 2018), suicide‐
focused interventions generally have relatively weak aggregate ef-

fects (Zalsman et al., 2016). This has limited the widespread

dissemination of suicide prevention interventions. Indeed, some

critics have gone so far as to suggest that suicide prevention research

should be abandoned based on the weak intervention effects

(Hoge, 2019). However, if these weak aggregate intervention effects

reflect the existence of HTE, a case could be made for carrying out

analyses to discover this heterogeneity and to implement different

interventions with different subsets of patients.

HTE is likely in suicide‐focused preventive interventions for two

reasons. First, suicides occur in conjunction with manifold mental

health disorders. Despite many similar issues in managing suicidal

thoughts and behaviors across these disorders, meaningful differ-

ences are likely in causal risk factors across these disorders, leading

to HTE. Second, suicide‐focused interventions target intermediate

outcomes, such as increased perceptions of belongingness in caring

text interventions (Comtois et al., 2019) or “suicide drivers” in CAMS

(Collaborative Assessment and Management of Suicidality) therapy

(Jobes, 2012), each of which is an issue for only a subset of patients.

This inevitably leads to weak aggregate effects, even if large effects

exist among the subset of patients for whom the intervention focus is

relevant. It is consequently of considerable importance to investigate

the subset of patients for whom any given suicide‐focused inter-

vention is appropriate in designing intervention evaluations and

subsequent implementations.

Machine learning methods can be used to study HTE, but

different modeling techniques are needed to predict HTE than to

predict overall suicide risk. HTE models can be thought of as evalu-

ating interactions between (i) prescriptive predictors of intervention

response (i.e., predictors of individual differences in the impact of the

intervention) and (ii) either interventions or presumably causal risk
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factors that could be the target of interventions in preventing sub-

sequent outcomes. For example, if the causal effect of modifiable risk

factor R was significantly stronger in leading to suicide in the pres-

ence than absence of predictor P, then P would be a prescriptive

predictor of the effect of R on suicide. In this case, an intervention to

prevent R would be expected to have a greater effect in reducing

suicides among people with than without P.

When the effects of individual prescriptive predictors are weak

and/or the number of prescriptive predictors is large, multivariate

methods are needed to estimate useful HTE models. These models

will sometimes have to be complex to capture nonlinear and higher

order interactions of the prescriptive predictors with the target risk

factor. Conventional multivariable interaction methods break down

in cases of this sort and machine learning methods are required

(VanderWeele et al., 2019). As discussed in more detail later in the

paper, these methods can be applied even in the absence of experi-

mental assignment to the target risk factor so long as strong pre-

dictors exist of nonrandom assignment to the target risk factor

(Luedtke & van der Laan, 2017).

We illustrate this use of machine learning methods to study HTE

in the current report by reanalyzing an observational dataset that

documented a significant association between vitamin D deficiency

and subsequent suicide in a prospective study of active‐duty US

military personnel (Umhau et al., 2013). Vitamin D deficiency (defined

as the lowest octile of vitamin D in the sample) was found in that

study to be associated with an odds ratio greater than 2.0 of sub-

sequent suicide over a 7‐year follow‐up period. The rationale for

attempting to study HTE in this case is as follows: Given the 12.5%

prevalence of the modifiable risk factor (i.e., 1/8th of the sample with

vitamin D deficiency), an OR of 2.0 means that screening for and

subsequently treating military personnel for vitamin D deficiency

might prevent up to 10% of all suicides in this population. This would

be cost‐effective given the relatively low cost of vitamin D treatment

(Singh, 2018), but screening for vitamin D deficiency can be expen-

sive, especially when considering the possibility of screening

approximately 1 million military personnel to find approximately

125,000 to treat. It might consequently make sense to focus

screening efforts on those individuals found to be most at risk based

on other criteria and, if HTE exists, most likely to benefit from

intervention if they are found to have vitamin D deficiency. However,

it would make sense to investigate the possibility of HTE before

developing an intervention plan. We present a framework for doing

this in the current report.

2 | METHODS

2.1 | Sample

As noted in the introduction, the example is based on a previous

report documenting that vitamin D deficiency predicted subsequent

suicide (Umhau et al., 2013). The sample was a 1:1 matched (on age,

gender, rank, and timing of when blood samples were collected) case‐

control sample of n = 495 suicide decedents and n = 495 controls

from the active‐duty US military with a history of combat deploy-

ment. The matched case‐control design creates certain analysis

complexities described below.

Detailed information on the assessment of vitamin D deficiency

and the baseline measures examined as possible prescriptive pre-

dictors is presented in the original report (Umhau et al., 2013). The

baseline measures included two classes of biological risk factors—

continuous levels of 22 fatty acids and five trace elements—all

tested in the same blood serum samples used to test for vitamin D

deficiency, a series of socio‐demographics and military career vari-

ables abstracted from military records, and information from medical

records of psychiatric diagnoses, all as of the time of the vitamin D

measurement. The categorical variables among these predictors were

coded as dummies, whereas the ordinal and interval variables among

the predictors were standardized (mean 0 and variance 1) and sta-

bilized into quartiles. These transformations were important for using

the full range of machine learning algorithms included in the analysis.

2.2 | Analysis methods

Overview: Numerous methods exist to estimate HTE (Robertson

et al., 2020). The major challenge in the case of suicide is that even

though some prescriptive predictors have been documented, none

has been strong enough alone to guide precision treatment planning.

This has prompted growing interest in combining information across

multiple prescriptive predictors to create a composite measure of

HTE (Salazar de Pablo et al., 2021). This is done most often by esti-

mating a proportional interaction model that contains multiple in-

teractions and combining these interactions to create a single

composite measure of HTE. The latter is done using counter‐factual
logic: that is, by computing a predicted outcome score for each

person under each intervention regimen (i.e., regardless of which

regimen received) based on model coefficients and then comparing

predicted individual‐level regimen‐specific outcome scores to select

the intervention estimated to yield the better outcome for each pa-

tient (Kovalchik et al., 2013).

However, when data‐driven methods are used to search for in-

teractions, as they typically are in building composite HTE measures,

there is a danger of over‐fitting. Indeed, a recent simulation sug-

gested that the majority of detected interactions in HTE models are

likely to be false positives unless methods are used to reduce over‐
fitting (van Klaveren et al., 2019). Methods that protect against

over‐fitting can be used for this purpose to produce composite HTE

estimates (VanderWeele et al., 2019).

With these issues in mind, it is often useful to develop an overall

risk model prior to attempting to study HTE and to do so using

methods that minimize risk of over‐fitting by developing the model in

a training sample and then testing it in an independent holdout test

sample. In the case of our 495 case‐control pairs, we did this by

creating a training sample made up of a random 33% of observations

(i.e., n = 164 matched case‐control pairs) and a 67% testing sample
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(n = 331 pairs). We then used 10‐fold cross‐validation (10F‐CV) in
the training sample to develop several different machine learning

models. Finally, we applied each model to the testing sample to

evaluate the extent to which we could detect meaningful HTE. It is

noteworthy that a more typical choice in a substantive context would

be to use a 67% training sample and 33% test sample, as a small

training sample increases risk of over‐fitting.
Special issues in working with case‐control samples: Case‐

control samples of the sort used in the vitamin D example are

often used in research on suicide given the fact that suicide is a rare

outcome. An analysis of a full sample, especially one based on an

administrative data system, would often include thousands of non‐
cases for every case. Case‐control analysis addresses this problem

by selecting a probability sample of controls from the full set of

controls either with or without weights to adjust for this under‐
sampling (Keogh & Cox, 2014).

The use of weights allows a wide range of models to be

estimated that are appropriate for dichotomous outcomes and

allows predicted risk differences to be estimated (Pedroza &

Truong, 2016). When weights are not used, in comparison, the

model should be estimated with logistic regression, as only the

odds ratio can be estimated without bias with such a sample

(Hosmer et al., 2013). The individual‐level predicted odds

generated by a logistic regression model can be converted into

individual‐level predicted risks post hoc when information is

available on the probabilities of selection of controls (Rose &

van der Laan, 2014). This is critical for HTE analysis, as the

latter focuses on risk differences rather than risk ratios or odds

ratios when the outcome is a dichotomy. In the example

considered here, the sampling fractions used to select matched

controls were not available, making it impossible to use

weighting to recover predicted risks. We consequently work with

logistic models and examine differences in predicted odds. We

caution the reader, though, that this is being done merely to

illustrate the general approach and that practical applications

should use weights either prior to or subsequent to estimating

the initial models and generate estimates of predicted risk rather

than predicted odds.

A question might be raised on how to determine whether to

weight before or after estimating a model based on a case‐
control design. The answer depends on the investigator's deci-

sion either to give equal weight to false positives and false

negatives or, as is often the case in models for rare dichotomous

outcomes, to give greater weight to detecting the rare outcome

(i.e., minimizing false negatives, as when a premium is placed on

detecting suicides) than to correctly classifying non‐cases.
Numerous methods exist for giving greater weight to detecting

the rare outcome, some of them involving the use of weights but

others involving either under‐sampling non‐cases, pseudo‐sampling

replicates of cases, or using a combination of both without

weights (He & Ma, 2013).

Risk modeling: The first approach to estimating HTE that we

investigate is known as risk modeling. This approach uses a 1 degree

of freedom test to evaluate the strength of HTE by generating a

prediction model for the joint effects of all predictors (excluding the

target risk factor) to fit a “base risk” model for the outcome in the

total sample (Kent et al., 2016). The base risk is then estimated for

each observation in the sample regardless of target risk factor score

and used to define subgroups for investigating whether the aggregate

association between the target risk factor and the outcome varies

with base risk.

The intuition underlying the risk modeling approach is that some

people have very low risk of the negative outcome, in which case an

intervention to change a target risk factor is unlikely to have a large

effect. The strength of this approach is that it provides a stable es-

timate of variation in aggregate outcome risk that can be evaluated

with 1 degree of freedom, thereby avoiding the problem of over‐
fitting and often showing evidence of HTE. Consistent with this

thinking, a recent secondary analysis of 32 large clinical trials (pri-

marily in cardiology) found that most trials with significant aggregate

treatment effects also had significant HTE, where the highest abso-

lute intervention effects usually occurred among patients with the

highest base risk and lowest absolute intervention effects among

patients with lowest base risk (Kent et al., 2016). As a striking

example, a trial of early intervention versus usual care for unstable

angina found that more than half the significant aggregate treatment

effect was due to an extremely strong effect among the one‐eighth of

patients with highest base risk and that there was no meaningful

intervention effect among the 50% of patients with lowest base risk

(Fox et al., 2005).

Many approaches are available to develop a base risk model,

from a simple multiple regression model to a complex machine

learning model. We used a stacked generalization approach based on

the super learner ensemble machine learning method to develop our

base risk model (Polley, 2018). In this approach, the data are analyzed

in parallel in a 10F‐CV training sample with a set (ensemble) of

parametric and flexible prediction algorithms designed to capture

nonlinearities and interactions among predictors. Results are then

combined by generating a weighted composite of individual‐level
predicted outcome scores across the algorithms via a meta‐learner
equation (i.e., an equation in which the predicted outcome scores

based on each algorithm is included as a separate predictor).

The advantage of this approach over others is that the composite

predicted outcome score is guaranteed in expectation to perform at

least as well as the best component algorithm according to a pre‐
specified criterion (Polley et al., 2011). We defined this as the area

under the receiver operating characteristic curve (AUC), but other

criteria might be preferred in other cases. Consistent with recom-

mendations (Naimi & Balzer, 2018), we used a diverse super learner

ensemble to reduce risk of misspecification (Kabir & Ludwig, 2019).

These included several different linear algorithms (logistic regression,

regularized regression, spline and polynomial spline regressions,

support vector machines) and several different regression tree‐based
algorithms (boosting and bagging ensemble trees, Bayesian Additive

regression trees; Table 1). All the variables in the dataset other than

vitamin D status were included as potential predictors.
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We applied the training sample model results to the test

sample to generate individual‐level predicted log‐odds of suicide

based on all available predictors in the dataset other than vitamin

D deficiency. These predicted values were then included as the

key predictor in a conditional logistic regression model that

adjusted for the matching of cases and controls (Sun et al., 2011)

and included a dummy variable for vitamin D deficiency, the main

effect of the predicted values, and an interaction between vitamin

D deficiency and the predicted values. The existence of HTE was

determined by evaluating the significance of the interaction. We

also examined the possibility of nonlinearities by estimating a

separate conditional logistic regression model in which dummy

variables were created for quartiles of the predicted log‐odds and

interactions were estimated between the dummy for vitamin D

deficiency and the log‐odds dummies.

Lasso penalized logistic regression: As noted above, the

conventional approach to HTE estimation is the proportional

interaction model (Kovalchik et al., 2013). Such a model can be

estimated by including all potential prescriptive predictors, the

target risk factor, and two‐way interactions between the target

risk factor and the potential prescriptive predictors. The existence

of HTE is evaluated by testing the significance of the interactions.

However, as such a model will almost certainly overfit the data

(van Klaveren et al., 2019), it is usually wise to use some type of

penalty to minimize risk of over‐fitting. One way to do this is

with Least Absolute Shrinkage and Selection Operator (Lasso)

penalized regression. Lasso performs both variable selection and

regularization by forcing the sum of the absolute standardized

values of all regression coefficients in a model to be less than

some fixed value associated to the regularization penalty, thereby

forcing some coefficients to zero and using internal CV to

determine the optimal penalty value (Tibshirani, 1996). This re-

duces risk of over‐fitting. This is the second approach we inves-

tigated in our illustrative analysis. Specifically, we used lasso to

select a small set of stable interactions based on 10F‐CV in the

training sample of our dataset to estimate a reduced conditional

logistic model in the test sample. We then searched for HTE by

evaluating the significance of the coefficients in this proportional

interaction specification.

Causal forest: Although CV can be used to minimize the

problem of over‐fitting (Abadie et al., 2018), the lasso penalized

regression approach, like many other approaches for estimating

HTE, can be faulted because accuracy still requires correct speci-

fication of both the (possibly nonlinear) main effects and the

(possibly complex nonlinear and higher order) interactions. How-

ever, other algorithms exist that estimate interactions directly and

do not require correct specification of the main effects although

they do require correct specification of the interaction terms

(Pan & Zhao, 2021; Wang et al., 2018). The third approach we

investigate in our illustrative analysis uses one of the most

recently developed of these algorithms of this sort: causal forest

(Wager & Athey, 2018). This algorithm is an extension of random

forests, an algorithm that averages predicted outcome values over

many classification trees, each based on a subsample of predictors,

to correct for the problem of over‐fitting in more conventional

regression trees (Breiman, 2001). The causal forest algorithm uses

the same logic, but rather than splitting to minimize prediction

error in an outcome, it splits to maximize differences in the

TAB L E 1 Algorithms used in the super learner ensemblea

Algorithm Description

I. Super learner Super learner is an ensemble machine learning approach that uses cross‐validation (CV) to

select a weighted combination of predicted outcome scores across a collection of

candidate algorithms (learners) to yield an optimal combination according to a pre‐
specified criterion that performs at least as well as the best component algorithm. R
package: Super learner (van der Laan et al., 2007).

II. Linear algorithms in the super learner library

A. Generalized linear models Maximum likelihood estimation with logistic link function. R package: stats (Nelder &
Wedderburn, 1972).

B. Elastic Net Elastic net is a regularization method that minimizes the problem of overlap among

predictors by explicitly penalizing over‐fitting with a composite penalty λ
{MPP � Plasso + (1 − MPP) � Pridge}, where MPP is a mixing parameter penalty with

values between 0 and 1 that controls relative weighting between the lasso penalty

(Plasso) and the ridge penalty (Pridge). The parameter λ controls the total amount of

penalization. The ridge penalty handles multicollinearity by shrinking all coefficients

smoothly towards 0 but retains all variables in the model. The lasso penalty allows

simultaneous coefficient shrinkage and variable selection, tending to select at most one

predictor in each strongly correlated set, but at the expense of giving unstable

estimates in the presence of high multicollinearity. The elastic net approach of

combining the ridge and lasso penalties has the advantage of yielding more stable and

accurate estimates than either ridge or lasso alone while maintaining model parsimony.

R package: glmnet (Friedman et al., 2010). 11 different glmnet specifications were used,

(Continues)
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association between a target dichotomous risk factor and an

outcome across subgroups. The output is a predicted slope defined

as the individual's odds‐ratio of the outcome in the presence

versus absence of the target risk factor. Importantly, this estimate

is independent of whether the individual does or does not have

the target risk factor, as the estimate is based on counter‐factual
logic in which each person is implicitly assigned two estimated

outcomes—one in the presence and the other in the absence of

the target risk factor. The individual's estimated HTE is the dif-

ference between these two predicted values.

In addition to applying the causal forest algorithm to our training

sample, we calculated SHapley Additive exPlanations (SHAP) values

to estimate the relative importance of each predictor variable in the

model in the 10F‐CV training sample (Lundberg & Lee, 2017). SHAP

values represent the marginal contribution to overall model accuracy

of each variable in a predictor set. The causal forest model was then

re‐estimated with only the top five and then the top 25 predictors

defined by SHAP values to evaluate the effects of over‐fitting on

model results. The 3 causal forest models estimated in the training

sample were then used to generate 3 separate sets of individual‐level
predicted odds‐ratios in the test sample. The existence of HTE under

each of these specifications was determined by evaluating the sig-

nificance of the interaction between the dummy variable for vitamin

D deficiency and the predicted individual‐level odds‐ratios for reac-

tivity to this deficiency.

Data management and estimation of the conditional logistic

models were carried out in SAS version 9.4 (SAS Institute Inc., 2013).

The lasso, super learner, and causal forest models were estimated in

R version 3.6.3 (R Core Team, 2020). SHAP values were estimated in

Python (Lundberg, 2018).

T A B L E 1 (Continued)

Algorithm Description

varying the α hyperparameter over the values 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9,

and 1.

C. Adaptive splines Adaptive spline regression flexibly captures both linear and piecewise nonlinear

associations as well as interactions among these associations by connecting linear

segments (splines) of varying slopes and smooths to create piece‐wise curves (basis

functions). Final fit is built using a stepwise procedure that selects the optimal

combination of basic functions. R package: Earth (Milborrow, 2021). 3 different Earth
specifications were used, varying the degree hyperparameter over the values 1, 3,

and 5.

D. Adaptive polynomial splinesb Adaptive polynomial splines are like adaptive splines but differ in the order in which basis

functions (e.g., linear vs. nonlinear) are added to build the final model. R package:

polspline; Kooperberg, 2020.

III. Tree‐based algorithms

A. Bagging Random forest. Independent variables are partitioned (based on contiguous values) and

stacked to build short decision trees that are combined (ensemble) to create an

aggregate “forest”. Random forest builds numerous trees in bootstrapped samples and

generates an aggregate tree by averaging across trees, thereby reducing over‐fitting. R
package: ranger (Wright & Ziegler, 2017). 3 different ranger specifications were used,

each with the following hyperparameter values: max.depth = (6, 8, 8), num.

trees = (1500, 1700, 1000), mtry = (10, 4, 20), splitrule = (“gini,” “hellinger,”

“extratrees”)

B. Gradient boosting Gradient boosting algorithms build a sequential ensemble of shallow successive regression

trees that iteratively learn the residuals from prior trees. This is a flexible method,

where the number of trees, interaction depth, and shrinkage are leveraged to build

flexible models. R package: CatBoost (Prokhorenkova et al., 2019). 2 different CatBoost

specifications were used, each with the following hyperparameter values:

Iterations = (50, 100), learning_rate = (0.3, 0.8), depth = (8, 10).

C. Extreme gradient boosting A fast and efficient implementation of gradient boosting. R package: XGBoost (Chen &

Guestrin, 2016). 5 different XGBoost specifications were used, each with the following

hyperparameters: Ntrees = (1000, 100, 500, 100, 800), max_depth = (6, 2, 6, 8, 4),

shrinkage = (0.001, 0.1, 0.1, 0.1, 0.001), gamma = (0.3, 0.5, 0.0, 0.5, 0.8),

minobspernode = (20, 10, 20, 10, 20), and colsample_bytree = (0.3, 0.8, 0.5, 0.3, 0.8)

D. DBARTS Fits Bayesian additive regression trees. R package: dbarts. (Dorie, 2020).

Abbreviation: DBARTS, Discrete Bayesian Additive Regression Trees Sampler.
aEach linear algorithm was estimated separately with five different lasso screeners where dfmax = 10, 15, 20, 30 and all predictors. Each tree algorithm

was estimated separately with five different ranger screeners for number of predictors equal to 10, 15, 20 30 and all predictors. Hyperparameter tuning

was achieved by treating different specifications of individual algorithms as separate learners in the ensemble, as detailed in the body of the table.
bHyperparameters: Default values were used unless otherwise noted.
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3 | RESULTS

3.1 | The aggregate association

The aggregate association (95% CI) of vitamin D deficiency with

suicide in the total case‐control sample was OR = 2.1 (1.3–3.2).

This association was statistically significant (χ21 = 9.9, p < 0.002).

The association was weaker, though, in the randomly selected

67% test sample, OR = 1.4 (0.7–2.6), χ21 = 1.1, p = 0.30. It is

noteworthy, though, that it is useful in practical applications to

design training and test sample splits so that the distribution of

the target risk factor, the outcome, and the association between

the two is the same.

3.2 | Using super learner to generate a risk model

A total of 334 variables other than vitamin D deficiency were

included in the overall dataset. All these variables were included as

potential predictors in the super learner ensemble in the training

sample. The algorithms with the highest super learner weights were

the adaptive splines, with the linear splines accounting for 35.4% of

total ensemble weight and the polynomial splines for an additional

48.9% (Table 2). The other additive algorithms (9.0%) and tree‐based
algorithms (6.6%) were much less important. The AUC (standard

error) of the full super learner ensemble model when applied to the

independent test sample was AUC = 0.76 (0.02).

The interaction of the dummy variable for vitamin D deficiency

with the standardized (to a mean of 0 and variance of 1) continuous

overall super learner predicted odds of suicide in the test sample was

negative and nonsignificant: OR = 0.2 (95% CI:0.0–4.0, χ21 = 1.0,

p = 0.32; Table 3). The OR being less than 1.0 means that the

increased relative‐odds of suicide associated with vitamin D defi-

ciency decreases as overall super learner predicted odds increases.

This pattern can be seen clearly in Model 2, where we divided the

continuous predicted odds into quartiles. The ORs associated with

the 3 dummy variables for the upper three quartiles (Q2–Q4)

compared to those in the lowest quartile (Q1) can be interpreted as

conditional ORs among people who do not have vitamin D deficiency.

Consistent with previous machine learning models predicting

suicide (Burke et al., 2019), the OR is dramatically higher in the

highest quartile OR = 62.3 (18.5–209.8, χ21 = 44.5, p < 0.001) than in

intermediate quartiles (OR = 1.2–1.9) or the lowest quartile (where

the OR is implicitly 1.0). The OR for vitamin D deficiency in Model 2,

OR = 2.7 (0.8–9.1, χ21 = 2.6, p = 0.11), can be interpreted as the OR

among individuals in the lowest quartile of super learner predicted

odds. This OR is somewhat higher than in the total sample: OR = 2.1.

The interactions in Model 2 are 0.5 for the two intermediate quartiles

and 0.2 for the quartile with highest super learner predicted odds.

Which means that the ORs are approximately OR = 1.3 (i.e.,

0.5 � 2.7) in the half‐sample with intermediate super learner pre-

dicted odds and OR = 0.5 (i.e., 0.2 � 2.7) in the quartile with highest

super learner predicted odds. Although nonsignificant (χ23 = 1.8,

p = 0.60), these negative interactions are nonetheless noteworthy for

reasons described in the discussion section.

3.3 | The lasso penalized logistic regression model

The lasso model was estimated with main effects for vitamin D

deficiency and each of the 334 other variables included in the super

learner model along with a separate interaction of vitamin D defi-

ciency with each of these 334 variables. A total of 23 main ef-

fects and four interactions were retained in the final lasso model

(Table A1). We estimated four different conditional logistic models in

the test sample to evaluate the significance of these interactions as

evidence of HTE (Table 4). The first model included only the dummy

variable for vitamin D deficiency, main effects of the four variables

with interactions in the lasso model, and the interactions of vitamin D

deficiency with these four variables. The second model added the 23

other variables that had main effects in the lasso model. The third

and fourth models deleted the main effects of the four interacting

variables, none of which was in the lasso model. The fourth model

also deleted the main effect of vitamin D deficiency, which was not

part of the lasso model. None of the interactions was significant

either singly or as a set in any of these models.

Had one or more of these models been significant, though, the

next step in the analysis would have been to carry out a simulation in

which we estimated two predicted outcome scores for each indi-

vidual in the sample: based on the assumption that the target risk

factor was either positive (i.e., the individual had low vitamin D) or

negative. Individual‐level comparisons would then be made to

determine which individuals had the highest difference scores. This

would have been done using 10F‐CV to minimize over‐estimation of

the difference scores. Information external to the model regarding

the costs, effectiveness, and competing risks of treatment would then

have been combined with this information about predicted difference

scores to determine the decision threshold for intervention. Decision

science methods exist for making principled decisions of this sort

when individual‐level estimates of intervention effects exists (Kinchin

et al., 2017; Van Calster et al., 2018).

3.4 | The causal forest algorithm

The same 334 variables were used as predictors in the causal forest

analysis in the training sample. One hundred forty‐nine of these

variables had nonzero SHAP variable importance values in the

training sample. However, as it is typically the case in such analyses,

most of these variables had small SHAP values (135 less than 0.001).

As a result, in an effort to evaluate the possibility of overfitting, we

repeated the causal forest analysis with only the five and 25 pre-

dictors with highest SHAP values. Consistent with the fact that SHAP

values decreased markedly after the few most important predictors,

Pearson correlations were extremely high between the causal forest

predicted difference scores based on all variables and based on the
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TAB L E 2 Nonzero super learner algorithm weights in the training sample

Feature selection Hyperparameter Tuning Weight

I. Linear algorithms

Generalized linear model All 0.9%

Elastic net 15 a = 0 2.6%

20 a = 0 5.5%

Adaptive splines All degree = 1 20.6%

All degree = 3 9.1%

All degree = 5 5.8%

Adaptive polynomial splines 10 33.9%

15 15.0%

Total linear ‐ ‐ 93.4%

II. Tree‐based algorithms

Extreme gradient boosting 10 #3a 1.3%

10 #5a 0.1%

DBARTS 10 4.8%

All 0.5%

Total tree‐based ‐ ‐ 6.7%

Abbreviations: DBARTS, Discrete Bayesian Additive Regression Trees Sampler
aThe 3rd and 5th specifications in Table 1.

TAB L E 3 Interactions between
vitamin D deficiency and the super
learner estimate of composite predicted

odds (developed in the training sample)
in predicting subsequent suicide based
on a conditional logistic regression

model estimated in the test sample
(n = 331 matched pairs)

Model 1 Model 2

OR (95% CI) χ21 OR (95% CI) χ21

Main effects

Vitamin D deficiency 1.4 (0.7–2.6) 1.1 2.7 (0.8–9.0) 2.6

SL predicted oddsb

Continuous 3.9a (2.8–5.3) 72.3 ‐ ‐ ‐

Q1 1.0

Q2 ‐ ‐ ‐ 1.1 (0.6–2.0) 0.2

Q3 ‐ ‐ ‐ 1.9a (1.0–3.5) 4.3

Q4 (highest) ‐ ‐ ‐ 62.2a (18.5–209.6) 44.5

χ23 ‐ ‐ 46.8a

Interactions

SL predicted oddsb

Continuous 0.7 (0.3–1.4) 1.0 ‐ ‐ ‐

Q1 1.0

Q2 ‐ ‐ ‐ 0.5 (0.1–2.5) 0.6

Q3 ‐ ‐ ‐ 0.4 (0.1–2.0) 1.1

Q4 (highest) ‐ ‐ ‐ 0.2 (0.0–2.8) 1.4

χ23 ‐ ‐ 1.8

Abbreviations: CI, confidence interval; OR, odds ratio; SL, super learner.
aSignificant at the 0.05 level, two‐sided test.
bPredicted odds from the SL model was standardized in the test sample.
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top 25 (r = 0.98) and top five variables (r = 0.92) as well as between

scores based on the top 25 and top five variables (r = 0.91).

We estimated a separate conditional logistic model in the test

sample for each of these three scores, in each case including the main

effect of vitamin D deficiency, the main effect of the causal forest

score, and the interaction between the two variables. The interaction

was nonsignificant in all three cases (χ21 = 0.5–1.0, p = 0.49–0.33). As

with the super learner risk model, we then divided each causal forest

score into quartiles to inspect conditional ORs of vitamin D defi-

ciency with subsequent suicide (Table 5). Variation in ORs across

quartiles was nonmonotonic. Had the interaction been significant, we

would have applied the same principled methods for evaluating a

clinical decision threshold as described above in the discussion of the

lasso model.

4 | DISCUSSION

We focused above on the logic of HTE analysis and application of

some commonly used algorithms for this type of analysis. However, it

is important to note that we implicitly assumed in all these modeling

efforts that the target predictor variable was causal and was

randomly assigned with respect to the potential prescriptive pre-

dictors. Whereas these assumptions are plausible when applied to an

experiment in which we manipulate exposure to the presumed causal

risk factor, it is not a plausible assumption for most observational

studies. Failure to take this into account can lead to biased estimates

of HTE (Mozer et al., 2020). However, it often occurs, as in the

example considered here, that we are interested in evaluating the

possible existence of HTE as a preliminary to carrying out an

experiment. How might that be done?

As it happens, principled methods exist to work with observa-

tional data to make preliminary estimates of HTE if the baseline

predictor set includes the important determinants of the subset of

predictors of nonrandom exposure to the target risk factor that are

also independent causes of the outcome, as the differences in these

baseline covariates can be “balanced” statistically to approximate the

distributions found in experimental trials (Hirshberg & Zubi-

zarreta, 2017; Visconti & Zubizarreta, 2018). It has been shown that

analyses of such balanced databases often yield aggregate results

very similar to those obtained in experimental trials (Anglemyer

et al., 2014; Dahabreh et al., 2012).

It will often happen, though, that some confounders are un-

measured. When this is the case, it is sometimes possible to find

natural variation that mimics an experiment (Handley et al., 2018).

For example, opportunities of this sort could exist to study policy

interventions of various sorts using before‐after ecological designs,

such as the aggregate effects of interventions to reduce suicide by

means of restrictions of various kinds (Zalsman et al., 2016). Analysis

could make use of a regression discontinuity design (Moscoe

et al., 2015; Venkataramani et al., 2016). Or it might be possible to

make principled causal inferences about aggregate treatment effects

by attempting to find an instrumental variable (IV; Baiocchi

et al., 2014; Swanson, 2017), where a known cause of the target risk

factor is measured that we are willing to assume affects the outcome

only through the intervention.

TAB L E 4 Interactions between vitamin D deficiency and four variables selected by Least Absolute Shrinkage and Selection Operator
(Lasso; in the training sample) in predicting subsequent suicide based on a conditional logistic regression model estimated in the test sample
(n = 662; matched pairs = 331)a

Model 1 Model 2 Model 3 Model 4

OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI)

FA cluster: Risky versus protectiveb 1.0 (0.3–3.1) 0.6 (0.1–2.4) 0.7 (0.2–2.5) 0.9 (0.4–1.9)

Rank: Officerc ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐

Percent of DGLAd 1.0 (0.6–1.7) 1.0 (0.5–1.9) 0.8 (0.4–1.6) 0.8 (0.4–1.6)

Ratio of stearic acid to palmitic acidd 0.7 (0.4–1.2) 0.5* (0.2–1.0) 0.5* (0.3–1.0) 0.5* (0.3–1.0)

χ23 2.3e 4.4e 4.8e 4.8e

Abbreviations: CI, confidence interval; DGLA, dihomo‐γ‐linolenic acid; FA, fatty acid; OR, odds ratio.
aModel 1 included only the dummy variable for vitamin D deficiency, main effects of the 4 variables with interactions in the LASSO model, and the

interactions of vitamin D deficiency with these 4 variables as predictors. Only interaction coefficients are shown here. Model 2 added controls for the 23

other variables with main effects in the LASSO model. Models 3 and 4 deleted the main effects of the four interacting variables, none of which was in

the LASSO model, whereas Model 4 additionally deleted the main effect of vitamin D deficiency, which was not in the LASSO model.
bRisky and protective fatty acid clusters were defined based on the clusters discovered by Ryan et al., 2021.
cOnly n = 8 of the n = 52 officers in the test sample had vitamin D deficiency. Seven of these eight were suicide cases. This compares to n = 19 cases and

n = 25 controls among officers without vitamin D deficiency, for a gross OR of 9.2. The comparable gross OR among others in the sample (i.e., those that

were not officers) was 1.1 (n = 46 cases and n = 41 controls among those with vitamin D deficiency; n = 259 cases and n = 264 controls among those

without vitamin D deficiency), resulting in a gross interaction OR of 8.3. However, this coefficient became unstable in the multivariate model and could

not be estimated. It is noteworthy that the comparable OR in the training sample LASSO model had the opposite sign (OR = 0.9).
dStandardized variable.
eNo χ2 tests were significant (p = 0.31–0.68).

*Significant at the 0.05 level, two‐sided test.
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We know, for example, that vitamin D deficiency varies with

latitude and with season (Leary et al., 2017) and it might be

reasonable in some circumstances to assume that these are valid

instrumental variables. When this is the case, both observed and

unobserved covariates across groups defined by the instrumental

variable can be balanced to identify the effect of a potential inter-

vention. Both regression discontinuity and IV analyses can be con-

ducted with other covariate balancing methods (Keele et al., 2015;

Zubizarreta et al., 2013) and combined with additional regression

adjustments using more complex estimators (Robins &

Rotnitzky, 1995).

Second, whereas we investigated only a small series of HTE

modeling approaches, a great many different algorithms exist to es-

timate HTE and none of them is optimal for all applications. The

reason is that different ways of estimating interactions differ in their

assumptions, and the best method for any given application will be

the one whose assumptions conform best to the true structure of the

interactions in the population for that application. Some researchers

attempt to address this problem by carrying out analyses using

several different approaches, as we did here, and then selecting the

approach that has the best CV results as the one they use in appli-

cation. However, a better way to proceed is to use a stacked

generalization approach in which results are combined (rather than

compared) across multiple algorithms. This is the approach we

recommend using.

Another issue concerns the choice among the many methods for

estimating HTE. We described several such algorithms. Many others

exist. Rather than try to decide on a preferred algorithm or compare

a handful and select the best one out of those compared, we prefer to

use stacked generalization to generate a single model to be estimated

that combines results across many different algorithms. As described

above in the discussion of super learner, this is done by generating a

weight that combines predictions optimally across the algorithms.

Stacked generalization makes the final model less prone to mis-

specification than approaches based on a single algorithm (van der

Laan & Luedtke, 2015). Stacked generalization can be carried out in

conjunction with weighting or matching to adjust for measured

confounders (Luedtke & van der Laan, 2017) and with regression

discontinuity or IV designs to adjust for unmeasured confounders

(Qiu et al., 2021).

Finally, in the case where HTE is being estimated from obser-

vational data, it is important to emphasize the role of separating the

design and analysis stages. Following Rubin (2008), all the data ad-

justments, empirical evaluations, and fitted models that do not

require outcome information correspond to the design stage of an

observational study, while all the examinations that use this infor-

mation belong to the analysis stage. Separating these two stages is

important because it helps preserve the study's objectivity and

maintain the validity of its statistical tests. Our study followed this

principle by first learning the relevant variables for HTE in a training

sample, and then fitting the final effect models in another disjoint

part of the total sample. On the learning part of the data, we lever-

aged a variety of machine learning approaches to inform the final

causal effect models on the analysis part. At a high level, this also

allowed us to integrate modern ideas from machine learning with

classical procedures for observational studies, such as conditional

logistic regression models for case‐control studies. These latter

models also catalyzed our substantive knowledge of the problem

under study. Moving forward, the general approach of using flexible

optimization‐based algorithms for prediction guided by study design

principles for causal inference that integrate substantive knowledge

of the problem at hand is a promising route for future HTE analysis.
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APPENDIX A

TAB L E A1 Lasso on the training subsample of deployed matched pairs (N = 328 observations, 164 matched pairs)

ODDS RATIO

Intercept 1.1

Main effects

Race and ethnicity

Identified as Black on race and ethnicity variable 1.0

Race: American Indian/Alaskan Native 2.1

Military

Rank: Officer 0.9

History of military deployment coded in MH encounter 0.8

Total months on military deployment 1.0

Mental health

Alcohol use disorder not otherwise specified 0.8

Number of DOD Inpatient mental health encounters 1.0

Number of non‐Personality disorder MH diagnoses in record 1.1

Other, mixed, or unspecified drug abuse, unspecified 0.8

Number of inpatient mental health encounters 1.1

Number of mental health encounters in the 30 days preceding suicide 1.1

Any encounters for occupational therapy 1.1

Obesity, unspecified 1.4

Any mental health visits 1.4

Any Personality disorder 1.1

Biomarkers

Docosapentaenoic acid (DPA; 22:5 n–6) μg/cl in serum 1.0

Stearic acid or octadecanoic acid (18:0) as Percent of total fatty acids 0.2

Standard score of stearic acid (18:0) as Percent of total fatty acids 1.0

Concentration of this Palmitoleic acid expressed as a percentage of total fatty acid

concentration expressed as a Z‐score
1.0

Palmitoleic acid (16:1 n–7) as Percent of total fatty acids

Activity of delta 9 desaturase (ratio of Palmitoleic acid and palmitic) 1.0

FA cluster: Risky versus protective 2.8

Dihomo‐γ‐linolenic acid (DGLA; 20:3 n–6) as Percent of total fatty acids

(Percent of DGLA)

0.9

Ratio of stearic acid to palmitic acid 0.9

Magnesium μg/ml in serum (mg) 1.0

Zinc μg/ml in serum 0.9

Abbreviations: DGLA, dihomo‐γ‐linolenic acid; FA, fatty acid; OR, odds ratio.

14 of 14 - ZUBIZARRETA ET AL.


	Evaluating the heterogeneous effect of a modifiable risk factor on suicide: The case of vitamin D deficiency
	1 | INTRODUCTION
	2 | METHODS
	2.1 | Sample
	2.2 | Analysis methods

	3 | RESULTS
	3.1 | The aggregate association
	3.2 | Using super learner to generate a risk model
	3.3 | The lasso penalized logistic regression model
	3.4 | The causal forest algorithm

	4 | DISCUSSION
	ACKNOWLEDGMENTS
	CONFLICT OF INTEREST
	DATA AVAILABILITY STATEMENT
	DISCLAIMER



