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ABSTRACT

Proteins engage in highly selective interactions with
their macromolecular partners. Sequence variants
that alter protein binding affinity may cause signifi-
cant perturbations or complete abolishment of func-
tion, potentially leading to diseases. There exists
a persistent need to develop a mechanistic under-
standing of impacts of variants on proteins. To ad-
dress this need we introduce a new computational
method MutaBind to evaluate the effects of sequence
variants and disease mutations on protein interac-
tions and calculate the quantitative changes in bind-
ing affinity. The MutaBind method uses molecular
mechanics force fields, statistical potentials and fast
side-chain optimization algorithms. The MutaBind
server maps mutations on a structural protein com-
plex, calculates the associated changes in binding
affinity, determines the deleterious effect of a muta-
tion, estimates the confidence of this prediction and
produces a mutant structural model for download.
MutaBind can be applied to a large number of prob-
lems, including determination of potential driver mu-
tations in cancer and other diseases, elucidation of
the effects of sequence variants on protein fitness in
evolution and protein design. MutaBind is available
at http://www.ncbi.nlm.nih.gov/projects/mutabind/.

INTRODUCTION

Crucial prerequisite for proper biological function is a pro-
tein’s ability to establish highly selective interactions with
macromolecular partners. Sequence variants that alter pro-
tein interactions may cause significant perturbations or
complete abolishment of function, potentially leading to
diseases. The current era of genome sequencing has un-
raveled a large number of human genetic variations, many
of which may affect protein binding and function. How-
ever, these new advances are necessary but not sufficient
for understanding the origins of allelic variations in hu-

man genes and mechanisms of genetic diseases and phe-
notypes (1). Although a majority of variants are likely to
be neutral, a substantial fraction of them may explain the
origins of many complex traits and diseases. One possible
way to assess the effect of a mutation on protein binding
affinity is to experimentally measure it. However, while site-
directed mutagenesis methods are inexpensive and fast, sur-
face plasmon resonance, isothermal titration calorimetry,
FRET and other methods used to measure binding affin-
ity can be time-consuming and costly. Therefore, the de-
velopment of reliable computational approaches to predict
changes in binding affinity upon mutations is urgently re-
quired. With recent advances in computational biology, sev-
eral approaches have recently been proposed to offer a phe-
notypic classification of mutations into damaging and neu-
tral categories, to calculate the impact of mutations on pro-
tein stability (2–4), but very few methods can actually pre-
dict the effects of point mutations on binding energy (5–10).
Moreover, out of these few methods, even fewer are avail-
able as open access websites.

To address this need we present a new accurate computa-
tional method and web server, MutaBind (http://www.ncbi.
nlm.nih.gov/projects/mutabind/), which is based on molec-
ular mechanics force fields, statistical potentials and fast
side-chain optimization algorithms. MutaBind evaluates
the effects of sequence variants and disease mutations (both
interfacial and non-interfacial) on protein interactions; cal-
culates the quantitative changes in binding affinity upon
single missense mutations; produces models of mutant pro-
teins and estimates the confidence of predictions. MutaBind
was validated using different types of cross-validation and
independent test sets from the 26th Critical Assessment of
Predicted Interactions (CAPRI) (11) and compared to sev-
eral other methods. MutaBind can be applied to a large
number of tasks, including finding potential driver muta-
tions in cancer, studying the effects of sequence variations
on protein fitness in evolution and protein design.
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MATERIALS AND METHODS

Experimental datasets of mutations for parameterization

The dataset used for parameterization was compiled from
the SKEMPI database (12), which includes experimen-
tally measured values of changes in binding free energy
upon single and multiple amino acid substitutions (called
‘mutations’ hereafter) derived from the scientific literature
for complexes with experimentally determined structures.
SKEMPI contains all types of amino acid substitutions, not
limited to alanine scanning. We used SKEMPI data and
removed proteins without wild-type crystal structures, pro-
teins measured by ‘unusual method’ as defined in SKEMPI
or with modified residues at the binding interface. Then
we eliminated SKEMPI entries with multiple mutations re-
stricting our set to single mutations. There are some en-
tries (211 mutations) where several experimental values are
available for the same mutation. Since these values are not
drastically different from each other, for these cases we
used an average value of experimental changes in binding
free energy. As a result, the experimental set used in this
study for training included 1925 single mutations from 80
wild-type protein–protein complexes (it will be referred to
as ‘Skempi’ hereafter). The number of mutations for each
protein–protein complex is shown in Supplementary Fig-
ure S1. This set is very similar to the dataset used to test
BeAtMuSiC method (7) (<5% difference) and performance
of MutaBind does not change if the BeAtMuSiC test set
is used for validation. Mutations, experimental and predic-
tion data are accessible through ftp://ftp.ncbi.nih.gov/pub/
panch/MutaBind.

Structure optimization protocol

Crystal structures of wild-type protein–protein complexes
of Skempi set were obtained from the Protein Data Bank
(PDB) (13). First we introduced a single mutation on the
wild-type structure using the BuildModel module from
FoldX (14) software package. Missing heavy side chain
atoms and hydrogen atoms were added for the wild type and
mutant using VMD program (15) based on the topology file
from the CHARMM36 force field (16). Then a 100-step en-
ergy minimization in the gas phase was carried out for both
wild type and mutant using harmonic restraints (with the
force constant of 5 kcal mol−1 Å−2) applied on the back-
bone atoms of all residues. Minimization was done only for
protein–protein complexes, and protein structures of bind-
ing partners were retained assuming the rigid-body bind-
ing. The energy minimization were carried out with NAMD
program version 2.9 (17) using the CHARMM36 force field
(16). A 12 Å cutoff distance for non-bonded interactions
was applied to the systems. Lengths of hydrogen-containing
bonds were constrained by the SHAKE algorithm (18). The
current structure optimization protocol was chosen based
on its accuracy and speed.

Calculating changes in binding affinity

Our goal is to design a method to assess the effects of muta-
tions on protein–protein binding. There are different ways
by which mutations can impact binding. A mutation may

change the components of protein–protein interaction en-
ergies, may affect the solvation of a complex, may change
the folding free energy of each of the partners and may di-
rectly disrupt binding hotspot sites (19). We analyzed dif-
ferent protein sequence and structural features (Supplemen-
tary Table S1) and found that only 10 features contributed
significantly to the quality of the multiple linear regression
model (MLR) for the calculation of ��G value (change in
binding affinity upon mutation). The model was parameter-
ized using the ‘Skempi’ set. The features which contribute
significantly to the quality of the model are described be-
low.

(i) �Ewt
vdw and �Emut

vdw are Van der Waals interaction en-
ergies for wild-type and mutant protein complexes re-
spectively. They are calculated as differences between
Van der Waals energies of a complex and each inter-
acting partner as �E = Ecom − Epart1 − Epart2 using
ENERGY module of CHARMM program (20). The
minimized structure of wild-type or mutant complex
was used for the calculation.

(ii) �Gwt
solv and �Gmut

solv are the differences between po-
lar solvation energies of a complex and each in-
teracting partner (�G = Gcom − Gpart1 − Gpart2) in
water for wild-type and mutant complexes respec-
tively. These terms are calculated from solving the
Poisson-Boltzmann equation with PBEQ module (21)
of CHARMM program using the minimized structure
of wild-type or mutant complex.

(iii) ��Gfold is the difference between unfolding free en-
ergies of mutant and wild-type protein complexes
(��Gfold = �Gmut

fold − �Gwt
fold), calculated using Build-

Model module of FoldX software (14). FoldX calcu-
lates unfolding free energy using empirical force field.
This term may account for those cases where partners
are unfolded in unbound states and can only fold upon
binding to each other so the binding affinity cannot be
explicitly calculated.

(iv) SAwt
com and SAwt

part are solvent accessible surface areas of
the wild-type residues in the mutated sites in the com-
plex and unbound state respectively. They are calcu-
lated using DSSP program (22) for crystal structure of
wild-type complex.

(v) CS is the conservation score of the mutated site calcu-
lated using PROVEAN program (23) which accounts
for the fact that binding hotspots (sites contributing
the most to the energy of binding) are usually evo-
lutionarily conserved. PROVEAN also takes into ac-
count the sequence context of the mutated site and
therefore accounts for the alignment quality around a
site of interest.

(vi) �wt
Pro and �mut

Pro terms account for the ability of proline’s
cyclic structure to introduce constraints on the main-
chain dihedral angles which, in turn, can be struc-
turally important for stability or binding. �Pro is equal
to 1 or 0 if proline is present or absent in the mutated
site in wild-type or mutant proteins.

In addition, Random Forest (RF) supervised learning
method was applied, and the final prediction of ��G by
MutaBind was calculated as an average of two ��G val-
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Figure 1. Pearson correlation coefficients between experimental and calculated ��Gfor three types of cross-validation tests for ‘Skempi’ (A) and ‘SkempiPI’
sets (B). See ‘Validation’ section for details.

ues produced by MLR and RF. Contributions of each term
to the MLR and RF models are shown in Supplementary
Table S2.

If we train and test our model on the ‘Skempi’ set, the
Pearson correlation coefficient between experimental and
calculated changes in binding free energies yields R = 0.78
(Supplementary Figure S2a). In addition, we noticed that
the performance of MutaBind in estimating the effects
of mutations in protease–inhibitor complexes (named as
‘SkempiPI’ hereafter, it includes 862 single mutations from
16 protease–inhibitor complexes) was significantly higher
than for other types of complexes with a Pearson correla-
tion coefficient of 0.86 (Supplementary Figure S2b). There-
fore, we parameterized our model separately for protease–
inhibitor complexes on ‘SkempiPI’ set so that it is possible
to specify this type of model on the MutaBind website to ob-
tain more accurate predictions if a query protein complex
belongs to protease–inhibitors. All correlation coefficients
reported in the paper were significantly different from zero
with P-values of less than 0.01.

MutaBind takes about 15–30 min to perform calculations
for a single mutation in a protein complex with 300 residues
running on a single processor core, and it requires addi-
tional 3–5 min for each additional mutation per complex.

VALIDATION

Evaluating the performance of MutaBind using cross-
validation

Our goal is to construct a computational method that can
yield a good prediction accuracy for diverse and large sets
of single mutations. In many cases, overfitting may occur
when the parameters of computational methods are tuned
to minimize the mean square deviations of predicted from
experimental values in the training set, thus leading to the
decreased generalized performance (24). At the same time
the training set should be as comprehensive as possible.
To address this issue, we performed five types of cross-
validation. In ‘CV1’ cross-validation (Figure 1A) we ran-
domly chose 80% of all mutations from the ‘Skempi’ set
as training and used the remaining 20% mutations for test-
ing; the procedure was repeated 100 times. In case of ‘CV2’
cross-validation, 50% mutations were used for training and

remaining mutations for testing, also repeated 100 times.
The average Pearson correlation coefficients were R = 0.77
and R = 0.76 for ‘CV1’ and ‘CV2’ respectively with small
standard errors of 0.001–0.002 (Figure 1A). Since a distri-
bution of the number of mutations over proteins is not uni-
form (Supplementary Figure S1), we performed the third
type of cross-validation (‘CV3’ cross-validation) trying to
take this bias into account. Namely, we produced a subset
including 532 mutations from 80 protein complexes by sam-
pling up to ten mutations for each protein complex from
‘Skempi’, the procedure was repeated 10 times. Then 80%
mutations were randomly chosen from each subset as train-
ing and the remaining mutations for testing, this procedure
was also repeated 10 times. It resulted in an average cross-
validated correlation of R = 0.71 and SE = 0.02 (Figure
1A). The same procedure was performed for ‘SkempiPI’ set
and the results are shown in Figure 1B. Two other types of
cross-validation are described in the following section.

Evaluating the performance of MutaBind using leave one
complex or binding site out validation

Since the prediction accuracy of mutational effects largely
depends on sequence and structure of a protein complex,
we performed a ‘leave-one-complex-out’ procedure (‘CV4’
cross-validation). Namely, we trained the parameters on ex-
perimental ��G values of mutations from 79 protein com-
plexes and then applied the model to mutations from the re-
maining one protein complex. This procedure was repeated
for each complex. The Pearson correlation coefficient be-
tween experimental and computed ��G values using this
procedure was 0.68 with RMSE of 1.41 kcal mol−1 (Fig-
ure 2A and Table 1). It yielded the following linear regres-
sion function: ��Gexp = 1.21∗��GMutaBind − 0.28, there-
fore the predicted values are almost on the same scale as
experimental ones. The predictions achieved high accuracy
for protease–inhibitor complexes (R = 0.76 and RMSE =
1.48 kcal mol−1) (Figure 2A and Table 1). In addition, we
performed a ‘leave-one-binding-site-out’ validation (‘CV5’
cross-validation) where not only a complex in the valida-
tion set was removed from the training set, but also all other
complexes with the identical/similar binding site. Namely,
all ‘hold-out’ complexes which had identical/similar bind-
ing sites defined in the SKEMPI database were removed
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Figure 2. Correlation between experimental and predicted values of changes in binding affinity for all mutations in Skempi (black) and SkempiPI (orange)
set using CV4 and CV5 cross-validations corresponding to ‘leave-one-complex-out’ (A) and ‘leave-one-binding-site-out’ (B) procedures, respectively.

from the training set and then testing was performed on
complexes which did not have similar binding sites (12).
Even though the model was parameterized and tested using
completely different non-overlapping sets of binding sites,
the correlation between experimental and estimated values
of binding affinity changes was still statistically significant
with R = 0.57 and RMSE = 1.57 kcal mol−1 (Figure 2B and
Table 1). Prediction errors for different types of mutations
in ‘CV4’ set are shown in Supplementary Figure S5.

Comparison of MutaBind with other methods

We compared our method with three other methods, BeAt-
MuSiC (7), MMPBSA (25) and FoldX (14). BeAtMu-
SiC is a machine learning method, which uses a combi-
nation of different statistical potentials to predict ��G
values. It has the shortest processing time and calcula-
tion for one mutation takes less than a second on its web
server. It has been shown to outperform many other ap-
proaches in the 26th round of CAPRI and this is the reason
why we chose this method for comparison. The Molecular
Mechanics Poisson–Boltzmann Surface Area (MMPBSA)
method has been previously shown to yield good agree-
ment with experimental studies in determining protein sta-
bility, binding affinity and ranking of docking templates
(26,27). It should be mentioned that MMPBSA is not ex-
plicitly trained on any set to predict the effects of muta-
tions on binding affinity. FoldX uses an empirical energy
function, which is parametrized on experimental changes
of unfolding free energy, it is fast and takes about 5 min
for a protein of about 300 residues long. Although it is not
parameterized to predict changes in binding energy, it is
very powerful in predicting changes of unfolding free en-
ergy (14). We used FoldX to calculate the binding energy as
��Gbind = �Gcom

fold − �Gpart1
fold − �Gpart2

fold .
We then applied all methods to Skempi and SkempiPI

sets and calculated Pearson correlation coefficients between
experimental measurements (��Gexp) and predictions. Ta-
ble 1 shows that MutaBind performs superior to other
methods on these test sets in predicting quantitative values
of ��G as evident from the values of correlation coeffi-
cients and root-mean-square errors. It should be mentioned

that machine learning methods assume that the conforma-
tion of a protein does not change upon mutation, although
in many cases it does. MutaBind, on the other hand, does
not make such assumption and simulates structures of mu-
tant proteins. Previously, we developed a method for pre-
dicting binding affinity changes upon mutations which used
a modified MMPBSA, statistical scoring energy functions
and structure minimization protocol with explicit solvent
model without restraints on the backbone atoms (5). This
former protocol was time consuming although it used only
five parameters in calculating binding energy differences. It
was applied to predict the effects of cancer mutations on
the binding between CBL ubiquitin ligase and E2 conjugat-
ing enzyme, where predicted binding affinity changes were
successfully compared with the experiments in cancer and
non-cancer cell lines (28). For comparison, MutaBind uses
a 100-step energy minimization in the gas phase that con-
siderably increases the calculation speed.

Evaluating the performance of MutaBind using CAPRI tar-
gets

We performed two other independent tests using a dataset
from the 26th round of the blind prediction experiments
CAPRI (11), which allowed us to directly assess the per-
formance of our method in comparison with 22 other ap-
proaches. CAPRI set is composed of two targets (T55 and
T56), de novo designed influenza inhibitors (HB36.4 and
HB80.3) in complex with hemagglutinin (HA) (29). T55 in-
cludes 1007 mutations at 53 different positions (‘CAPRI1’)
and T56 includes 855 mutations at 45 positions (‘CAPRI2’).
These sets of experimental data include enrichment val-
ues calculated using deep sequencing by taking the binary
logarithm of the ratio of number of times the variant se-
quence was observed after and before the selection for bind-
ing (29,30). Although the enrichment value is not a direct
measurement of the change in binding affinity, these two
measures are well correlated with each other (29). Protein
complexes HB36.4-HA (T55) and HB80.3-HA (T56) have
not been crystallized, however, structures of very close ho-
mologs are available. We built models for T55 and T56 pro-
tein complex structures by introducing one (N64K) muta-
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Table 1. Comparison of methods’ performances on Skempi and SkempiPI sets

Test set Method R RMSE (kcal mol−1) Slope

Skempi MutaBind(CV4) 0.68 1.41 1.21
MutaBind(CV5) 0.57 1.57 1.27
BeAtMuSiC 0.39 1.81 0.75
FoldX 0.40 2.12 0.41
MMPBSA 0.44 6.45 0.12

SkempiPI MutaBind (CV4) 0.76 1.48 1.17
BeAtMuSiC 0.44 2.16 0.88
FoldX 0.40 2.57 0.38
MMPBSA 0.65 5.66 0.27

R: Pearson correlation coefficient between experimental and predicted ΔΔG values. RMSE: root-mean square error. The last column shows the slope of
the regression line between experimental and predicted ΔΔG values. All correlation coefficients are statistically significantly different from zero (P-value
<< 0.01).

tion on HB36.3-HA crystal structure (PDB ID: 3R2X (31))
and five mutations (K12G, I17L, I21L, K35A and K42S) on
HB80.4-HA crystal structure (PDB ID: 4EEF (29)), respec-
tively. CAPRI test sets were not used in our model selection
or parameterization.

We applied all methods to ‘CAPRI1’ and ‘CAPRI2’ sets
and calculated Pearson and Kendall correlation coefficients
between experimental measurements (enrichment values)
and predictions. As can be seen on Figure 3, MutaBind
compares very well to other methods as evident from the
values of correlation coefficients and root-mean-square er-
rors (Supplementary Table S3). It should be mentioned that
none of the methods (including MutaBind) could achieve
high prediction accuracy for ‘CAPRI1’ and ‘CAPRI2’ sets
(Figure 3), probably because the enrichment value is not a
direct measurement of binding affinity changes and T55 and
T56 do not have wild-type crystal structures.

Evaluating the performance of MutaBind to predict deleteri-
ous effects of mutations

The requirement to predict the quantitative values of bind-
ing affinity changes is rather stringent. A much easier task,
attempted by many studies, is to classify mutations based
on their effects into deleterious or neutral (see definition
on Supplementary Figure S3 caption). Figure 4A and Sup-
plementary Figure S3 demonstrate that the performance
of MutaBind is notable in estimating deleterious effects
(highly destabilizing) for all test sets and neutral effects
for ‘Skempi’ and ‘CAPRI1’ sets (but not ‘CAPRI2’ set). It
should be mentioned that since the number of highly sta-
bilizing mutations was very small (Supplementary Figure
S3d), the MutaBind prediction accuracy could not be reli-
ably assessed for these mutations.

As was shown previously (5), mutations located on the
interface region have on average larger effects on protein–
protein interactions and are better predicted compared to
non-interface mutations. Importantly, MutaBind yields sta-
tistically significant correlation for all targets in predicting
non-interfacial mutations (Figure 4B and Supplementary
Figure S4). As judged by the values of correlation coef-
ficients, MutaBind is superior to BeAtMuSiC in this cat-
egory, although the number of non-interfacial mutations
with experimental values of ��Gexp is also limited (Sup-
plementary Figure S4d).

MutaBind classifies a mutation as deleterious if its pre-
dicted ΔΔG is higher or equal to 1.57 kcal mol−1. This
threshold corresponds to 18% FPR and 82% TPR which

minimizes the value of error ER =
√

(1 − TPR)2 + FPR2

to compensate retrieval sensitivity and specificity. To define
the confidence of prediction for deleterious interfacial mu-
tations, we constructed ROC curves (Supplementary Fig-
ure S6) for predicted deleterious interfacial mutations and
defined a deleterious mutation with high confidence if pre-
dicted ��G was higher or equal to 2.24 kcal mol−1 (cor-
responds to the minimum in ER) and low confidence dele-
terious mutation if ��G was lower than 2.24 and higher
or equal to 1.57 kcal mol−1. Similarly, MutaBind defines a
neutral interfacial mutation with high confidence if ��G is
lower or equal to 0.86 kcal mol−1 and low confidence neu-
tral interfacial mutation if predicted ��G is higher than
0.86 and lower than 1.57 kcal mol−1. We defined the confi-
dence of all non-interfacial mutations as low.

WEB SERVER

Server input

The main requirement of the web server is the availability
of 3D structure of a protein–protein complex. The users
can either provide the protein PDB code, then structures
of biological assemblies will be retrieved from the Protein
Data Bank, or they can upload their own file with the co-
ordinates. In either case, the structure file should contain
at least two protein chains. If a protein complex is classi-
fied as protease–inhibitor, a special model optimized for the
protease-inhibitor complexes can be specified in the option
at the bottom of the entry page.

After the structure has been correctly retrieved, the server
will display a 3D view of the complex colored by chains
or partners using the GLmol software. Each chain is listed
with the corresponding protein name. At the second step
two interaction partners should be defined. The user can as-
sign one chain or multiple chains to either Partner 1 or Part-
ner 2, but both partners should include at least one chain.
Only the selected chains of two partners will be taken into
account during the calculation. Interacting partners are de-
fined if the interface size between them is more than 100
Å2. Interface size is calculated as a difference between the
solvent accessible surface areas of proteins in complex and
unbound partners.
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Figure 3. Kendall’s tau rank correlation coefficients between predicted ��G and measured enrichment values for MutaBind, MMPBSA, FoldX, BeAt-
MuSiC and other 21 prediction methods of the 26th round of CAPRI experiments http://www.ebi.ac.uk/msd-srv/capri/round26/. MutaBind is shown in
black.

Figure 4. (A) ROC curves for predictions of deleterious mutations for different methods applied on Skempi set. AUC = 0.85, 0.81, 0.70, 0.72, 0.71 for
MutaBind (cross-validation CV4), MutaBind (cross-validation CV5), BeAtMuSiC, MMPBSA and FoldX, respectively. The AUC statistic was calculated
as an area under the curve. (B) Comparison of MutaBind with other methods for prediction of interfacial and non-interfacial mutations for Skempi set.
Only statistically significant correlation coefficients are shown.

The third step is to select mutations (Figure 5). Up to 16
single mutations can be selected for one submission. Each
mutation will be treated independently. After the chain and
the mutated position are selected, they can be visualized in
the wild-type complex using the 3D viewer.

Server output

For each mutation of a protein–protein complex, MutaBind
server provides the following results:

(i) ��G (kcal mol−1), predicted change in binding affin-
ity induced by mutation. Positive and negative signs
correspond to destabilizing and stabilizing mutations
predicted to decrease and increase binding affinity re-
spectively.

(ii) Interface (yes/no), MutaBind defines a residue to be
located on a protein–protein interface if residue’s sol-
vent accessibility in the complex is lower than in the
corresponding unbound partners.

(iii) Deleterious (yes/no), MutaBind server classifies a mu-
tation as deleterious if ��G is higher or equal to 1.57

http://www.ebi.ac.uk/msd-srv/capri/round26/
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Figure 5. Left corner: the entry page of MutaBind server; right corner: the third step for selecting mutations, wild-type residue (L45) in a mutated site is
shown in the 3D viewer; and bottom: final results table and alignment of homologous binding sites.

kcal mol−1. This threshold corresponds to the mini-
mum value of ER to compensate retrieval sensitivity
and specificity.

(iv) Confidence (high/low), for deleterious classification
of interfacial mutations. For non-interfacial mutations
prediction confidence is listed as low.

(v) Coordinates of the minimized mutant structure are
provided for download.

(vi) Protein–protein binding sites in protein complexes ho-
mologous to the query are identified using Inferred
Biomolecular Interactions Server at NCBI (IBIS)
server (32). It allows testing mutations of aligned bind-
ing site residues in homologous proteins in MutaBind.

Results can be viewed directly on the browser (Figure 5)
or downloaded as a plain text file.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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